manuscript No.
(will be inserted by the editor)

A Comparison of Cryptanalytic Tradeoff Algorithms

Jin Hong - Sunghwan Moon

Abstract The three major time memory tradeoff algorithms are conthamethis paper.
Specifically, the Hellman tradeoff algorithm, the distirghed point tradeoff method, and
the rainbow table method, in their non-perfect table versjare considered.

We show that, under parameters that are typically congidier¢heoretic discussions
of the tradeoff algorithms, Hellman and distinguished paiadeoffs perform very close
to each other and the rainbow table method performs somevdttar than the other two
algorithms. Our method of comparison can easily be appbeather situations, where the
conclusions could be different.

The analysis presented in this paper takes the effects s# &arms into account and
also fully considers techniques for reducing storage, saagthe ending point truncation
method and index files.

Keywords time memory tradeoff Hellman- distinguished point rainbow table random
function

1 Introduction

There are numerous security systems in use today that rghasswords. Access to many
contents on the network requires one to login with a passaoddmany file formats today
have security features that restrict access to the file th@icorrect password is supplied.
These usually employ password haslsystem, which stores a one-way function image of
the password in the system or file. Indeed, storing the paskivats raw form within the
file one wishes to set access control to would be meaningless.

A time memory tradeoff algorithm attempts to recover thespasd from the knowledge
of the one-way function image, with the help of a table crédateough pre-computation.

Contact author: Jin Hong

J. Hong
Department of Mathematical Sciences and ISaC, Seoul Natidniversity, Seoul 151-747, Korea
E-mail: jinhong@snu.ac.kr

S. Moon
Department of Mathematics, Texas A&M University, Collegat®n, TX 77843-3368, USA
E-mail: shmoon@math.tamu.edu

A realistic barrier to applying the tradeoff technique toy apecific security system is
the massive pre-computation required, before the acttedlatan be mounted. The pre-
computation cost is roughly proportional to the space ojtobs passwords and, since most
users do not use long or random passwords, the tradeofkattacfree to choose a smaller
subset consisting of short or more likely passwords andddemi be satisfied with recov-
ering only those passwords belonging to this subset. Thepridrcomputation requirement
no longer stands as a barrier to the tradeoff attack.

It has long been known that propedgltinga password can remove any realistic threats
from time memory tradeoff attacks. But, such measures dteat being taken by many
proprietary systems, and some systems are known to be usthgh® newer salted and
the older non-salted versions of the security system sanattusly to remain compatible
with older systems. Hence, the time memory tradeoff tealiiill remains a powerful tool
against these vulnerable password hash systems. Sincentgenarated passwords will
continue to be used for some time, one would like to undedsthe power and limitations
of the tradeoff techniques.

In this work, we consider the three major tradeoff algorighrihese are the original
tradeoff algorithm [8] devised by Hellman, the distingw@dhpoints method, attributed to
Rivest in [4, p.100], and the rainbow table method [12], amued by Oechslin. There are
perfect table versions of these methods and, even thougtatkenore efficient in recover-
ing passwords, they require more pre-computation to wohles€ are hence less practical
and we shall not consider them in this paper. There are al$-tanget versions of trade-
off algorithms [3, 7] which attracted attention as attacksstreamciphers, but we will not
work with these either. The most practical application efttadeoff technique today is with
password hash systems and we will present the current wahktkis application in mind.

It has been shown [2] that the performance of tradeoff aflgors that are known today
is asymptotically the best one can hope to find, among alrilgos belonging to a certain
category. But the measure of being best used in this theamlysaccurate modulo a small
multiplicative factor. The relative performance of di#et tradeoff algorithms has not been
accurately analyzed, and the choice of which algorithm ® een be a difficult one for
someone new to the tradeoff technique. In practice, expegiseems to be the major basis
of the decisions, and researchers seem to have varied ngiofowhich algorithm performs
better.

Comparison of tradeoff algorithms has been a controvesalgect. There are two major
obstacles to making a fair comparison of tradeoff algorghthe first is that the online time
of each algorithm is hard to predict accurately, due to tHecef of events called false
alarms. Some answers to this problem may now be found in [fr9fhe Hellman and
rainbow cases. The second obstacle concerns the numbeis dhéi is required to store
each table entry resulting from the pre-computation. Theeetechnique for reducing this
number of bits called ending point truncation which has resrbfully analyzed. Due to
these obstacles, previous comparisons of tradeoff algosithave mostly relied on rough
arguments that emphasize a certain advantageous chaéctef one algorithm against
another.

There is a natural occurring meastioé how efficiently a tradeoff algorithm can balance
time against memory and this measure becomes accessileléhaniirst obstacle mentioned
above is resolved. In this work, we carefully note that thesasure of tradeoff efficiency for
different algorithms are expressed in different units araVide arguments for converting

1 The optimal value of this measure is referred to as the tfadbaracteristic in [1], where it is used to
compare the perfect version of the rainbow table methochagather algorithms.

them to directly comparable units. This transition of ungtsntimately connected to the
second obstacle mentioned above.

Apart from the above two obstacles that are due to our lackhoikedge, there is yet
another problem of how to compare different tradeoff penfances that are achievable only
after different pre-computation efforts.

In this work, we clear both of the obstacles mentioned abowekuse it to provide fair
comparisons between tradeoff algorithms. More precisetyshall present a method to vi-
sualize what can be achieved by each algorithm in terms e€@ngputation and tradeoff
performance. This will be done in a unified way so that the eaoigchoices possible with
each algorithm can directly be compared against each @&hgmpotential user of the trade-
off technique can use this information to decide on whictoatgm to use and which set of
parameters to use with the algorithm. The judgement of whlgbrithm is more suitable
depends on how the user relatively values the pre-computabtst and tradeoff efficiency,
and hence cannot be done in an objective manner in most cases.

In presenting the above comparison method, we will maintyi$oon a certain set of pa-
rameters that is typically considered during theoretidymis of tradeoff algorithms. Under
this parameter set, the Hellman and distinguish point nisti®shown to perform very sim-
ilarly to each other, while the rainbow table method showtelb@erformance than the other
two algorithms, under the additional assumption that treeass rate requirement placed
on the tradeoff algorithms is rather high. In this specifisegadhe comparison judgement
will stand true for any reasonable way of valuing the pre-patation cost and tradeoff ef-
ficiency. Conclusions at other parameter ranges, which reagultable for many situations,
can be different.

Another contribution of this paper is in making the basisrafieoff technique analysis
theoretically more concrete. We discuss the use of the tanmtom functiorand how it is
related to the analysis of the tradeoff technique. We ifientimmon arguments that are not
mathematically correct in the strict sense and providegitée justifications for still using
such arguments in the analysis of tradeoff algorithms.

The rest of the paper is organized as follows. We briefly fixatioh and terminologies
in the next section. The use of random functions in the aisbfsthe tradeoff algorithms
is discussed in Section 3. This is followed by a section fyleng the connection between
the theory of tradeoff algorithms and its application togveard hash systems. In Section 5,
6, and 7, we study the distinguished point, Hellman, ando@intable tradeoff algorithms,
in turn. For each algorithm, we present an accurate verdidimeatradeoff curve that does
not ignore small multiplicative factors and also analyzpl@pble storage reduction tech-
nigues. Comparison of tradeoff performances under diffeparameter sets for the same
algorithm is discussed in Section 8, and performance casgabetween different algo-
rithms is given in Section 9. Finally, the work is summarized! concluding remarks are
given in Section 10.

2 Time Memory Tradeoff Algorithms

The details of the tradeoff algorithms will not be explaireetti we ask readers to refer to
the original papers on the Hellman tradeoff [8] and the ramkable method [12]. Here, we

only list and fix the basic terminologies. Notation of thisten will be used throughout the

paper. From now on, we shall refer to the tradeoff algorithat integrates the distinguished
point idea into the Hellman tradeoffs as the DP tradeoff &fierto the rainbow table method
simply as the rainbow tradeoff.

A Hellman chain associated with a one-way functién: .4 — /", is of the form
F F F :
P =Xio—Xi1— - —Xr=6ep (1<i<m).

TheHellman table{(sp;, ep;) }";, consisting of starting and ending point pairs, is sorted on
the ending points to make table lookups easier. We have exrtitiereduction functionsas
this will only be mentioned briefly in Section 4.3. The complset ofm chains, consisting
of m rowsandt + 1 columns is aHellman matrix The original Hellman tradeoff specified
the matrix stopping rulent> = |.#'| and considered the use of exadtiables, but we shall
allow more flexibility. We let the positive integer paranmsteandt satisfymt? = Hps|- 4|,
with the positive constamtys; = ©(1), i.e., the constaitys, specifying the matrix stopping
rule is to be neither very large nor too close to zero. The ramobtables is set tb= Hpt,
whereHy = ©(1), so that andt are roughly of the same order.

A DP chainis a chain iteratively constructed by applyikg: .4~ — .4 until a dis-
tinguished poinDP) is reached. Although not absolutely necessary, to lgymur later
discussion, we shall assume that the starting points arayalwhosen among non-DPs.
Hence, in a DP chain, every point before the ending pointuding the starting point, is a
non-DP. The effects of this choice is quite negligible andgarpus treatment that allows
starting points to be DPs will lose any differences it hawitr treatment, during the many
numerical approximations that lead to the final statementsilts.

We assume the distinguishing property is defined in such athaya random point
of .4 satisfies it with probability%. To detect chains that fall into infinite loops, a chain
length bound of is fixed and any chain that fails to reach a DP by this lengtinduzither
the pre-computation phase or the online phase is disca@teins are generated until each
table contains approximately chains. What we mean by approximatetywill be made
more explicit at the start of Section 5.

Even though some of our result statements will display itseddence of, we shall
mainly be interested of the limiting case whéie sufficiently large. Whefi>t, the number
of discarded chains is minimized, so that any additionalqumputation is more efficiently
be transformed into higher success rate of the tradeoffitthgo. Since pre-computation cost
is the main barrier to any large scale applications of theewé technique, such a choice is
only natural in practical applications.

The termdP tableandDP matrixwill be used, even though the DP matrix, with chains
of variable lengths, can no longer be visualized as a relgai@e positive integer param-
etersmandt are chosen to satisfyt? = Dmsi|-#|, With the positive constarttiysy = ©(1).
The DP tradeoff will usé = Dyt tables withp,, = ©(1).

We similarly have the notions e&inbow chain

P =Xio Bxi1 Lo Dx—ep (1<i<m),
rainbow table andrainbow matrix For rainbow tradeoffs, it is usual to tak& = Ryg|-/|
with Rmsr = ©(1). A rainbow tradeoff will usé tables, wheré is a small positive integer.

Ourinversion targetwill always be written ag = F (x) throughout the paper. The input
and outputy will be referred to as thg@asswordand password hashrespectively, even
though they may not be related to any password system.

If the current endF¥(y) of the Hellman tradeoff'®nline chain

y SRy SRy 5o By

of lengthk matches an ending poiap;, we have aralarm. If an alarm involvingep; shows
the propertyF!~k1(sp;) # x, it is said to be dalse alarm Notice thatFt=*1(sp;) = x is

not guaranteed by the weaker conditieih¥(sp;) = y. False alarms are caused imgrges
between the online chain andpae-computed chainThere notion of false alarms is also
used with DP and rainbow tradeoffs.

Throughout this paper, the one-way functlen.#" — .4 being considered will always
act on a set/” of sizeN. The parameterm andt satisfying an appropriatet? = HpgN,
mt2 = Dms/N, Or mt = RmsN are assumed to be reasonable in the sense thairt < N.

There areerfecttable versions of the DP and rainbow tradeoffs. These arewhains
with identical ending points are removed and regenerathds@ cases are interesting and
can be more efficient than the non-perfect versions duriegotiline phase, but requires
more pre-computation to arrive at the same success rateeAsawt to focus on the practical
applications of tradeoff algorithms, we shall not considerfect tables.

3 Random Functions

The purpose of this section is to understand the usage oétherandom functiorand to
become familiar with arguments that involve random funtdio

Throughout this sectiony and % will be finite sets of respective sizésandB. The set
of all functionsF : <7 — 2 will be denoted byZ“ , where the exponent notation symbolizes
the fact that each such function is an ordefetliple of elements fron#, i.e., that it belongs
to theA-times cartesian product oB.

3.1 Definition of a random function

Readers that are fully comfortable with the cryptograpréage of the term random func-
tion may skip this subsection. The content of this subsedsidriefly explained in [6, Sec-
tion 5.2], but since we were unable to find this in any formpllplished work, in the interest
of making it more widely known, we shall write this down witbrae more details.

Let us begin our discussion with a simpler notion that we amgy womfortable with.
Consider the following sentence.

The size of a random element from the §@t1,2, 3} is expected to bé.
We all know that this is a short way of expressing the follayvinore explicit statement.

If an element is chosen uniformly at random from the {&&t, 2, 3}, then we can
expect its size to bg.

The termrandom elementhat appears in the first expression does not refer to a true el
ement that belongs to the set in consideration. Insteadditates that a certain method
for selecting an element be used. Whenever the term is usisdfollowed by a claim to
some expected value, and one is to understand that the flitybdistribution to be used in
computing the claimed expected value is to be the unifortmibligion.

Sometimes the specific element that has been chosen iskferasthe random ele-
ment, but this usage of the term is a source of confusion. @wcprocess of selection from
the set is complete, no randomness can be found in the resafiecific element.

Let us now turn to random functions. The following senten@sents a typical usage of
the term random function.

The image size of a random functién: {0,1} — {0,1} is expected to bé.

Once again, we should take this simply as a short way of egprgghe following more
explicit statement.

Consider the set of all functios: {0,1} — {0, 1}. If a function is chosen uniformly
at random from this set of four functions, then we can exgeeimage size of the
selected function to bé.

The termrandom functiondoes not refer to a concrete function that belongs to thefset o
functions in consideration. Instead, the phrase specifasgsatcertain method faelectinga
function be used. Once the selection has been made, no raedememains in the resulting
specific and fixed function. The term random function is alsvagcompanied by a claim to
an expected value, and the term is used to signify that tHeramidistribution on the set of
functions is to be used in computing the expectation.

So far, there seems to be no ambiguity concerning the noficemdom functions. This
has been a straightforward extension of our common use dfetine random element or
random number. We now turn to the following qubfeom a textbook [11, Section 5.6], that
explains random functions.

A random functiorf : &/ — £ is a function which assigns independent and random
valuesF (x) € 4 to all argumentsx € «7.

This is thedefinitionof a random function which cryptographers, especially ¢hosrking
on symmetric key cryptography, are more accustomed to. ¥dsein our previous discus-
sion, we could not define a random function and only explagnubage of the term, the
above quote seems to be defining a random function as a cerattct. In fact, at times,
readers may have come across sentences that resemblddtinigl

If F:{0,1} — {0,1} istherandom function, then its image size is expected té be

The random function referred to in this usage example seelirs the one that has just been
defined through the textbook quote, rather than have amythido with the previously men-
tioned selection from a set of functions. But a closer lookeats that the quoted definition
does not define a true function. Instead, the definition plesia process by which a specific
function may beconstructedor defined. A function that is being constructed is not truly a
function until it has fully been defined on all its inputs. Henat least to a strict mathemati-
cian, the quote from the textbook is self-contradictoryitk@rmore, as soon as the random
function is fully specified, thus earning the status of a fruection, no randomness can be
found within the function. One more thing to note is that thie$t usage example makes a
claim to a certain expected value, as was done in all our uevéxamples. Hence, once
again, we are not left with the definition of a concrete ohjbat a usage example where the
appearance of the term random function specifies certaionadb be taken in constructing
a function.

We have explained two approaches to the term random fundtioboth approaches,
there are no real entities that correspond to the term rarfdaotion. Sometimes the se-
lected or fully constructed function is referred to as thedam function, but such usage is
a source of confusion, as no randomness remains in the spfecifition. The current situ-
ation is strictly analogous to the situation with randonmeats, except that there is more
room for confusion with random functions in that we intutiy tend to view a fully defined
specific function as still looking rather random, if we canfired any simple rule that can be
used to specify the output corresponding to each input. @tmerandom functioris not the

2 \We have given some notational changes.

name of a mathematical object and cannot be defined. Insteaghpearance only signals
that a certain process for specifying a function be used inprdging an expected value.

Let us distinguish between the two approaches to randontifunscby referring to them
through the termselectiorandconstruction We will now show that the two approaches are
equivalent. Fix any specific functid® : &/ — 4. If a function is constructed by assigning
a randomly and independently chosen elemen®db each element of7, then the proba-
bility for the randomly constructed function to become itilead to Fy is (é)A. On the other

hand, if a function is selected uniformly at random from theaf functions%< , since the
size of%“ is B”, the probability thaFy is chosen isBLA. Hence, the construction approach

to specifying a function brings about the uniform distribaton %< . We can conclude
that the selection and construction approaches to randoatidims are identical in that they
provide the same distribution on which to compute the cldigxpected value.

Even though the selection approach and construction agipgige the same distribu-
tion on %, itis often much easier to work with the construction apptoahen explicitly
computing expectations. Roughly, the selection of manytsdeads to the selection of a
single function, and one can compute an expectation defimedtbe distribution of func-
tions by suitably combining many expectations defined dverdistribution of points. The
expectations defined over points are simpler and easiertond. In our subsequent uses
of the random function notion, we shall not distinguish begw the two approaches unless
absolutely necessary, but will mainly use expressionsdaatbe read more naturally with
the construction approach in mind.

We briefly remark that a randomly constructed function is/v@ose to a random ora-
cle. The only possible difference is that, while one needwnafie external queries for the
function values when using random oracles, with the coostm approach to random func-
tions, the one working with the function can choose each efftimction images randomly
by himself.

3.2 Random function arguments

There will be many arguments given in this paper that use ¢tiem of random functions
and not all of them will be strictly correct in the mathematisense. In this subsection, we
identify and discuss one such logical gap that is not easificed and provide justifications
for still using such an argument.

Before discussing proofs that use the notion of random fonst we briefly digress and
state a technical lemma that will be used throughout thigpap

Lemmal For positive integerd andB, we have

exp(- g) - (1~ é)A) < {%% * (Aj—-l)! (g)AH} eXp(%)'

Hence, ifA andB are large integers such that = O(B), then

on(-3)=(-3)

is an accurate approximation.

8

Proof We start by writing er — %) in its Taylor series form and fully expanding the
term(1—2)A.

ool -4)-(-3)’
S S R WL WEY

After noting that the beginning two pairs of terms cance]| wut collect corresponding pairs
from the two sequences of terms and bound the above by

2 A
O [P W R (e (B A
Since we have

k
0< %f (T(\) = k—l!{Aka(Afl)---(Akarl)}

i{MAH—---Jr (—1)k(k—l)!A}

Tkl 2
o Lkk=1) oy _1 Ak-1 ’
k2 2(k—2)!

for every 2< k < A, the terms of (1) that appear inside the first set of bracesuaded by

2

o e 2 (A—2i B

= gé{”%%%(g)z*”* (A—lz)! (gyiz}
1A A
<5520(5)

As for the second set of braces from (1), it is easy to see that

wrm(s) oo(s)

can serve as its very rough bound. It now suffices to gathemtbédounds to arrive at the
claim. O

1{A1 A1 A%1 AA-T 1}

Note that the error in the approximatidf — é)A ~exp(— g) is extremely small. For
example, wher = B, the bound stated in the lemma is at m§sfThis approximation will
be used so frequently in this paper, that we shall not evemerte the above lemma when
applying it.

Our first example proof that uses random functions is nowrgive

Lemma2 When the finite sets” and % are sufficiently large wittA < B, the image size
of a random function E «&# — £ is expected to be

ofu-(1-)} ~s{1-o(-2)}

Proof The approximation follows from the conditioh < B and Lemma 1. We mentioned
this since we are at the very first application of the appratiom, but our subsequent use
of the approximation will be less informative and even dilen

It suffices to show the following statement, which is the iiptetation given by the
construction approach to random functions.

If one constructs a functioh : &/ — % by assigning independently and randomly
chosen elements oF to each input element o/, then the image size of the result-
ing function is expected to {1 (1— 1)A}.

Let us focus on the elements & that remain as non-image points after the function con-
struction is complete. We want to compute the expected cdtsoich elements among.

If necessary, we can enumerate all elements of the finita,s&t that we may refer to
each element as arth element. When a random point &f is assigned to the first element
of 7, the ratio of points among? that remain as non-images will becor(ﬂ,L é) After a

random point of#2 has been assigned to the second element oive can expecfl — é)z
of the points of% to remain as non-image points.

Since each assignment is independent of all other assigamea may conclude that
when every element of/ has been made to map to some elemen®othe ratio of the
non-image points among is expected to bélf é)A. Hence, the ratio of the image points

amongZ is expected to b¢1— (1— é)A}, as stated by the lemma. |

Given a functionF : 4 — 4, we shall writeFK = F o --- o F for the k-times iterated
composition of the functiofr. The proof given above that involved random functions con-
tains no logical gaps. In the rest of this section, we shatitilluminate the hidden difficulty
involved in proving the next lemma and also try to convinaerémders that this logical gap
may safely be ignored.

Lemma3 Let F: 4 — .4 be the random function on a finite set of siteGiven any
nonnegative ;< N, define m through the recursive relation

%:1—exp(—%) (i=0,....k—1).

If .4 c ¥ is of size g, then the iterated image siZEX(.#)| is expected to have the
asymptotic form my asN is sent to infinity.

The special case of this lemma for when the input.géis the complete domainy’
may be found in [5, 11]. The case whe# is not the complete domain is used in [12] to
state the success probability of a non-maximal rainbovetalite work [12] includes a proof
that does not mention random functions, and while the cayeraent given here will be the
same, we focus on whether the core argument implies the dbowea.

We start our discussion with the single iteration case.

Lemma4 LetF: 4 — .4 be the random function on a finite set of skedf .Z C .4 is
of size g, then the size of £#) is expected to be

menfa (137}

10

Proof It is clear that in dealing with the construction approachrandom functions, the
order in which elements of the domain are assigned elemétite cange does not affect the
expected value being computed. Hence, we can choose tosgignanents to all elements
of .# , before assigning elements to other points of the domais also possible to stop the
assignments when we are finished wi#, since the rest cannot affect the sizeFdt#).
With this observation, it now suffices to reread proof of Lemnhwith the replacements
o — M, A — Mg, B— A, andB «— N. O

We emphasize that this lemma for the simplest case contaiapproximation or even
any mentioning of an asymptotic form. The value written eséxact expected value. To see
if this result concerning a single step can be iterated, wsider the following statement.

Lemmab5 (Incorrect) Let F: .4~ — .4 be the random function acting on a finite set of
sizeN. If .# c .4 is of size ry, then the size of??(///) is expected to be snwhere

1\ ™Mo 1\m
my = N{l— (1— —) } and m= N{l— (1— —) }
! N m N

As with the single iteration case, given by Lemma 4, we woulgeet this twice iterated
version to hold exactly, i.e, contain no approximation, \met candisprovethis statement
with an explicit counterexample.

The set of all function§ : {0,1} — {0,1} can be visualized as follows.

o >l .

When the input set# is a single point, the image size expectation is clearly 1s Thin

agreement with the value L1
2fi- (-3 =

computed according to Lemma 4. When the input set is the aamplomain{0,1}, the
image size expectation is

1 1 1 1 3
Er[IF{O.1)] = 71+ 72+ 72+ 7 1=3,

and this is also identical to the value

Er[IF({0,1})]] = 2{1* (1* %)2} - g

computed according to Lemma 4. Hence, as we have alreadggirbemma 4 holds exactly
true for the.#” = {0, 1} case, regardless of the input set size.
Now, the four functiong=2 = F o F can be visualized as follows.

= = XX = =
Hence, when the input se¥ is taken to be the complete domain, the twice iterated image

size expectation is

B [IF2(0.1))] = 2 145 2= 2. @

The corresponding value claimed by Lemma 5 is

2{1— (1—%)2{17(17%2}}:2{1— (1_%)%} ~1.293 3)

11

The two values are clearly not equal.

Since Lemma 4 always holds exactly true, in particular,esibbolds exactly true in the
environment of the counterexample, we can conclude thanh&®does not logical follow
directly from Lemma 4. In particular, we cannot hope to cléim correctness of Lemma 3,
our current goal, directly from the correctness of the srgkep result Lemma 4, at least
without providing additional arguments.

There is still the possibility that Lemma 5 is asymptotigdiue asN is sent to infin-
ity, but the focus of our argument here is that multiple itiera statement is not a direct
consequence of the single iteration statement.

A natural attempt at fixing the current situation would bedtax the strict correlation
between the two functions that are being composed. Thisnsidered next.

Lemma6 (Incorrect) Let F: 4 — .4 and G: ./ — .4 be two independent random
functions on a finite set of si2e If .2 C .4 is of size ry, then the size of G(.#)) is
expected to be gnwhere

my = N{l— (1— %)m"} and m= N{l— (1— %)ml}.

This second version for the double iteration case seemststally much simpler than
our previous attempt, given as Lemma 5. One might be temptedyt that this version is
a trivial consequence of the single step result, stated loyrhe 4, but, once again, we can
provide a counterexample.

We return to the situation df : {0,1} — {0,1}. The set of all possible double iterations
of the four mapping can be visualized as follows.

= = X T= NS =
= = X)]IEXD =
= XK= XIXKI= XK=
=N TIN=EN OXAIIE N =N

When the input setZ is the complete domaif0,1}, after separately counting the number
of functions with image sizes one and two, the expected irsagecan be computed as

EF,G“G(F({O,].}))H :i—g-u%-zzg (4)

The corresponding value, as claimed by Lemma 6, is as wasopsdy computed in (3).
Since the two values disagree, it is clear that Lemma 6 camnbtue, at least in the strict
sense. Once again, we can conclude that Lemma 3, even wheadéb allow independent
random functions at each iteration, is not a direct logicasequence of the single iteration
result Lemma 4.

We have disproved the double iteration case Lemma 5 and beeseemingly simpler
Lemma 6 with explicit counterexamples. On the other handkmegsv from experience that
Lemma 3 works quite well in accurately predicting the bebawf iterations done with
specific functions. Let us attempt to prove the incorrect iren® directly so as to locate the
source of this apparent contradiction.

The language pertaining to the selection approach to rarfdoctions will be used
briefly. We start our examination of Lemma 6 by rewriting tleeclusion we want to obtain
as

[IF()] })

EF,GGLA/'/’/ [|G(F(///))H — N{l— (l— %)EFE,V./V

12

Here, the exponent on the right hand side given in terms aé&mpion is justified through
Lemma 4. The left hand size expectation can be written aguptd its definition as follows.

Eroerr [SEON] = 5z 5 I6E0)
3 3 ax 3 [eF()

Now, for every fixedF € .4#~", the inner summation computes the image size that is ex-
pected, when a random functi@is applied to the fixed input s&t(.#). Hence, the above
is equal to

1 1 1\ IF(A)]
= Ege v |G(F(4))| = = Nf1-(1-2
AA Fegyw" Ge N | ()} AA Fe;"y { (N) } (6)

N i | s (o) Y

A moment of thought shows that this final form cannot be equ#ie right hand side of (5).
For example, given a few numbers, we know very well that theraye of their inverses
is not equal to the inverse of their average. The expectatjmrator does not commute
with any nonlinear operator, and exponentiation with theebset to(lf ﬁ) is certainly a
nonlinear operator. Hence, we come to the conclusion thathh& 6 cannot be true.

Our failure to connect the end of (6) to the right hand sideX)frésulted from the
fact that the expectation operator does not commute witreip®nentiation operator in
general. But, there is one situation when the expectati@rabpr does commute with a
nonlinear operator. Namely, this is when the multiple numiputs being considered are
all identical. For example, if we are given a few numbers,thatnumbers are all the same,
then the average of their inverses is trivially the inverkseheir average. As an extension of
this exceptional behavior, we can expect an approximateradativity of operators when
the condition of inputs being identical is slightly relaxddhat is, it is reasonable to believe
that if the inputs being considered are very close to eacérothen two values computed
using the two orderings of the operators will be close to exbhr.

Let us briefly consider the binomial distributid{n, p) corresponding tam trials with
probability of succesp for each trial. We know that its standard deviatioRisap(1— p), so
that the clustering of multiple test values around the medmenpis expected to intensify
with the increase of, at least when the distribution of test values are vieweatika tonp,
the expected data value. Hence, it is reasonable to beliatewith any natural distribution,
the clustering of data around the expected value will bectigiger, as the space that is
being considered is enlarged.

In the current situation, the initial inputs to the expedaand nonlinear operators under
consideration are the multiple image sizieé #)|, where the functiofr is made to run over
all elements of /", These are certainly not equal to each other, but it is natalistic to
believe that they will tend to cluster togetherNags increased.

Let us summarize the above discussion. When the sef\sizdarge, it is reasonable
to expect the image sizg$F (.#)|}r to mostly cluster around the averaBe [|F(.#)|].
Hence, we are justified in computing the expected image $i&0-(.#))}rc as if the
random functiorG was simply given an input set of sifg [|F(.#)|]. Although Lemma 6
is not strictly true, we can believe it to be approximatelyetevhenN is large.

13

Recall that our current goal is to justify Lemma 3. Since wewaithat it cannot directly
be inferred from the truth of Lemma 4, the single step statemee turn to providing a
plausible justification for its use.

We have already mentioned that it was reasonable to belevienage sizes of a single
application ofF to be clustered wheN is large. Let us take this belief to the extreme and
make the unrealistic assumption that the relation of Lemma4

image size= N{lf (17 %)inpm Size}, @)

concerning the input and image sizes of a single iteratiofdshexactly true, not just on
average, but for every choice of the functiBhand input set#. Under this unrealistic
assumption, the iterative relation of Lemma 3 would be tareshch functiorf, over any
number of iterations. This automatically implies that ttexative relations are true when
averaged over all functions. In this argument, we are nafirgg for the functions that are
being composed to be independent from each other.

The use of Lemma 3 as an approximation will now be justifiegldxing our unrealistic
belief does not cause trouble. We first consider the disgingeextreme situations. When
the functionF is bijective, so that (7) is far from accurate fér it is clear that this error
will persist throughout all iterations. That is, the err@nbt dampened through the multiple
iterations. At the other extreme is the case when the funétis the constant function. The
situation given by the iteration of this function is not retled by (7) in any way. Hence
the the iterative relations appearing in Lemma 3 does nat tnok for individual functions
that are extremely far away from our unrealistic assumput it should be noted that the
number of these extreme functions are very small compargdetoumber of all functions.

For the vast majority of the functions, relation (7) may netédxactly true for every
input set.#, but will be such that (7) overestimates the image size foresmput sets and
also underestimates for other input sets. Now, supposefdhabmeF and.Z, the size
of F(.#') is much smaller than what is estimated by (7). Note that itnilkaly for the
points of the image sét(.#) to be somehow related to the points.af. In other words,
there is no reason to believe applicatiorFofo the image st (.#) will produce a second
image that is also smaller than would be estimated by (7), set &f size|F (.#)|. This
lack of relationship between a subset.df viewed as an image set and the same subset
viewed as an input set to the next iteration assures us thejugestial buildup of any local
abnormal behavior is unlikely to happen. Hence, even if§9rly approximately true and
no longer strictly true for every input to a certain specitindtion, the relations of Lemma 3
will remain approximately true for the same specific funatio

We have shown that the validity of a statement concerningglesistep of a random
function does not directly imply the validity of the sametetaent under multiple iterations.
There are many works in the literature, especially thoseearing time memory tradeoffs,
that ignore the logical gap that we have discussed. Thesenamfs are typically written in
the language of classical occupancy problems, but are trrdacdom function arguments
that ignore behavior under iterations. In the oppositectima, we have argued that results
for a single iteration of a random function may be generdlizemultiple iterations when
the space that is being dealt with is very large and the stterare taken as good approxi-
mations.

The intension of this subsection was not in testing the igliof Lemma 3. In fact, at
least for the case whew is the full domain, although inaccessible to the currenbarta
full proof is provided by [5]. When the validity of Lemma 3 isrfily taken for granted, our
long discussion makes the following claim quite plausible.

14

Lemma?7 (Belief) Let F: .4 — .4 be anyusualfunction acting on a finite set of sige If
C . is of size i, then the size of the iterated imagé&(F#) will be approximately m
where m is defined recursively through
M1, L - _
=1 exp(N) (i=0,....k—1).
Here, ausualfunction is one that has been chosen or constructed withalirg any inten-
sional decisions that are likely to affect its iterated ireajzes in a predictable way.

In short, we are claiming that Lemma 3 is likely to hold trudteguaccurately for most
functions and not just on average. We emphasize that thibddief, which we shall freely
use, rather than a mathematically proven fact. In fact LerBrma statement concerning
an average behavior, and, even if we had provided a stricipematically correct proof, it
cannot imply anything about the behavior of each individuattion.

Recall that much of the discussion in this subsection wastalthether we may inter-
change the application order of the expectation operatraamonlinear operator. We now
have reasons to believe that the order of application mapéeged without introducing big
errors when the space being dealt with is large. Throughasipgaper, ourandom function
argumentswill carelessly disregard the orders in which the operaéoesapplied.

4 Applying Time Memory Tradeoff to Password Hashes

One usually states the objective of a tradeoff algorithmhasriversion of a one-way func-
tion. A closer look reveals that there are two version of thesision problem and we will
explain how one of these corresponds to the applicatioradewff technique on password
systems. Issues concerning the use of random functiong ithéoretic analysis of tradeoff
algorithms are also discussed in this section.

4.1 Password hash

Let us briefly explain how the security features of many filerfats that rely on passwords
for access control work in its very basic form.

The designer of the system chooses and fixes a one-way fomttidhis one-way func-
tion is a part of the file format specification and is usuallpgidered to be public, and can
always be extracted from the related software even if it watsoniginally made public.
When the owner of a file following this format wants accessibiio be applied to the file,
the user supplies a passwortdAn encryption key is derived from the password, and the
main content of the file is replaced by its encryption undés kiey. The image/ = H(x)
of the user password, under the one-way function specifiethéfile format, is recorded
within the file. Finally, any record of the encryption key ahé raw password supplied by
the user is destroyed.

Later, when authentication is required for file access, thmparting software asks for
a password. The one-way function imagéx’) of the newly supplied password is com-
puted by the software and is compared with the corresporidiogmationy stored within
the file. If a perfect matcly = H(x') is found, the main body of the file is decrypted using
the key derived from the password and access to the decrgpteednt is granted. Note that
the one-way function imagg of the correct password is stored within the file without any
protection and is accessible to anyone that has obtaindiehe

15

User authentication procedure for system login works intmthe same way. At the time
of initial user registration to the system, the one-way fiorcimage of a password supplied
by the user is recorded in a file that is stored within the sgsta this case, access to one-
way function images may be harder, but this information ter&ent over the network in
the clear to allow for logins to a group of computers afterusgistration at a central server.

As we have stated earlier, in this work, we shall refer to the-way function image as
thepassword hashnd the input as theasswordregardless of whether the one-way function
to be attacked through the tradeoff technique is relategsaword authentication system.

4.2 Uniqueness of the pre-image to a password hash

Our first question is whether a password hash uniquely détesthe password.

Proposition 8 Let H: &2 — ¢ be a random function. Given anye &, the number of

inputs that H maps to kk) is expected to b+ ‘ﬁgﬁ.

Proof When using the construction approach to a random functiename free to choose
the order in which function value assignments are made th damain element. So let us
first assign a randomly chosen valuesf to H(x) and then define all other function values.
The probability for any one of the later assignments to strikx), which is an explicitly
fixed value inZ, is =l Each later assignment is independent of all other assigtsnand

=
e 0

%’I
we can expect the number of later assignments (o) to be '—~=

Readers should not misinterpret the above propositionvasggihe pre-image size of a
randomy € s under a randoril. For a random functiohl, the distribution onsZ’ produced
by H(x), as password runs over the password s&t randomly, is the uniform distribution,
and everyy € 7 is expected to hav%d many pre-images, rather than-1 “/‘ ‘1 This is
not in contradiction with the proposition, as it essenyialéals with the distribution os?’
produced from random inputs by the specHi¢hat has been constructed, and this is differ-
ent from the uniform distribution or?’. Those points of# that lie outsideH (£?), for the
specifically constructeHi, do not have any chance of appearing.

One can also ask for the pre-image size of a random passwehdyt@aH (). Note
that this question can only be asked after the random fumetibas fully been constructed.
The corresponding answer will depend on the size 0£7), but should be close to

Ed 1
~ ~ 1582
E(H(Z)) 1-1

Once again, this question is not related to the content céieee proposition. The current
question deals with the uniform distribution &1{.#?), which is different from the distribu-
tion onH (<) given by the fully specifiedH. Those points with larger pre-image sets will
have a larger probability of appearing than those with senalle-image sets.

Consider an application of the tradeoff technique to a bigatker whose key length is
identical to the block length. In such a case, one is workiith | = |.7#’| and Proposi-
tion 8 states that there will be approximately two keys, cerage, that map to a given target
ciphertext. This is probably larger than what many wouldehaaively expected. Of course,
in practice, one usually assumes the use of a second cightrtalmost uniquely identify

16

the key. In fact, if one interprets the key to two-ciphersextapping as a new one-way func-
tion, then Proposition 8 claims that the key is almost alwayisjuely determined from the
two ciphertexts.

Let us next discuss what Proposition 8 implies for systeras ély on passwords for
access control. These systems are usually designed sd¢hspaces#” of potential hash
values is much larger than the spag¢eof admissible passwords. A typical password hash
would be a bit string of at least 128 bits in length and the nemald alphanumeric passwords
consisting of ten characters is only'82< 2595, In such a case, Proposition 8 shows that a
password hashl(x), produced from a password will almost always identify« uniquely.

Furthermore, in practice, the set of all passwords adméeséip the security system is
not very important. Note that human chosen passwords aré cedsinly not uniformly
distributed within the complete admissible password sp@ke tradeoff attacker first fixes
a subset? of all possible passwords and decides to be satisfied withveeimg passwords
that only lie within this subset. The size of this subset iedained by the computational
power that the attacker can allocate to the pre-computaif@se and should preferably
cover the passwords that are most likely to be used. Undérasetting the password hash
set 7 is immensely larger than the set of passwafdghat is being considered and hence
the password hash determines the password uniquely.

For the remainder of this paper, we assume that the targetsyer the application of
the tradeoff technique is such tha?| < |.7|, implying that the password hash uniquely
determines the password.

4.3 The reduction function

The tradeoff technique requires the one-way function tadmted. Since the range of the
one-way function is usually larger than the domain, iteris achieved by utilizing ae-
duction function R 2 — &2. The role of the reduction function is to let a password hash
be interpreted as another password. As any theoretic tegaitof the tradeoff technique
assumefRoH to be a random function, let us check whether this is appatgri

% is an integer. Let R %% — &
be any fixed function that is pre-image uniform in the senaeiths exactly%-to-l. If

H: 2 — 5 is arandom function, then&H : & — £ is a random function.

Proposition 9 Let |#?| be a divisor of|.5#|, so that

Proof In more precise terms, we want to show that the distributios®” , produced from
the uniform distribution o’ , through the mappingl — RoH, is the uniform distribu-
tion.

Let: &Z — £ be any specific function. It suffices to show that, after randmwn-
struction of a functiorH : & — J#, we will find RoH = Fy with probability W Itis
clear that{R™%(2) } ,c » is a partition of 7 into cells of size%. The eventy = RoH will
happen if and only if the value assignedra&) belongs to the celR*l(Fo(x)), for every
x € #. Since the size oR*l(Fo(x)) is alwaysl‘%‘, and since the assignment Hx) is
independent and random for evetythe probability of arriving aFp = RoH is

(\%\/\?\)WIZ 1
|| (2|71

as claimed. a

17

Every application of the time memory tradeoff technique seeurity system involves a
specific one-way functiohl : &2 — 2 and there is no strictly logical reason to believe that
the specifidd will display the properties expected of a random functioante we first need
to discuss if predicting the behavior of an explicit tradeéofplementation with arguments
concerning random functions can be justified.

There can be two ways to resolve this problem. The first is frieabto our intuition.
When one ignores his knowledge of the inner working of theegigpecific function, it
will seem as if the function is returning independently aaddomly generated values to
each given input. Hence, viewed from the outside, it looks #e specific function is the
random function of the construction sense. The second agynvhich seems slightly more
plausible, is that the one-way function used in the secssistem is in fact a function that
has been selected from the pool of all functions. As we dssdi®arlier in Section 3.2,
when the spaces involved are sufficiently large, unless wieehasen the one-way function
in an unusual way, any property exhibited by a specific fumctvill be close to the property
averaged over all functions.

We have thus partly justified the use of random functions &c@lof specific one-way
functionsH : &2 — s when analyzing the behavior of time memory tradeoffs. What w
have shown through Proposition 9 is that if we may treat thezific one-way functiorH
as a random function, then the same can be done with thedariRtiH : &7 — &. Hence,
throughout this paper, while analyzing the behavior of tineamory tradeoffs, we shall work
with a random functior : A — A",

The discussion of reduction functions now brings us to agotbgical gap that fre-
qguently appears in random function arguments, that is 8pégithe analysis of time mem-
ory tradeoffs. It is often the case that multiple tables aedun tradeoffs and any analysis
of tradeoff properties will assume these tables to be inddget. Although a different re-
duction function or a family of reduction functions is useithreach table, it is not true that
the tables are independent. In the language of the conisimugbproach to random function,
assignments made during computation of an earlier tablepvalent later assignments to
be made independently.

Suppose we try to analysis a time memory tradeoff propettiasinvolve multiple ta-
bles under our simple assumption tifat .4+~ — .4 is a random function. Then this will
require averaging over functions of a value that combineliptei figures that come from
different tables and these multiple figures will be cormeditio each other. This will be very
complex and difficult to handle. Once again, since the doraadhrange spaces that are be-
ing considered are usually very large, we assume the irdagehof the expectation operator
and any nonlinear operator is possible and present anéiyaisverages over functions be-
fore combining the figures to arrive at the final expectatidns is equivalent to assuming
that the random function used in computing multiple tables wot a single function, but
that multiple independently constructed random functiwese used for different tables.

4.4 Two versions of the inversion problem

We have already mentioned that we shall work in the situdtior”? — 7 with sets of sizes
| 2| <« |7, so that a password hash almost always determines a unigseqal. We also
know that any analysis of time memory tradeoff behavior isedwith a random function
F . 4 — 4, whose image does not uniquely determine the input. The twotions are
related through the correspondette—- F = RoH.

18

Giveny = H(x), the unique password is obtained through the tradeoff algorithm,
which used, as follows. The tradeoff algorithm is givéR(y) to process and returns in-
putsx € &, such that(x) = R(y). This relation may be restated B§H (x)) = R(H(x))
and does not necessarily imply= x. Hence one tests whether the candidate passweatt
isfiesH (x) = H(x), outside of the normal tradeoff algorithm. Since an outgut aniquely
determines the input, fulfillment of this test implies= x and recovery of the correct pass-
word.

As discussed in the previous subsection, the number of S satisfyingF (x) =
R(y) will only be two on average, and the number of such tests dotsde the tradeoff
algorithm will be very small. Hence, the cost of such testg baignored during complexity
analysis.

During a tradeoff algorithm analysis, one usually does nettion anything about
or R, the source of the inversion problem, and simply assumenthesion targey = F(x)
is given, for some functiofk : .4~ — 4. In this work, the goal of the tradeoff algorithm will
be to findthe correct password, rather tharany password, corresponding to the giwen
Theanyversion may be useful when working to find the pre-image ofia lrash function,
but thethe version is suitable when looking for the correct passwordrt@access control
mechanism.

Since it is logically impossible to distinguish between thany pre-images with only
they information, our analysis will focus on whetheis among the possibly multiple-pre-
images toy, returned by the tradeoff algorithm. The determination béther each returned
value isthecorrect password is assumed to be done outside the tradgofitam.

The small difference of looking fahe pre-image rather thaany pre-image implies that
the tradeoff algorithm will succeed under different cir@tances. Théheversion succeeds
if and only if the correct password had appeared as amput to the one-way functiorr
during the pre-computation phase, i.e.xifs among the pre-computation matrix entries
excluding the ending points. On the other hand, @hg version succeeds if and only if
the imagey = F(x) had appeared as the functioatputduring the pre-computation phase,
i.e., if y is among the pre-computation matrix entries excluding theting points. The
two approaches will show differences in properties suchuasess probability and online
running time. Still, it should not be too difficult to tweaH gie the version results given in
this paper to work for thanyversion.

5 DP Tradeoff

An analysis of the DP tradeoff will be given in this sectione 8hall present a formula for
computing the probability of success for the algorithm alsb @rovide a tradeoff curve
which takes the effects of false alarms into account. We disouss the number of bits
required to efficiently store the starting and ending poaitg

If a chain is generated with a random function, vyith the chaimgth bound set t§ the

probability of not obtaining a DP chain will b@.— %)t ~ e U/t Rather than successively
generating more chains until we havechains, we shall generate each table from

om
C1-ef

Mo ®)
distinct starting points. Then we can expect to collachains that terminate at DPs. And in
the limiting f >> t case, which is of more practical interest, the two apprometi# almost
be the same.

19

All of our tradeoff algorithm analyses are done under theimggion that the one-way
function is the random function.

5.1 Probability of success

Let us discuss how to compute the probability of success IBPdradeoff under a given
set of parameters. We shall first present general formulaseming pre-computation and
probability of success and then show how to compute thesspfexific parameter. Our first
lemma is quite trivial.

Lemma 10 The number of one-way function invocations required inegittreating a DP
chain or stopping at théth iteration without having reached a DP is expected to be

t(1—e /Y.

Proof It suffices to add the probabilities of having to compute thecessive iterations.
Since the next iteration is computed if and only if a DP hasebbeen reached, the expected
one-way function invocation count is

3-8 (D))

which we can approximate td1—exp(—{)1. O

In the above proof, we have implicitly assumed the one-wagtion to be a random func-
tion and computed the probability for the fiishssignments to be non-DPs. A more exact
analysis would additionally consider the possibility of thext assignment producing a pre-
viously assigned value. We have not done so as this seemsatgdimd approximation.
Clearly, the success rate of a tradeoff algorithm is intefyatonnected to the amount of
pre-computation. So, let us first present a way to write ddverpre-computation.

Proposition 11 The pre-computation phase of the DP tradeoff is expecteddoireDycN
one-way function invocations, where the pre-computatmeffient is

Dpc = DmsDnt.

Proof We know from Lemma 10 that each attempt at a DP chain creasi@xpected to
requiret(1—e'/!) one-way function invocations. On the other hand, the aveaif a single
DP table starts withny = ﬁf/—t chains. Together, this implies that the creation of a single

DP table is expected to consumm one-way function invocations, regardless of fivalue.
Hence the total pre-computation requirement may be wratent| = mtzl— =DmsDneN. O

Note that the pre-computation cost of the DP tradeoff doéslepend on the chain length
boundf.

The coverage rated., of a DP table, is defined to be the expected number of distinct
nodes that appear among the DP chains as inputs to the oné&smetion, divided bymt.
Since we are taking starting points to be non-DPs, all of theées that are counted will
be non-DPs. Note that the mentioned expectation is an avenagy the choice of one-way
functions, in addition to the choice of starting points. ther words, the coverage rate is a
certain expected value for the random function. Our nexestant reduces the search for
success rate to the computation of the coverage rate.

20

Proposition 12 The success probability of the DP tradeoff is

Dps = 1— e PerPre,

Proof If we are giveny = F(x) as the inversion target, the DP tradeoff will succeed in
recovering the correct answerif and only ifx had appeared as one of the inputs to the one-
way function during the creation of the DP table. As discdssalier, this is not equivalent
to asking for the appearance pfamong the output values. The objective of recovering
the correct rather tharany inverse, corresponds to findingamong the one-way function
inputs.

By definition of the coverage rate, a single DP matrix is exgeto contairde,mt dis-
tinct nodes that were used as inputs to the one-way functiemce the processing of a
single table will fail in returning the correct answer wittopability (17 %’"‘) The suc-
cess probability of the complete DP tradeoff process isrgse

As discussed at the end of Section 4.3, we confide that ountezd here of separate tables
as being independent is not strictly correct. ad

If the creator of the inversion target= F (x) has a sufficiently large storage capability,
it may be possible for him to compute and collect the compéeteof one-way function
inputs used during the DP table creation, and choose a pedsvibbat does not belong to
this set. The DP tradeoff will always fail under such chajles. The above proof cannot
capture this situation since the one-way functtowas taken to be a random function while
definingD;.

In practice, this implies that, for our analysis to be carrédee hidden answex needs
to be chosen without reference to the DP tradeoff table. Matethis is not as strong a re-
quirement as asking for the choicexofo be random. The choice only needs to be unrelated
to the structure of the DP matrices.

Within this subsection, all chains belonging to the DP mxatiiill be seen as having been
aligned at the starting points, rather than at the endingtpoand the starting point column
will be referred to as the 0-th column.

The above expression for probability of success can onlyubéopuse if we know how
to compute the coverage rate. Our computation of the cogeraig will be done in two
steps. Of themy chains generated, oniy will be DP chains, but we disregard this in the
first step and count the number of new nodes added by eachrcafiiine complete matrix.
Sum of these values gives us the total number of all distimmiti entries. In the second step,
we will count the number of nodes that belonged to chains nding at DPs and subtract
these from the total count.

Let us writem; for the number of new nodes added by thth column. Them value,
stated by (8), conforms to this notation.

Lemma 13 The number of new nodes added by each column satisfies thecrezirela-

tion
. j-1
m =i e -T2} (1 1) - 22T}

21

Proof Suppose a node positioned in thie— 1)-th column is old, in the sense that it has
appeared in one of the O-th through— 2)-th columns. Application of random function to
this node will not result in a random element.gf, but a node that had appeared in one of
the 1-st throughij — 1)-th columns. Hence when counting new nodes ofjtiie column we
need only consider the nodes of théh column that are assigned as images to new nodes of
the (j — 1)-th column. Recalling Lemma 4, we write this as l’th@l— exp(— %)} part
appearing in the claimed equation.

Of the distinct entries that have appeared in jhb column, that are not automatically
old, we want to filter out the DPs. The previous count is retd to the non-DPs by multi-
plying the (1— 1) factor.

Still, not all of these non-DPs are new nodes. Those that bapeared in previous
columns are removed by multiplyinfl — gA-%5 }. Notice that we havel(1 -), rather
thanN, in the denominator, as we are dealing only with non-DPsiafgthint. ad

The next two lemmas are technical computation results. \&ettirn the recursive for-
mula form; into a difference equation concerning a certain summof

Lemmal4 Lety = ﬁ andogj = zij;()l Hi. Then,g; satisfies the recursive formula

m 1 1,

which is accurate up to modulo ().

with agp=0,

Proof It is straightforward to rewrite the recursive formula ofrhaa 13 in terms of the

T P | O)

This may be rewritten once again as

o (- D) =1 2 - %

Now, by taking products of both sides ovee 1,...,k, we can find
1 ~1-0ku
exp(- (1-7)) = o,

We have thus arrived at a relation involving only thenotation.
By expanding the exponential function in its Taylor serigs,obtain

2
Oii=1—(1— 01){1— (1— %)ok+ % (1— %) a,f—---},
and we can modify the above into the difference equation
2
Oki1— Ok = 01— (al+flf %)akf %(1701)(17 %) OF+---.
Noting that the left hand sidei,1 — ok = i is of orderO(f) = O(t%) we remove every
term on the right hand side Gj(t%s) order. This may easily be done after noting tbat Lo
is O() and thatoy is O(F¥), which is at mosD({). The simplified equation is now

1 1, 1
O‘k+1*0—k:“07 ?kaéo_k +O(t—3>

22

It is clear that the initial conditiom; = g may be replaced by = 0, under this recursive
formula. As a final tweak, we subtraﬁt(%, which is ofO(t%) order, from the constant

termpp = ﬁ =R+ ﬁ) to arrive at the claimed formula. O

Now that we have a difference equation, we can obtgithrough an application of the
Euler method.

Lemma 15 For each non-negative integer k, we have

mc~ N(a(k+1)—oa(k)),

2_ Ky _q
o= &1 ilChy with @ = /14 —2omsr
t (@+lexp(@y)+(@—1) 1-e it

Proof Let functiono : R — R be the unique solution to the differential equation

d m 1 1, B
K= N 19 39 and o(0)=0. 9)

If one defines the sequenéey }>o through the corresponding difference equation

Uk+1—ok:@—1'0k—lak2 and 0p=0, (10)
N t 2
the the Euler method tells us thaifk), the evaluation of the functioa at the non-negative
integerk, may be approximated by the sequence valué/Ne may turn this the other way
around to present approximate valueopthrough the function evaluatiorss(k).
The unique solution to differential equation (9) is

2mgt? k
2ot exp(1+ 59 f>—l

R e - (D)

The form of g (k) stated by this lemma is obtained wheg = ﬁfﬁ andmt? = DN are
substituted.

Since the definition ofy given by (10) is identical to the approximate recursivetiera
of Lemma 14, we have

o(k) =

k-1 m
o(K) =~ oy ~ izoui, where [= NA=1/0)
This allows us to write
1
me ~ N(l— ?) (a(k+1)— a(K)) ~ N(a(k+1) — a(K)),

where thetl term removal is justifiable, as it is of strictly smaller orde ad

This completes the first step of the coverage rate computafibe coverage rate cor-
responds to the number of distinct non-DP nodes contain@astrthe DP chains, but the
currently computedry includes all points contained in even the non-DP chains. ¥églro
account for these nodes belonging to non-DP chain nodes.igthie second step to finding
the coverage rate.

23

Proposition 16 The coverage rate of a single DP table is expected to be

2 i exp(@u) — 1
Por = 1 /0 (@+1)exp(@u)+ (@ —1) expu) du

where@ = , /1+ %@S{—

Proof To count the number of distinct non-DPs belonging to all D&k, we need to sub-
tract the number of all new points belonging to non-DP ché&ios z};g m;. Before doing
this, we first need to consider whether these points may sotegdpear within the DP chains
as new points. It is clear that any new node belonging to ab®rehain cannot have ap-
peared in a column previous to its position, as the node isasd to be new. Furthermore,
such a node cannot appear within the DP chains in the samecauany future columns,
since it would then reach a DP before the chain length bouerdseded. Hence new nodes
belonging to non-DP chains do not appear within any DP chaind we may safely re-
move all these new points without worrying about their polescontribution to DP chain
coverage.

Now, let us count how many points belong to non-DP chaind) ealuimn at a time. We
start with the 0-th column. Among atfy chains, even though we do not know ahead of time
which ones they would turn out to be, there willing(1— %)t chains that do not reach a DP
even aftef more iterations. Hencm)(l— %)f nodes among they nodes belonging to the
0-th column need to be removed from the count of new nodesoA#hé 1-st column, we
had focused om; chains, bu'ml(l— %)tfl nodes among these will not reach a DP before
exceeding chain length bound, and need to be removed. Tieeajéerm is now clear.

The coverage rate of a single DP table can now be stated as

1t 1 f—k

w1 (-5))

Using Lemma 15, we can approximate this to

mt £ t
gmsr_'—%-exp() exp(%)%

Since the coverage rate is©f1) order and the first terrﬁ% is of O(%) order, we simply
discard the first term, and the summation term can be appat&iirby the integration

71
t e*‘/‘/ o(tu) exp(u) du
0

Dme

when% is small. The claimed formula follows after substitution @ftu), as given by
Lemma 15, and some simplifications. O

We state thé >t case separately for later use.

24

Proposition 17 The expected coverage rate of a single DP table is approeinat

2
VIF Dmg+1’

when the chain length bourids sufficiently large.

Der =

Proof When the chain length bourids sufficiently large, almost all of they ~ m chains
that are generated will terminate with a DP, and hence therage rate may be computed
1 ¢f-1
asm 2i—o M- _
Based on Lemma 15, we may write

_No(®) 2 eBlt_1
~ lim =i
t—o0

f-1
Dcr - ||m ZIzom - = = 5
£ m fel-et/t(@+r1)eBV 4 (m—1)

t—o0 mt

2Dmsr

where@ = | /1+ ;=14

. The limit can be simplified to what is claimed. ad

5.2 Time memory tradeoff curve

Our next goal is to summarize the ability of the DP tradeoffoaithm to balance storage
size and online time in a single tradeoff equation.

We now visualize the chains of the DP matrix as having beegnetl at the ending
points. The online iterations for the processing of a sirigietable are counted starting
from the 1-st iteration. That is, checking whether the giimrersion targety = F(x) is
among the DPs in the DP table is referred to as the 1-st iberati

Ouir first task is to find the probability for merges to occumiestn DP chains.

Lemma 18 Fix a random function F .#* — 4 and suppose that we are given a pre-
computed DP chain of length< f, generated with F from a random non-DP starting point.
If a second chain is generated with F from a random startinippdhe probability for it to
become a DP chain of length i and merge with the given pre-coeapchain is

t min{i, j} i
oo 1ew(—g)
Proof Within this proof, let us refer to the event of the second ehmEcoming a DP chain

of lengthi and merging with the pre-computed chain simplyrasevent
We first restrict ourselves to thie< j case and fix notation for the two chains as follows.

Xo — o = Xjoj = Xj—itl = Xj—jy2 — - = Xj-1 — X
Yo — V1 — Y2 == Yic1 =Y

The nodes, ...,Xj_1 are non-DPs anxj is a DP.

Let us consider all possible scenarios by which the eventocanr. If the randomly
chosen starting pointy happens to be equal #9_;, then the second chain will follows the
first chain and the event surely will occur. On the other h#redtheryg is one of the points
X0, « s Xj—i—1: Xj—i+1, - - ., Xj—1, OF iS @ DP, then the event cannot occur. In the remaining
case, i.e. whewy is neither a DP nor any one of the poimts . ..,X;j_1, then the possibility
of the event occurring remains. Furthermore, in this lasecave may freely set(yp) to a
randomly chosen point off".

25

The above argument may now be repeated. If the randomly olyase F(yp) is equal
to Xj_i+1, then the event occurs. ¥i is either a DP or one of the points, . .. ,Xj_i, Xj—it2,
..., Xj—1, then the event cannot occur. And/ifis neither a DP nor one of the pointg, .. .,
Xj-1, then the event occurrence is yet undecided and we are fidafiteey, = F(y1) to a
random point of 4.

Hence, when < j, the probability for the event to occur may be written as

%+(1_}_1)£+(1_}_i>21+...+(1_}_i>i£

which is equal to

Noting thatﬁ' < 1 and using(1- %)”1 ~(1- tl)' ~ exp(—), we can approximate this

i ool D)

We can similarly work with the > j case. The event can occur only if the beginning
random choiceyy, ...,Yyi—j—1 are made among non-DPs that are different foqm. . .,
Xj—1. The probability for the event to occur is

1 jy\i-i1l 1 jyi-i+11l 1 jyi1
(l t N) N+<l t N) N +<l t N)N’
which is approximately
t i—j i
alee(- =) —en(—g)}
The results for the casés< j andi > j can now be combined and stated as claimed.

With the probability of alarms in our hands, we can compu&dbst induced by false
alarms.

Lemma 19 The number of extra one-way function invocations inducealagms is ex-
pected to be

Dmsr aat/2t ey Lo ov e, oin
e {2-8e 2k (5430 — S (EM?) e e,

for each DP table.

Proof When the chains are generated from = 1721m non-DP starting points, one can
expect to collect
m 1,111 T j
1—e it (]ﬁf) t o 1-efn e)(p(if> (11)

DP chains of length. The probability of collision between the online chain angt ane of
these DP chains of length at thei-th iteration of the online phase, is given by Lemma 18.
Here, the 1-st iteration deals with an online chain of leragth, rather than zero, that starts
at the unknown password and ends at the inversion targethifidecomponent is the work
required at each collision. If we take advantage of the featthere is a chain length bound,

26

the maximum number of iterations required to deal with aisiolh between a pre-computed
chain of lengthj and an online chain of lengitis min{f —i+ 1, j}.

Multiplying the three components and summing over all gassindicesi and j, the
expected number of iteration can be expressed as

[m ; g
T e). L mindi, j} _
33 e ool) {ew(T) - apee() minid i)
Replacing% with u and% with v, the above can be approximated by the integration
2
Nt
1-e

/(j/t /;h exp(—u) exp(—V) { exp(min{u,v}) — 1} min {:: - u,v} dve

WhenT1 is small. The claimed value appears when this definite iategicomputed. ad

Finally, we write the tradeoff curve for the DP tradeoff in aythat takes the extra cost
of false alarms into account.

Theorem 20 The time memory tradeoff curve for the DP tradeoff is T¥DiN?, where
the tradeoff coefficient is

£ 2
8Dmsr (BF % - #)Dmsr— 2 Dmsr+ l} 1— e DerDpe D%C
/2 gt 2t 1-et DeDmer
Proof Thei-th DP table is processed if and only if all preV|ous tablesndb return the

correct inverse. The probability of such a failure(is D°,'\,m‘) . The time required in
processing a single table is the sum of hash invocation sogiven by Lemma 10 and
Lemma 19. Hence the expected total running time of the DRetfadnay be written as

T Zl(Dc,mt) {(l_ef/t)+1Dn;5rf/t(2—%+#+%)}t.

The summation index here appears only in the first multipliegfactor, and we can easily
check that

Dic = {(ZDmsr+ 1) -

5 (-2 - Mo (-2

N
mtl>} l-e DC'DpCt

o
1—ex (D =
DerDmsr PLT Per DerDmsr
The running time can now be rewritten as
f 2
1— g DerDpe ¢ D g8 5+3-5L 1
Tt ety O (p B 2T, Ll
DcrDmsr () * 1—etht d/2 + drt + e/t

Since the storage /& = ml, we have
)

1— g DerDpe ; D 8 5+3-5 1
2_ -7~ " T l_egfttyp_Imsr (5 t 2 - 2
™ DerDmsr {(1 €) + 1—et/t <2 d/2 + g/t + e/t >} (mtl)
. 54 %_ £ 1 1 — e DerDpe
[it Dmsr R T o 2 \2
~{@- e ew (- gE T @) e

which is equal to what is claimed. ad

27

The following statement is an immediate consequence oftibeeatheorem.

Corollary 21 The time memory tradeoff curve for the DP tradeoff M= D;cN? with

D2
Dic = (2Dmsr+1) (1 — eﬁDchpc) _pc

9
DCI’ DI’T'ISI’

when the chain length bourids sufficiently large.

5.3 Efficient use of storage

The storage sizBl appearing in the tradeoff curves is the total number ofisigend ending
point pairs that need to be stored in the tradeoff tablesrdutjze, it is important to know
the actual storage size, or the number of bits, requiredh Beaating and ending point pair
can surely be stored in 2ldgbits, but there are techniques that allow more efficienesfer

Below, we shall assume a suitable method of enumeratingiéneeats of 4~ has been
fixed and treat elements o as log\-bit integers. This enumeration is trivial wheti" is
the set of all bit strings of certain length, but may requissvall amount of work wheny
is given as the set of character passwords with certain ¢oatetl structures.

The most widely known technique for storage reduction, othan the trivial fact that
the distinguished part of the ending point need not be recbid the DP table, concerns
the choice of starting points. One fixes the starting pditishe integers 0 througim— 1,
instead of using randomly chosen points. Then the storagadf starting point will require
logm bits, rather than loy bits. If one wishes to use different starting points for esep-
arate table, one can concatenate the table number to the afentioned integers before
using them as starting points. Note that any part that is comwithin each table need not
be stored separately for each starting point. In view of waatlom functions are, employ-
ing such a deterministic way of choosing starting pointd mat cause any change in the
behavior of the tradeoff.

The second method of reducing storage is called the hagh tediinique. To facilitate
fast table lookups, the tradeoff tables are usually sortethe ending point before being
written to storage. Instead of performing the sorting ofiena one fixes a hash functitn
that maps elements off” to logm-bit strings and records each starting and ending point
pair at the position in the table addressed by the hash véltie@®nding point. There are
various ways to deal with collision of addresses. Note thiate the address contaimebits
of information, roughlym bits of the ending point can be removed with minimal loss of
information. One advantage of this method, in addition tugéng storage, is that, whereas
a lookup to a sorted table requires time logarithmic in talite, the hash table technique
allows constant time table lookups.

Let us also explain a simplified form of the hash table teammjqgommonly referred to
as the index file method. After sorting the table on the endiigts, one focuses on the most
significant{(logm) — €} bits of each ending point, wheeeis a small positive integer. For
each integer & i < 22, we can expect to find“Zonsecutive entries in the sorted table that
have the firsf (logm) — €} bits of the ending point equal to integetOne can now remove
{(logm) — &} bits of each ending point and provide an index file that pdiothe starting

3 To be more exact, this should be 0 through— 1, but we will be content with the approximate value.

4 The same term is used, but this is not necessarily a crygibigrénash function. At the extreme, even
truncation to logn bits may be used.

28

11101001 101001
11001010 001010
10111001 111001
01101110 101110
01011100 1 011100
01010101 10 010101
00101100 01— 101100
00010110 0 010110

Fig. 1 Index file technique (The sorted list on the LHS is transfatrt@the RHS list, which contains two
less bits per entry.)

positions for eaclvalue without loosing any information. The number of ergtgentained
in the index file is only? and hence the additional storage required by its appeacandee
ignored. An example is illustrated in Figure 1. In practites index file often contains the
number of entries corresponding to each index value raltzer the full physical addresses.

The two methods considered so far reduce storage requitesittiout any loss of in-
formation concerning each starting and ending point pdiis i not so with the third and
final method we explain. In this method one simply truncatgeia of the ending point
before storage. After each iteration of the online phasecthrrent end of the online chain
is truncated and compared with the truncated ending pofrtteedtable. The table lookups
may now return a match even when a merge between the onlineartdha pre-computation
chain did not happen. Still, since we were already expedttsg alarms, no new measure
needs to be devised to deal with such a new type of false al#&ggsessive ending point
truncation will cause more frequent false alarms, hendeoitisl be balanced with its effect
in reducing storage.

The word truncation may give the impression that such a ndathapplicable only when
the space/” consists of bit strings. On spaces that look different, amjestive map that is
pre-image uniform, in the sense that the number of pre-isiégreeach element in the range
is identical, can serve as the truncation operation. Intmmcpassword hashes are usually
bit strings and one does not apply the reduction functioheaehd of any chain. In fact, DPs
are usually defined using the password hashes, rather thgratiswords produced through
the reduction function.

The ending point truncation method seems to be known amomy rgptographers,
but no guideline as to how much of the ending point can be &i@ttcan be found. Let us
analyze the effects of ending point truncation on the ruptime of the online phase. Below,
we assume that the ending points are truncated in such a &b random points oft,
when truncated in the specified manner, will have prob&b}liof agreeing with each other.
We shall express such a situation as hav}r]gobability of truncated match. For example,
if logt bits from the ending points were truncated withs; = 1, so thatlogm+ logt) bits
remain, then the truncated matches would happen with pﬂdibaig}t. When truncating
ending DPs, one should truncate the random-looking pdherahan the distinguished part.
Removal of the distinguished part can always be undone, ard dot cause any loss of
ending point information.

Lemma 22 Letus assume the use of ending point truncation with theeii@d match prob-
ability set to%. The number of extra one-way function invocations indugefhlse alarms
related to ending point truncation is expected to be

1-2(/t) e/t —e 2/t mt
t _ J—
1—etht r

)

29

for each DP table.

Proof Consider a random functidh : 4~ — .4 and suppose that the first chain, generated
with F and a random non-DP starting point, produced a DP chain gthep< f. Now,
suppose a second chain is generated Wwitlhom a random non-DP starting point. Let us
compute the probability for the second chain to become a Rihdfi lengthi and not merge
with the first chain, but have the same truncated ending paithe first chain.

The firsti nodes of the second chain must be chosen among non-DPsdldiffarent
from the j pre-ending points of the first chain. Théh node chosen, when truncated, needs
to agree with the truncated ending point of the first chairteNbat this agreement already
requires the final point to be a DP. Thus the probability weeairto write can be expressed

as
1 jyi1 i1
(1w rree(-1)5 (12)
Now, we can combine the number of DP chains of lengths given by (11), together
with the probability of non-merging truncated collisiontivsuch a chain, as given by (12),
to write the cost of truncation related false alarms as

t

55 b ool) en() mne i1

It now suffices to simplify this expression. Replacihgvith u andti with v, the above can
be approximated by the definite integral

2 £/t it f
%(;m%/o /0 exp(—u)exp(—v)min{%—u,v} dvdu
whenTl is small. We arrive at the claimed value when this is expji@bmputed. ad

Combining Lemma 10, 19, and 22, we know that the online pingsof a single DP
table requires

(Lot (13)
+t _Dmsr {2 _ge /2 (5+3(t/t) - }(f /1)?) e/t e*zf/t} (14)

1— eft/t 2

1 o St 2t Mt
+t—r {12y e e} .

invocations of the one-way function. The first two terms @3) (14) are both of ord@(t).

The total cost will remain of the same order if the third tert®)(addressing the cost of
false alarms related to ending point truncation, is of theesarder. One can see that this
is equivalent to requiring™ = ©(1). Now, observe that whef! = ©(1), increasing the
truncated matching probabilit%' by a factor of two will have a significant undesirable effect
on the total online running time, while the reduction in agg achieved by such an increase
is only by a single bit per table entry. Hence we would like them (15) to become a
very small fraction of the sum of the terms (13) and (14). Ineotwords, for each set of
parameters, m, andf, it is advisable to chooseas small as possible, i.e., truncate as much
as possible, under the condition that

mt _ (1—e)2 4 D {2—8e U2 4 (54 3(F/t) — L(E/t)2) e/t + e 2/t)
r 1-2(t/t) e/t — e 2Nt '

30

All our further discussion will assume such an approach leas ltaken so that Theorem 20,
in particular, remains valid.

Let us summarize the discussion of this subsection. We bkalkery rough and ignore
all constants of orde®(1). Sequential use of starting points allows each startingtpoibe
recorded in approximately lag bits. One can truncate close to Iogits from each ending
point with minimal effect on the online running time. Of themaining logn+ logt bits of
the ending point, we do not need to store thet lbigs that is fixed through the distinguishing
property. Furthermore, the hash table or index file tecteigllows us to remove almost
logm more bits without any loss of information. In all, lagbits are required to store each
starting point and a very small number of bits are requirestdoe each ending point.

6 Hellman Tradeoff

In this section, we summarize facts about the Hellman trfideéwen though none of these
have appeared in the literature in the current form, eacty faber than that concerning
optimal use of storage, is either very easy to prove or isagsttfforward consequence of
the recent works [9, 10].

All of our tradeoff algorithm analyses are done under theismgdion that the one-way
function is the random function.

Our first two facts are rather easily obtainable from the défims. The pre-computation
effort of the Hellman tradeoff can be expressed as follows.

Proposition 23 The pre-computation phase of the Hellman tradeoff requipghl one-way
function invocations, where the pre-computation coefiicie

Hpc = HmsHnt.

Proof Since a single Hellman table consistswthains of length, its creation requiremt
one-way function invocations. The total pre-computatiostésmtl = th{— =HnmsHneN. O

The proof for the next statement is almost identical to tbhatHroposition 12, and we
shall be very brief.

Proposition 24 The success probability of the Hellman tradeoff is

Hps = l_ eﬁHcerC.

Proof The success probability expected after completely praugsdl | tables is
Hermty ! N mtl B Horpe
1 (kT) leexp(chrW)flfe .

This argument ignores the fact that the multiple tables aténgdependent from each other
for each randomly chosen functién ad

We next show how to compute the coverage rate, so that theeaxpression for prob-
ability of success can be put to use.

Proposition 25 The coverage rate of a single Hellman table is expected to be
\/é ev 2Hmsr __ 1
B VHmsr @VZmsr -1

HCI’

31

Proof The coverage rate of a single Hellman table is given in [10] as

N (m) eVmB/2N _ g—+/mt2/2N
Hor = —(1— = .
Tmt\T 2N aNTm1)eV RN 4 ((/2N/m— 1)e VPN

Since4y < 1, we can approximate this by ignoring the second multiilieefactor. When
the matrix stopping rulent? = HysN is applied, the approximation becomes

2[e\/Tmsr _ 1
Her = — ,
cr Hmsr ty/ 2/Hmsr(eV 2Hmsr - 1) + (e\/ 2Hmsr — 1)

after some rearrangements. Noting tf@t2ms: — 1) < t/2/Hmer(€V2™s +1), we approx-
imate this once more to

2t gV2Hmsr 1
Hep = —— ,
° Hmsr ty/ 2/Hms,(ev ZHmsr |- 1)
which is equal to the claimed coverage rate. ad

The performance of the Hellman tradeoff is compactly exgeddy the following time
memory tradeoff curve.

Theorem 26 The time memory tradeoff curve for the Hellman tradeoff &TM= HicN?,
where the tradeoff coefficient is

— @ _ @ HerHpe H%C

Bie (1+ 6) (1-e) HerHmsr

Proof Thei-th Hellman table is processed if and only if all previousl¢athave failed in
returning the correct inverse. The probability of such lfaiis (1— %mt)'*l. The number
of one-way function invocations required in processingglsi Hellman table may be found
in [9], and is (1+ %)t with the cost of resolving alarms taken into account. Hehee
expected total running time of the Hellman tradeoff may bitten as

' Hermty i1 H
T:i;(l— =) (T

The summation index here appears only in the first multiplieactor, and we can easily
check that

5 (5 sl ()

1 mtl 1 — g Herlipe ¢
—exp(—Heg— -t
{ p(“°N >} HerHmsr

HCerSI‘
The running time can now be rewritten as

1 — @ HerHpc

T— (1+ H%S') 2. (16)

Hcersr
Since the storage M@ = ml, we have
1— e ferflpe H 1— g Horflpe H
ey - 128 () ey gpp 3-8 T) o e
HCFHI’T'ISI’ 6 HCI'HI’T'ISI’ 6
which is equal to what is claimed. ad

32

Before continuing, we note that the timie computed in the proof as (16), counts
the number of one-way function computations, and inclutiesefforts for resolving false
alarms. Since the number of table lookups will be smallernmvade this more explicit.

Lemma 27 The full online processing of the Hellman tradeoff, that tiseparameters m,
t, and I, is expected to require
1 — @ HerHpe
|
HCI'HI’T]ST
lookups to the Hellman tables.

Proof Thei-th Hellman table is processed if and only if all previousleéathave failed in
returning the correct inverse and processing of each talgjeinest table lookups. Hence,
the expected total number of table lookups is

I (17Hcrmt)|71 _ l_eiHcerc 2
PR

as claimed. a

)
HCFHI’T'ISI’

We have so far secured access to the pre-computation cestiticess probability, and
the tradeoff performance of the Hellman tradeoff. It remdimdiscuss the efficient use of
storage. The three approaches to storage reduction, destirs Section 5.3, remain valid
for Hellman tradeoffs and an analysis of the ending poimdation method is given below.
The concept of probability of truncated match, explainedtie DP tradeoff, will be carried
over to the Hellman tradeoff.

Lemma 28 Let us assume the use of ending point truncation with theeii@d match prob-

ability set to%. The number of extra one-way function invocations inducethincation
related alarms is expected to be X
m
t YR
2r

for each Hellman table.

Proof Fix a random functiorF : .4~ — .4 and suppose that we are given a pre-computed
chain of lengtht, generated with- from a random starting point. Now consider a second
chain generated witk from a random starting point. The probability for it to praguan
alarm related to truncation, i.e., a truncated ending pwoiatch without a merge with the
first chain, on the-th iteration, is

-2 G- =(-pC-3) -

This is because the firstnodes of the second chain must be chosen among nodes that are
different from thet pre-ending points of the first chain.

Taking account of alin pre-computed chains, the cost induced by the truncatieree|
alarms can now be written as

ig?.(t—i+l)wm7@ig(l—%> %

When% is small, by replacingi with u, the above can be approximated with the definite

integral
2 1
ﬂ/ (1—u)duy,
r Jo

which computes té‘z‘—f, as claimed.]

33

Combining this with what we saw during the proof of Theoremt@® total online time
required to deal with a single Hellman table can be stated as

t+t —+t —.
g
The first two terms are of ord€ (t). After reviewing the arguments concerning ending point
truncation for the DP tradeoff, we see that it is advisables® ending point truncation that
truncates as much as possible, while satisfying the camditi

mt Hmsr
o < 1+ 5
Let us summarize the number of bits required to store eadimgtand ending point pair.

We shall ignore all constants (1) order and be very rough. Each starting point requires
logmbits. Ending points may be truncated so that slightly moaa tbgm-logt bits remain
without visible side-effects on the online running timeeTtrash table method allows almost
logm additional bits to be saved per ending point without any lafssformation. In all,
logm bits are required for each starting point and slightly méwntlog bits are required
for each ending point.

7 Rainbow Tradeoff

In this section, we summarize facts about the rainbow triid€be contents appearing in
the first half of this section are either very easy to proverigial extensions to ideas that
have appeared before.

There are two ways of ordering the online phase processingutifple rainbow tables.
In the sequential approach, one fully processes one tafdeshmoving onto the next table.
In the simultaneous approach, one searches through thekstimeolumn of all rainbow
matrices before moving onto the next column. The simultasepproach is more efficient
in terms of the expected number of one-way function invaceti In practice, handling
multiple tables simultaneously may increase the averdge taokup time.

In this work, we assume that theainbow tables are processed with the simultaneous
approach. The 1-st iteration refers to the searching-efF (x) among the ending points of
all | tables. Thek-th iteration will require(k— 1) - | invocations of the one-way function and
| lookups to different tables. Columns of the rainbow masiasee numbered from the 0-th,
containing the starting points, to theh, containing the ending points.

Ouir first claim is an easy consequence of the relatiba- Rmg/N that defines the nota-
tion Rmgr-

Proposition 29 The pre-computation phase of the Rainbow tradeoff reqaigels one-way
function invocations, where the pre-computation coefiicie

Rpc = Rmsrl .

Contents of the following lemma fdr= 1 were already used in [9], but let us rewrite
it here for easy reference. The first statement of this lenmaatiivial extension of a sim-
ilar statement appearing in [12]. As the proof of the firstestzent, given in the appendix
of [12], makes no mentioning of random functions, we rewititeere within the framework

34

explained in Section 3 of the current paper. The two proafseasentially the same at the
5
core:

Lemma 30 The probability for the first k iterations of the online phaedail is

A6

where ng = m andt = 1—exp(—). This product may be approximated by

2N+m(t—Kk—1) 2N+ m(t —k—2)!
{ 2N+m(t—1) 2N+ m(t —2) }

Proof The number of distinct nodes expected in each rainbow mediixmn is given by the
statedn. As fully discussed in Section 3.2, there are logical gapslgad to this claim, but
its use as a good approximation can still be justified. Inipgssve remark that the different
reduction functions used at each column do not remove thedbgap and they do not even
provide independence of random function construction betwcolumns.

We can now suppose that a specific one-way funclidmas been given, and that the
rainbow matrix constructed froma containsm; distinct nodes in théth column, for each
0<i<t. Lety = F(X) be the inversion target. Theh iteration of the online phase succeeds
if and only if the hidden answex is located within thet —i)-th column. Assuming that
was chosen without reference to the rainbow matrix,iitheiteration fails with probability
(1) and allk iterations will fail with the stated probability. Once agaive have
|gnored the interdependence between columns.

The second statement is based on the approximation

mo 1
N~ N/m+i/2°

This is a very small generalization of Theorem 1 from [1], @thireats then= N case. The
proof there can easily be modified to fit the current staten#dter rewriting this as

17m[i 2N+mt—i-2)
N~ 2N+mt—i) ’

the sequential cancelations within the product becoméleisand we are left with the
claimed approximation. ad

We can arrive at the next claim by substitutiker t into the above lemma and appro-
priately approximating the outcome.

Proposition 31 The success probability of the rainbow tradeoff is

R =1 (52—)"

Performance of the rainbow tradeoff is compactly expressettie following theorem.

5 Simplification of the approximation given by Lemma 30, foe gpecial case gh= N andl = 1, results

inthe relatlonﬂ| o1 (1 ul) CEtH; We acknowledge that this relation was used multiple timig#sim{1]

and that the authors of the paper are likely to have been aviidine statement given here.

35

Theorem 32 The time memory tradeoff curve for the rainbow tradeoff &TM= RicN2,
where the tradeoff coefficient is

3 {(ZI -1 +(2+ 1)Rmsr} (2+Rmsr)2
Ric = 2 2.
2+1)(2+2)(20+3 _ _
(2 +1)(2+2)(2+3) | —4{(2 —1)+1(2 +3)Rms} (2+Rmsr)
Proof Substitutingk =i — 1 into Lemma 30, we know that tHeth iteration is processed

with probability

2N+m(t—i) 2N+m(t—i—1)y!
{2N+m(t—1) 2N+m(t —2) }
~ m(i — 1) m(i — 1) Rmr

- {(l_ 2N+m(t—1))(B 2N+m(t—2))}I ~ (l_ 2+Rms,>2I'

The probability of alarm associated with a single chain imagle rainbow matrix at theth
iteration may be inferred from [9] to bé\,—l Hence, the expected total running time of the
rainbow tradeoff, with false alarms associated withnallows taken into account, may be
written as

T=3 |{(i—l)+(t—i+1)m(i|:l)}(l_ ZT;rjsr)ZI

~a 3 (i (i} (2§

This may be approximated by the definite integral

1 Rl \2
i B _ _fvmsrt
T—t |/0 u{1+Rms(1 U)}(l 2+Rms,> du,

which computes to

{2~ 1)+ (21 + Dmer} (2-+ Rengr)?
—4{(2 1) +1(2 + 3)Rngr} (-)

2+R
T =t st 17)
(21 +1)(2 +2) (2 + 3)RZ,q;

It now suffices to combine this with the storage sie= ml and simplify to arrive at the
claim. ad

It should be noted that the timie appearing in the above tradeoff curve gives the count
of one-way function invocations and ignores table lookups.

Lemma 33 The full online processing of the rainbow tradeoff is expddb require

2
2+ Rmsr— Z(ﬁmsr)

tl
(21 + 1)Rpngr

lookups to the rainbow tables.

36

Proof At the start of proof to Theorem 32, we saw that it iteration is processed with
approximate probability _
(l— Rmsr;‘)ZI.
2+Rer

Since each iteration requirésable lookups, it suffices to compute

t i 1
3 (g) = ()

to arrive at the expected number of table lookups. ad

We now turn to the issue of efficient use of storage. The thpgeoaches to storage
reduction, discussed in Section 5.3, remain valid for rawliradeoffs and an analysis of
the ending point truncation method is given below. The cphoéprobability of truncated
match, used for the DP and Hellman tradeoffs, will also bei@drover to the rainbow
tradeoff.

Lemma 34 Letus assume the use of ending point truncation with thetied match prob-
ability set to%. The number of extra one-way function invocations indugetalse alarms
related to ending point truncation is expected to be

2
2 —4+4 MR+ (2 + DRE g+ 4(75—
(21 +1)(21 + 2)RZ
Proof For exactly the same reason as given in the proof of Lemmah28ptobability for

a randomly generated second chain to produce a truncatioieéa alarm without merging
with the first chain is

1I\i/1 1 iyv/1 1 1
(-3 G- =G =F
After recalling the probability for theth iteration to be processed, and taking account of all

theml pre-computed chains, the expected online cost can be wete

t

i;(t_i+l)'m7|' (1_ Rmsr% >2I.

2+ Rmesr

Replacing% with u, the above can be approximated by the definite integral

mt?l 1 RmsrU 1\ 2
_/ (1-u) (1f &) du,
rJo 2+ Rmsr
WhenT1 is small, and the claimed value appears when this is computed ad

After reviewing the arguments concerning ending pointc¢ation for the DP and Hell-
man tradeoffs, we can compare the value given by this lemramsitgthe previously com-
puted main online time (17) to conclude that it is advisablete ending point truncation
that truncates as much as possible, while satisfying thditon

{(2 = 1)+ (2 + DRmsr} 2+ Ransr)? = 4{ (2 = 1) +1(2 +3)Renst} (572)”

(21 +3){ — 4+ MR+ (2 + DRZgr+ 4(72-) " }

m
- <

37

Note that the right hand side is 6f(1) order so that the total online time remains@ft?)
order when ending point truncation satisffés= O(1).

Let us summarize the number of bits required to store eactirgtaand ending point
pair. We shall ignore all constants 6f(1) order and be very rough. Each starting point
requires logn bits. Ending points may be truncated so that slightly moenttogm bits
remain without visible side-effects on the online runniimget. The hash table method allows
most of the remaining log bits to be removed from the ending point without any loss of
information. In all, logn bits are required for each starting point and only a very kmal
number of bits are required for each ending point.

8 Optimal Tradeoff Parameters

In this section, we shall find optimal parameter sets for edithe three tradeoff algorithms.

Let us present our initial arguments in terms of the Hellmadeoff. The balance
between time and memory achievable by the Hellman tradedagikpressed by the curve
MZ2T =H;cN?. Itis clear that the Hellman algorithm at parameters thaigombout a smaller
tradeoff coefficientdc will require less resources to run. In other words, tradeotffi-
cientHic is a measure of the tradeoff efficiency, with a smaller vakgresenting better
tradeoff performance.

The tradeoff coefficienti;; is determined by the parameterst, andl. It should first
be noticed that a better tradeoff coefficient should alwaysthievable, if one decides to
sacrifice the success probability for finding the correcspasd. Hence, any comparison
between two Hellman tradeoff coefficients, achievableughotwo different sets of param-
eters, should be done under the condition that they prodieceame success probability.

Arguments similar to the above may be made for the DP and owittikadeoffs. Hence,
for each of the three algorithms, we shall work to find the $esaltradeoff coefficient
achievable under a fixed requirement on the success rateisThot yet a comparison be-
tween different algorithms, but only a study of optimal &aff coefficient for each separate
algorithm. Such an analysis may certainly seem interegtinigw of optimal usage of trade-
off algorithms, but can be of limited value in practice. Paeders achieving better tradeoff
performance may require more pre-computation, and withelacale implementations of
the tradeoff technique, lowering the pre-computation oty be much more valuable than
achieving better tradeoff performance. Our purpose oftingahe optimal tradeoff param-
eters is for its use in the next section, where we comparedeetwlifferent algorithms.

8.1 DP tradeoff

The parameter set that achieves optimal DP tradeoff pediocey under a fixed requirement
on the probability of success, is given below.

Proposition 35 Let0 < Dps < 1 be any fixed value. The DP tradeoff, under any set of pa-
rameters m, t, |, and, that are subject to the relations

1 -
mt = 1.26453V, | — 1.28007 |n(—) t, and f=25916Q,
— DpS
attains the given valueps as its probability of success, and exhibits tradeoff perfance
corresponding to

Drc = 5.49370Dps{ IN(1—Dpg) },

38

as the four parameters are varied. Under any such choice cdrpaters, the number of
one-way function invocations required for the pre-compiataphase is

Dpe = 1.61869 |r(1 11))
s

in multiples ofN.

The three relations restricting the parameter choices gipémal parameters in the
sense that no choice of m, t, |, abidan lead to a tradeoff coefficient smaller than the above
while achievingps as its probability of success.

Proof Proposition 11 and 12 state the probability of success fotrBdReoffs as
DpS =1- e’DCfDPC =1— e*Dcr Dmern[.

Recalling the definitiom,; = { this relation may equivalently be stated as

1 1
| = In t. 18

Dcr Dmsr (1*Dps) ()
Now, referencing Proposition 16, we know that the DP coveratedc, = Der[Dmsr, £/t] may
be treated as a function of the two variabigg, and%. Hence, given any, t, f, andbps, if

we setDmgr = thz andDe; = D¢ [Dmsr, £/1], and also fiX through relatiof (18), then the DP
tradeoff with these parameters will always achieve sucpessability ofDps.

Keeping in mind that we may freely choosg t, andf, and still obtain any requested
success probability, we now work to minimize the DP tradeogfficient

e w2
8Dmsr 4 (5+ % - #)Dmsr— 2 Dmer+1| 1— e DerDpc D%c
e e e/t 1—e Tt DeDmsr’

Dtc = {(ZDmsr+ 1) -
as given by Theorem 20. After some regrouping of variablescan rewrite this as
f —DcrDpc 2
Dtc = Dtmp[Dmsr» E} : (1— € P)(—Dchpc)

f 2
= Dtmp[Dmsr» E} 'Dps{ |n(1—Dps)} ,

where
e 2
8Dmsr (5+ % B 2tt_2)Dm5r72 Dmsr+1
~ (Z)msr-l- l) — —= + 3 + =
t { g/ gt &/t
Dtmp[Dmsr» ‘} = (19)
t 1 1 1

% (1—ett) p3 [Drmsrs H Drmsr

It is clear that, when the probability of success requirenigrixed, minimizingD;c
is equivalent to finding the minimum ®mpDmsr, £/t]. Note that, even thougbins, = th2
andf/t share the parametér since we are free to set, t, andf to any value, there are
enough degrees of freedom, and we may tpgat andf/t as independent variables when
looking for the minimum obmpDmsr, £/t].

6 Note thatl must be set to an integer. Since the RHS of (18) is rather lahgeerror to the success
probability, introduced by taking the nearest integer ®RHS value, will be very small.

39

Fig. 2 Tradeoff coefficient for DP tradeoff at fixed probability afcsess §imp = m)

After substitutingDer[Dmsr, £/t], as given by Proposition 16, into the right hand side
of (19), we can use numerical methods to find its minimum. Qseoders that the minimum
value ofbymp = 5.49370 is obtained @y = 1.25453 and/t = 2.59169. The claimed rela-
tion betweerl andt follows from (18), after evaluation oé—— atDmsr = 1.25453

1
cr [Dmsr, t/t] Dmsr
andf/t = 2.59169. The final claim concerning the pre-computation coltbvis from an

evaluation based on Proposition 11. ad

The parameter set achieving minimum tradeoff coefficienttiie DP tradeoff is visible

through Figure 2. It plot®imp = m, which is given by (19), as a function of

variablesDpsr andf/t.

The tradeoff curve, as given by this proposition, allowsausety more about the tradeoff
than the previously known rough curve BPT ~ N2. Suppose that, for some fixed set of
parameters, the success rate of the DP tradeoff is not tolh, smé suppose that one wishes
to increase the success rate, to the extent that the faiieebecomes the square of its
current value. Then, for optimal choice of parameters bthefactor will change little and
the {In(1—Dps) }? factor will increase by a factor of four. Hence, one mustakém increase
in the online time by a factor of four or use twice the currantage. The proposition also
shows that one must endure twice the pre-computation caesttieve this aim. Of course,
the simplest way of doing this would be to increase the nurobéables by twice, while
keeping all other parameters the same.

While the above result gives the parameters that achieeesptimal tradeoff perfor-
mance, in practical applications, pre-computation is vagtly and one is more likely to
choose a sufficiently large so as not to discard any of the pre-computed results.

Proposition 36 Let0 < Dps < 1 be any fixed value. When the usd of t is assumed, the
DP tradeoff, under any set of parameters m, t, and |, that atgexct to the relations

1
17Dp5>t’

attains the given valueps as its probability of success, and exhibits tradeoff perfance
corresponding to

mt? =0.56204MN and |=218614 In(

Dc = 7.01057Dps{ In(1—Dpg) },

40

35F -

25F \]

2.0F -
- _—_
_— :

15F ——————— B

Hie/Hps(In(1-Hps)}?

L L L L L L L L 1'07\ L L L L =
00 05 10 15 2.0 25 30 35 0 1 2 3 4 5

Drmsr Hmsr

Fig. 3 Tradeoff coefficients for DP tradeoff wiflt>> t and Hellman tradeoff at fixed probability of success

as the three parameters are varied. Under any such choicaapeters, the number of
one-way function invocations required for the pre-compataphase is

Dpe = 1.22871 |r(171D)
ps

in multiples ofN.

The two relations restricting the parameter choices givénogl parameters in the sense
that, as long af >> t is assumed, no choice of m, t, and | can lead to a tradeofficaft
smaller than the above while achievings as its probability of success.

Proof The proof is almost identical to that of Proposition 35. Théydifference is that we

refer to Proposition 17 to view,, as a function oby,s and obtain the tradeoff coefficient
from Corollary 21. Through some regrouping of terms we caitewr

S
msr cr

and by substitutin@; into the appropriate part @., we obtain

_ 1 RV, 1+2Dmsr+l 3 2
It suffices to minimize
D 1 v1+2D 1,\3
Dtmp[Dmsr] = % — (2+ _> (ﬂ) ,
DPS{ln(l_DDS)} Dmsr 2
seen a function of the single varialilgs,. a

In comparison to the previous optimal parameters thatzestfi as a free variable, this
version shows less efficient tradeoff performance, butireguess pre-computation. The
behavior of the DP tradeoff coefficient with> t, under a fixed requirement for success rate
is given as the left hand side graph of Figure 3. The point afirmiim tradeoff coefficient
is marked, together with the position corresponding e = 1.

41

8.2 Hellman tradeoff

We now turn to the Hellman tradeoffs. This is very similartie DP tradeoff case that uses
a sufficiently largd.

Proposition 37 Let0 < Hps < 1 be any fixed value. The Hellman tradeoff, under any set of
parameters m, t, and I, that are subject to the relations

mf = 2.25433N and |:o.598941|n(- 1H)t,
T

attains the givertips as its probability of success, and exhibits the tradeoffqrenance
corresponding to

Hee = 1.50217Hps{ In(1—Hpg) },

as the three parameters are varied. Under any such choiceapeters, the number of
one-way function invocations required for the pre-compiataphase is

Hpe = 135021 In(171H)
ps

in multiples ofN.

The two relations restricting the parameter choices givénogl parameters in the sense
that no choice of m, t, and | can lead to a tradeoff coefficiemaléer than the above while
achievingtps as its probability of success.

Proof Since the proof is similar to those of Proposition 35 and 3&kad be more compact.
Based on Proposition 23 and 24, we may claim the relati@m In (17}{’)5) t. Reference
to Proposition 25 shows that the Hellman coverage ¥ate= Her [Hms] Mmay be seen as a
function ofHysr = thz Hence, given anyn, t, andHps, we can sel to an appropriate value
with which the Hellman tradeoff achieves success prolgiaifi Hps.

We now work to minimize the Hellman tradeoff coefficient. Tdwntent of Theorem 26

may be rewritten as

R 2
Hic = (@'—’_é) H_gr Hps{ln(l—Hps)}

and substitution ofi¢, results in

(1 1N A eVPms 4113 2
Hie = (Ksr 6)(NG P %ZHmsr_]_) Hps{ IN(1—Hps) } . (21)
For a fixed success probability, it suffices to minimize
H 1 1 Hmsr €V2msr 1113
ol = = () (S S @
Hps{IN(1—Hps)} Hmsr V2 msr— 1

which is a function of the single variablg,g;.

One can use numeric methods to identify the minimum vélug = 1.50217, which
appears aliynsr = 2.25433. The two remaining constants appearing in the proposinay
now be obtained through appropriate evaluations. ad

42

The original Hellman tradeoff, which is set to us#? = N andl =t attains a success
probability of 5768% and the tradeoff curdd2T = 0.779M2, when the cost of false alarms
are taken into account. In comparison, the choicenBf= 2.2543\? andl = 0.516@, rec-
ommended by Proposition 37, give#T = 0.640N?, while achieving the same success
rate. This is visible through the right hand side graph ofirég3, where the two dots mark
the two parameter choices we have discussed.

The price paid for this better tradeoff performance is thedemate increase in pre-
computation fromN to 1.163(N. Indeed, after combining Proposition 24 and 25 into

(23)

_In(—Hp) _ In(L) Hmsr €V %msr 41

Hye=———— = ,
be Her [Hmsr} 1-— Hps \/E evVZ2msr — 1

one can check that the pre-computatitya[Hms] required under any fixed probability of
success is an increasing functiontafs,. Hence, while any point that is situated to the left
of the minimal point may not be optimal in view of tradeoff flsmance, it corresponds to
less pre-computation. Depending on the available computdtresources, one may choose
to lower pre-computation cost rather than increase thetfaéfficiency. On the other hand,
increasingimsr beyond the minimizing value.25433 will have bad effects on both the pre-
computation and the tradeoff performance and should belegloi

Let us briefly return to the DP tradeoff that only utilizesfaiéntly largef. By combin-
ing Proposition 12 and 17, we can write

D C:_ln(l_Dps) =In(1) V1+2Dmer+1 (24)
P Der [Dms] 1-Dps 2 ’

and, as with the Hellman tradeoff, confirm tingt is an increasing function afns. Since
we know from Proposition 36 that the best performance isewveltl aby,sy = 0.562047, the
choice ofbmsr < 0.562047 may be reasonable in view of lowering pre-compuiatiost,
but usingdmsr > 0.562047 should be avoided. In particular, the us®gf = 1 cannot be
justified.

8.3 Rainbow tradeoff

The analyses of optimal parameters for the DP and Hellmatedfés were very similar.
Rainbow tradeoff does not allow the same approach becausaweeless control over the
parametet. The number of tablesused with DP and Hellman tradeoffs are quite large and
we had treated as if it were a continuous variable. In the rainbow tradeafe; the table
count is usually a small integer and we must keep in mind thiakées only discrete values.

Let us start with a fixed number of tablesFor any given requirement on the success
rate, we can rewrite Proposition 31 as

e=2f()* 1) =

and understand this as a lower boundigg, that can be used. Itis clear that increastpg,
under a fixed will increase the pre-computation cagfs!N. One can also work with the
tradeoff coefficiengyc, as provided by Theorem 32, to confirm that increasing under a
fixed | will reduce the tradeoff efficiency. Hence, under any fiketthe exact value sy,
suggested by (25), should be used to achieve the requiregsaiate.

43

! —
) L J
L 25 -
5 B P
o t o
: 2.0 -
4 o)] o
hy . <
iy o R
o 3l by 1 @ 15¢ R
' . /// c(\,l - -
// o e
2f /4] 1.0F T
% o
,/" — - 4/;’/
i e] osf -7
]

. . . . | L . . L
0.0 0.2 0.4 0.6 0.8 1.c 0.75 0.80 0.85 0.90

Ros Ros

Fig. 4 Tradeoff coefficient of rainbow tradeoff as a function of egs rate requirement at small number
tables [= 1: dotted,| = 2: dashed| = 3: solid)

We can now treaitmsr as a function of the success rate requirentggtfor any fixedl.
After substitutingRms, as given by (25), into the tradeoff coefficient of Theorem @2e
can rewrite it as

413
b= GIrn@+2@13)
{(2”3”2(2'“)(11Rps>%}(11Rps>% | (26)

+{(2I +1)2-2(2 +3)(171R)%r}(l—Rps)
ps

For each fixed, this is a function of the single variakitgs. A plot of this is given as Figure 4
for table countd = 1, 2, and 3. The the right hand side box is a magnified parteal of
the left hand side box in logarithmic scale.

Recalling that a smaller tradeoff coefficient implies betitadeoff performance, one can
clearly read from the figure that the usd ef 1 is optimal when the requirement for success
rate is very low and that the use of successively higher numbtables becomes optimal
as the success rate requirement is made more stringent.W&ehmerically solved for the
explicit probabilities at which the transition to the neabte count should be made and have
recorded this in Table 1.

Let us briefly explain the content of the table with examp®sppose one aims to
achieve the success probability of 99.9% with the rainbewdoff. Since ®99 sits between
0.998775 and 99314, it is optimal to use ten tables. If one is requestesttdhe proba-
bility of failure to 2—17 we locate—7 between-6.17353 and-7.08171 and conclude that six
tables would be optimal. To understand the other three awumfi the table, let us focus on
the row that sits betwedn= 1 andl = 2. The use of a single table witty,s; = 1.87905, or
the use two tables &k,s, = 0.785335 will both result in the optimal tradeoff coefficierit o
Ric = 1.48026= 20565848 3nd success rate 73.4166%.

Note that any given success rate requireniggimakes a certain number of tableas
optimal, and thé value fixens; through (25). Since the tradeoff coefficient of Theorem 32
is already determined byandRms;, and since the relation (25) guarantegssuccess rate,
any parameter set satisfying the mentioned restrictiohbeibptimal in view of the tradeoff
coefficient. Let us gather what we have discussed in a proposi

44

Table 1 Range of success probability requirements for which edde @ountl is optimal

I Rps log,(1— R-ps) l0g, Ric Rmsr[Rsz 1] R'msr[Rsz 1]
0 0 0

110734166 -1.91140 0565848 1.87905 0.785335
2 | 0.886651 -3.14116 2.08082 1.44688 0.874929
3 | 0.946562 -4.22600 2.88968 1.25878 0.884357
41 0073305 -522729 3.41666 1.14577 0.873341
2 0986146 -6.17353 3.79818 1.06812 0.856920
0.092618 -7.08171 4.09387 1.01079 0.839893

7| 0.995992 -7.96295 433425 0.966542 0.823891
8 | 0.997795 -8.82486 4.53663 0.931326 0.809415
% 0098775 -9.67274 471157 0.902658 0.796529
i 2| 0999314 -105104 486585 0878902 0.785129
0.099614 -11.3404 5.00406 0.858929 0.775059

121 0999782 -12.1649 512941 0.841927 0.766150
131 0999877 -12.9850 524421 0.827299 0.758246
141 0999930 -13.8020 5.35019 0.814594 0.751208
151 0999960 -14.6163 544869 0.803466 0.744914

Proposition 38 Let 0 < Rps < 1 be any given fixed value. Locate the table count | from
Table 1 that corresponds to the givegs and compute

o= 2{ () 7).

Then the rainbow tradeoff that uses the located | and anypatars m and t satisfying the
relation

mt= Rmer

attains the given valugps as its probability of success. The tradeoff performanceezor
sponding to

Ric =

3 [{(2 = 1) + (2 + 1)Rmsr} (2+Rmsr)?
(2+1)(2+2)(2+3) | —4{(2 —1)+1(2 +3)Rmsr} (1 —Rps)) ’

can be observed as m and t are varied under the restrictioth §viy such choice of param-
eters, the number of one-way function invocations requicedhe pre-computation phase
is

Rpc = Rmsrl»

in multiples ofN.

The choice of | through Table 1 and the single relation contc®y m and t lead to opti-
mal parameters in the sense that no choice of m, t, and | carnitriesa tradeoff coefficient
smaller than the above while achieviRgs as its probability of success.

To be strictly logical, one must also consider the possibthiat allowing the multiple
tables to be of different sizes may lead to better tradeddffaments. We have analyzed the
case of three tables with the most general table sizes and tathe conclusion optimal
tradeoff performance is achieved at equal sized tables.n@tinod of analyzing this pos-
sibility can probability be extended to larger number ofléabbut the computations will
be much more complicated than what was presented here. Bm@&xamination of the 3-
table case showed that we are not likely to gain anything fileenmore general analysis,
we chose to work with equal sized tables. In comparison,Herdase of perfect rainbow

45

tables, we have reasons to believe that this extra flexihilil bring about better tradeoff
performance.

Finally, we want to provide an argument that is analogoushatwas discussed at the
end of Section 8.2. One can check that

Rpc = Rmsrl = 2! { (1_1Rps> 7 1} @7)

is a decreasing function ¢f for each fixedRps. Hence, use of ahcount that is larger than
what is suggested by Table 1 will decrease the pre-computatiquirement at the cost of
reduced tradeoff efficiency. This may be preferable in soitvatsons. On the other hand,
use of anl count that is smaller than the optimal count will have ba@af on both the

pre-computation cost and tradeoff efficiency, and shoulevoéded.

9 Comparison of tradeoff performances

All the tools required for a fair comparison of performanbesween the tradeoff algorithms
are now ready.

9.1 Conversion of the tradeoff coefficients to a common unit

Discussion of the previous section has made it clear thaafigrcomparison of tradeoff
algorithms to be fair, the algorithms must be made to prettensame probability of suc-
cess. One must also consider the pre-computation costeedoy each algorithm, but this
aspect will be considered later. We are also aware that dldeaff coefficient is a measure
of tradeoff performance. Hence let us assume that the DRnde| and rainbow tradeoff
algorithms display the respective tradeoff curves

M2Ty =DieN?, M2Ty =HcN?, and MZ2Ty = RcN2, (28)

at the same success rate. We will discuss how to interpretatfesDyc : Hic, Dic : Ric, and
Hic : Ric Of the tradeoff coefficients as ratios of tradeoff perforces

Unit for T. Let us fist consider the time variable The appearance of the time vallig

in a DP tradeoff curve signifies that there are paramegersy, Iy, andf, with which the

DP algorithm will display running time correspondingTg To be more exact, the expected
online execution time will be that consumed By = O(t2) invocations of the one-way
function and at modp = O(tp) table lookups. In comparison, the valliefor the Hellman
tradeoff corresponds f; = O(t3) one-way function computations and, as testified through
Lemma 27, table lookups of the sai@t3) order.

Hence, even if we are working with two parameter sets for tReaBd Hellman tradeoffs
which leads to identical tim&, = Ty, the real-world execution time of the two algorithms
will be different. For a fair interpretation of the tradecffefficient ratiady. : Hic as a ratio of
tradeoff performances, the difference in the time unitglusethe two algorithms must be
taken into account.

To continue the discussion, we recall the online time coripl®f the rainbow tradeoff.
In this case, we can expect the appearance of the time Valioecall for Ty = O(téla) one-
way function computations and, according to Lemma 33, tiigkups of orde©(tzlz).

46

In both the DP and rainbow tradeoffs, the number of tableupsks of strictly smaller
order than the number of one-way function computations.cdeim these cases, we may
ignore the time taken by table lookups and tréatand Tz as the count of just one-way
function invocations. In the Hellman case, we can combitg &hd Lemma 27 to conclude
that aTy must be treated af; one-way function computations algggTsrTH table lookups.

Ignoring any issues concerning the storage cddirfor the moment, we can state that
to compare the DP or rainbow tradeoff algorithm against teérian tradeoff, one should
look at the ratios

6 single table lookup time
r;gtc

Dic - (1 - - - -
te + 6+ Hmsr Single one-way function computation ti

and

6 single table lookup time
r)%tc tc

1+ - - —
(6-+Hmsr Single one-way function computation ti

rather than the raw ratib : Hic andHc : Ric.

If the one-way function is computationally very heavy anidtla pre-computed tables
are to reside on the fast online memory during the online ghthgn the table lookup time
could be insignificant in comparison to the one-way functtomputation time. In such a
case, the above ratios would essentially redu@g.toH;. andHy. : Rtc. On the other hand, if
huge pre-computed tables are to be accessed through shvarhettorage and the one-way
function is computationally very light, the above conversof units will be necessary.

Itis clear that when comparing the DP tradeoff against thdbmv tradeoff, no conver-
sion of the time units is necessary. At least when the isstigea$torage unit is ignored, the
ratioDy : Ryc IS equal to the tradeoff performance ratio.

Unit for M. Let us now discuss the storage unit. In all of the three trfiddgorithms,
M represents the number of starting and ending point paitsnged to be stored, but the
actual number of bits required to store each table entryheiltlifferent for different trade-
off algorithms. We saw through Section 5.3 that, for the DRi¢off, slightly more than
logmy bits are required to store a single starting and ending ppaiint On the other hand,
slightly more than logn; + logty bits are required for the Hellman tradeoff, and the rainbow
tradeoff requires slightly more than lag bits to store each table entry.

The implementation environment and tradeoff requiremevilisplace the choice of
suitable parameters into a certain range, and it is reatot@lssume that the parameters
chosen to be used with each algorithm will be related by

logmy =~ logmy, logty ~logty, and logmg ~ logmy + logty ~ logmy + logty.

Some readers may object that our discussion on the numbétsoEhuired for each table
entry makesn, = 2my a more reasonable choice, but this difference by a factordvast in
the approximation when, as in the above assumption, thgarithm values are compared.

Given the same amount of physical storage, the number of &iries that can be
stored by the DP tradeoff will be greater than the number tfesthat can be stored by the
Hellman tradeoff by a factor of

logmy +logty . logty logty
logmp, ~ logm, ' logmy’

a7

Noting that the change in storage affects the tradeoff padoace through a square factor,
and ignoring effects of time unit differences for the momer# can state that, to compensate
for the storage unit differences, the ratio

: logty \2
e (1+ |ogmﬂ> Hic

should be used instead df; : H;c for comparison of tradeoff performances. Similarly, ig-

noring the time unit, since we ha\{%% ~1+ Il?gr:'[))n , the ratioDyc : Rtc Should be converted
into

logtp \ 2
Dtc - (l) Ric.
tc + logmy tc
The remaining ratidi : Rc requires no conversion to deal with storage units, sinceave h
logmy + logty =~ logmg.

Combined unit conversiont now suffices to combine the two arguments concerning units
of time and storage to give fair comparisons of differentiésaff algorithms.

Proposition 39 Consider different tradeoff algorithms that are set to ruthvspecific cor-
responding parameters. Suppose that the tradeoff coefficfer the algorithms are given
as D¢, Hic, andRic. Then the tradeoff performance ratios between tradeoffritlymns are
given by the ratios

6 single table lookup time r}gl+ logty >2H
6-+Hmsr Single one-way function computation ti logmy te

logtp \ 2
Dic: (1) Ric,
tc (+ logmy tc

Dtc - (1+

and

(1+ 6 single table lookup time rlH)
6+ Hmer SiNgle one-way function computation time’® " ©

In our further discussions below, we shall mainly work witirgameter sets that roughly
satisfy

1 2
logmp ~ logmy = logtp = logty ~ logty ~ 3 logN and logm ~ 3 logN.

and also mostly assume that the table lookup time is netgigibcomparison to the one-
way function computation time. Under these assumptiomstdtios that need to be studied
are

Dic : 4Htc, Dic:4Rtc, and Hic: Ric.

Hence, it suffices to compare the vallmc, Hic, andR;c against each other.

We shall refer to the above situation as tipical situation as it often appears during
theoretic developments of the tradeoff technique, but waataclaim this to be typical in
practical applications of the tradeoff technique.

We emphasize that our further discussions given below camgetradeoff performance
comparisons will only be valid under the typical environmassumption that was just ex-
plained. If the environment and tradeoff performance megoents make parameter choices
such thaimy > ty or my < ty more appropriate, or if the table lookup time is not negligib
in comparison to the one-way function computation time,dtweclusions will be different.
Still, one will be able to start from Proposition 39 and sarly discuss these other situa-
tions.

48

9.2 DP tradeoff versus Hellman tradeoff

The focus of this work is with practical uses of the tradeddbathms, and we shall restrict
discussion of the DP tradeoff to the case whent. As discussed in the previous subsection,
it suffices to comparéDtc againstH;. for a fair comparison between the DP and Hellman
tradeoffs. Note that we are assuming the typical situatipteéned at the end of the previous
subsection and any conclusion we make could be differergnutifferent circumstances.

The contents of Proposition 36 and 37 show that the optimdbpeances of the two
algorithms are given by

1
2Dte = 1.75264Dp{ IN(1-Dps)}* and Hio = 1.50217Hps{ IN(1~Hps) }

One may be lead to believe that the Hellman tradeoff, withsthaller tradeoff coefficient,
will be more efficient, but this is only true when the pre-cartgtion is totally ignored. In
practice, pre-computation cost is the largest barrier ydange scale deployment of tradeoff
algorithms and hard to ignore.

The pre-computation costs required to achieve the abogedffperformances are

1
l—DpS

Dpc = 122871 Ir{) and Hp= 135021 In L).

1—Hps

The pre-computation cost of the DP tradeoff is seen to berl@me we are faced with
the problem of how to compare low tradeoff performance atlopre-computation against
better tradeoff performance at higher pre-computation. cos

A moment of thought shows that such a comparison can not leztg. It is closely
related to the relative value of the tradeoff performancairegy the pre-computation effort,
and there is no unit with which to express either of theseeslés an extension of this
thought, one must question whether it is reasonable to canipa two tradeoffs at parame-
ters giving their respective optimal tradeoff performaddon-optimal parameters may be
preferable under many situations in view of lower pre-cotapon cost.

We can conclude that all we can do is present the range ofehthiat can be made and
allow the users to make their conclusions based on themt8stu The crucial information
that must be displayed to allows easy judgement of whichetrfids more suitable is the
relation between tradeoff performance and pre-computatist. This must be done under
each fixed requirement for success rate.

As was previously noted through (24) and (23), when undereai fprobability of suc-
cess, botip,. andHp are functions of their respective,sr andHmsr Values. The tradeoff
coefficientsdc andHic, under a fixed success rate requirement, were similarlyesspd as
functions of the correspondirmg,sr andHngr values in (20) and (21).

For a comparison of the DP tradeoff against the Hellman ofid& now suffices to
present the graphs

1
{(Dpc[Dmsr], ZDtc[Dmsr]) | Dmsr S 0.56204} (29)
and
{ (Hpc[Hmst], Brc[Hmsr]) | Hmsr < 2.25433, (30)

where the bounds anysr andHms; were placed in accordance to the discussion at the end of
Section 8.2. These graphs are given in Figure 5.

Since the two graphs are to be compared at identical suctes®guirement,s = Hps,
we have removed the common parts that depend on the sucobsbitity from both of the

49

Dtc/4Dps[|n(1‘Dps)}2
andHie/HpslIN(1-Hps)}?

1t
100 105 110 115 120 125 130 135

—Dpe/IN(1-Dps) and—Hye/IN(1-Hpe)

Fig. 5 The tradeoff coefficien%Dtc (dotted) andi;; (dashed) in relation to their respective pre-computation
cost

cases before plotting the graphs. Hence, the graphs do pehdeon the success rate and
are valid for all success rate requirements. Both grapreneXurther upwards, but the right
ends, corresponding to the optimal tradeoff performarmesclearly marked with dots.

The two graphs are very close to each other. Even thoughtlgligétter tradeoff perfor-
mance can be obtained with the Hellman tradeoff at highecpneputation cost, in practice,
unless parameters far from the typioads t ~ N3 region are to be used, the DP tradeoff will
be favored in view of less number of table lookups. For examipithe table lookup time
makes%DtC : Hic @ more appropriate measure of tradeoff performance radio tiie current
%Dtc : Hic, the dotted curve for the DP tradeoff would move down andgareisself as a more
advantageous algorithm.

If table lookup time is absolutely negligible in comparigorthe one-way function com-
putation time, there is a small range of parameters with ke Hellman tradeoff can
slightly outperform the DP tradeoff using the same amounprefcomputation. If table
lookup time is negligible and pre-computation is not to besidered, the Hellman tradeoff
can be somewhat better.

9.3 Rainbow tradeoff versus DP and Hellman tradeoffs

As was discussed in Section 9.1, we assume the typicalisituaincerning the approximate
range of parameters and table lookup time, and consider aisons betweer%Dtc, Hic,
andR;. to be fair.

In addition to the graphs (29) and (30), we need to plot alsje (Rpc, Ric) points. We
can first check through (27) thap. can be seen as a function of the table cdynthen
success rate requiremenys is fixed. As for the tradeoff coefficient, equation (26) prdse
it as a function of just, whenRps is fixed. Given any requirement on the successRgigit
is now possible to draw the graph

{(Rpcll],Ree[l]) | | > optimal table count foRps}, (31)

where the optimal table count can be obtained from Table 1e Mt this is no longer a
continuous graph, but a discrete set of points. In the st@nke, previous graphs were also
discrete set of points, but whéhis large, the points will be extremely close to each other.
Unlike our comparison between DP and Hellman tradeoffspéires that depend @y
appearing in the expressions (27) and (26) are not ideritdhlbse appearing in the corre-

50

0.14F T T
\ 25% 15- 50%
0.12f \
|
010
A
N 1.0f
0.08F A% .
N
. N
0.06F RN
RN P
RS- 0.5 S~
0.04F T e . Rt SERE
L .
.
0.02f
0.00 0.0b—
0.30 0.32 0.34 0.36 0.38 0.70 0.75 0.80 0.85 0.90 0.9t
= : :
H
\ 75% s0p % 90%
8k U - H
A\ 250 %
‘\
6F \ - 20
N
. 150
4t . - N
(R 10[.
e - .
Pys - —— d - —— ==
5L
o o . . .
15 16 17 18 1.9 26 28 3.0
' ' 140F j -
95% 9%
s0p 120F 1
a0k 1 100 -
L -
30F -
N 60 -
20F RS - el
Ceel_ a0 e 1
R N - .
10F - 20f -
ol o . . .
3.0 3.2 3.4 3.6 3.8 4.0 5.0 5.5 6.0

Fig. 6 Tradeoff coefficient%{DtC (dotted),H¢ (dashed), andyc (large dots) in relation to their respective pre-
computation cost at success rates 25%, 50%, 75%, 90%, 9%#89 (X-axis:Dpc, Hpe, andRpc; Y-axis:
#Dtc, Hic, andRyc)

sponding expressions (24), (23), (20), and (21). Henceratpgraphs need to be drawn for
each success rate. This is given in Figure 6 for some sucatss r

In all of the graphs, one can see that the curve for the rairtbageoff sits closer to
the origin than the curves for DP and Hellman tradeoffs. Nb&& a graph sitting lower
shows better tradeoff performance and being positionea wothe left implies lower pre-
computation cost. In all the cases except for the ones quneting to 25% and 50% success
rates, given any position on the curve for either the DP olriiah tradeoff there is a rainbow
tradeoff position that presents better tradeoff perforraaat a smaller pre-computation cost.
Hence use of the rainbow tradeoff is definitely advisabldase cases.

The existence of better rainbow position is also mostly inutbe 50% case. The excep-
tion is marked with ar® on the curve for the Hellman tradeoff. This position is vdigtgly
to the left of the optimal rainbow position and hence coroesis to less pre-computation
than the optimal rainbow position. At the same time, it isiposed lower than the sec-
ond best rainbow position and hence shows better tradedirpgance than this second
best position. Hence, there can be no rainbow tradeoff peteanset that can replace the
Hellman position marked with ap without at least very slightly sacrificing either the pre-

51

computation cost or the tradeoff efficiency. Still, anybaryn agree that this exception is
quite unreasonable and one would normally choose to sactifeextremely small amount
of either the pre-computation cost or the tradeoff perforoeafor a somewhat better value
of the other factor.

The 25% case also displays the rainbow tradeoff requirisg {@e-computation than
the other two tradeoffs in achieving the equal tradeoffqantnce, but the awkward excep-
tional position discussed for the 50% can be found here berkrge segments. In addition,
the best performance achievable by the rainbow tradeddf $abort of what is reachable by
the other two algorithms. Hence there may be situations evtier DP or Hellman tradeoffs
may be preferable over the rainbow tradeoff, when requieathieve 25% success rate.

The relative advantage of using rainbow tradeoff is cleseln to grow with the increase
in the success rate requirement. For the 99% success ragitasems almost safe to
say that the rainbow tradeoff is approximately two times enefficient than the other two
tradeoffs in any of their reasonable usages.

In conclusion, the use of rainbow tradeoff is advisable fghisuccess rate requirements
and there may occasionally be low success rate applicatithsspecial situations where
the other two tradeoffs are preferable. We emphasize once that this conclusion is only
valid under the typical situation assumption explained éctf®n 9.1. For example, if we
must work with parameters such that 2fng~ logty and 2logn; = logty, then comparison
of the coefficient%Dtc, Hic, andR¢c would be appropriate, which would bring the curve for
the DP tradeoff lower, leading to different conclusions.

10 Conclusion

In the first part of this work, we solidified the basis on whictalysis of tradeoff algorithms
may be discussed. Logical gaps in common arguments wertfiddrand plausible expla-
nations for ignoring them were given. We next studied thégoerance of DP, Hellman, and
rainbow tradeoffs, and summarized each as a tradeoff chated correct even up to the
small multiplicative factor. These results were used inl#is¢ part of this work to compare
the performance of tradeoff algorithms against each other.

Even though we did provide explicit statements comparieghiee tradeoff algorithms,
our conclusions are only true under a certain assumptioh®tradeoff situation. We em-
phasize once more that one should not extend our conclusioother situations. Rather,
one should see this work as providing the tools that allowaféair comparison of tradeoff
algorithms, and use these to arrive at their own final judgese

One conclusion we can provide about the relative performandifferent tradeoff algo-
rithms is that any difference in performance will be rathaai. The practical inconvenience
of having to align each entry of the pre-computed tradedffetat a byte boundary has not
been considered in this work, and the performance diffeefetween algorithms can be
so small that such obscure issues may be of more importangedatice. In the extreme
case, issues as small as which algorithm is easier to implemay affect the choice of
algorithms.

The fact that algorithm performances are not very diffeigudisappointing to us as au-
thors of this work, but this fact should be relieving to pitiahers of the tradeoff algorithm
that are not concerned with small performance differenB&H, even if one decides to ig-
nore small performance differences, graphs of the prevéaesion show that meaningful
reduction in pre-computation cost can be achieved with antynall sacrifice to tradeoff

52

performance, and being able to take advantage of this kilgel@ill be of practical impor-
tance.

This work did not consider the use of checkpoints [1], whiah be used to reduce the
cost of false alarms. This decision was mostly base on th& @y where the effect of
checkpoints in reducing the online time of non-perfect helh and rainbow tradeoffs was
shown to be quite smaller than 10% at typical parameterseSis introduction will add
much complication to the analysis, while having only a sraffitct on the final difference
of tradeoff performances, we chose not to consider its udlk tise effect of checkpoints on
the DP tradeoff has not yet been accurately analyzed, ang itha small possibility that its
behavior on the DP tradeoff will be different from that on ttker algorithms.

Analysis of perfect table versions of the tradeoff algarithanalogous to what is given
here also remains to be done, with some partial resultsadlaifrom [1, 9, 13]. Due to the
larger pre-computation cost, the perfect table cases maflbss practical interest, but they
are certainly interesting theoretically.

References

1. G. Avoine, P. Junod, P. Oechslin, Characterization argrarement of time-memory trade-off based
on perfect tablesACM Trans. Inform. Syst. Secutl1(4), 17:1-17:22 (2008). Preliminary version in
INDOCRYPT 2005

2. E. Barkan, E. Biham, A. Shamir, Rigorous bounds on crygitdic time/memory tradeoffs, iAdvances
in Cryptology—CRYPTO 2006NCS, vol. 4117, (Springer, 2006), pp .1-21

3. A. Biryukov, A. Shamir, Cryptanalytic time/memory/datadeoffs for stream ciphers, #dvances in
Cryptology—ASIACRYPT 2000NCS, vol. 1976, (Springer, 2000), pp. 1-13

4. D. E. DenningCryptography and Data Securitdddison-Wesley, 1982)

5. P. Flajolet, A. M. Odlyzko, Random mapping statisticsAtivances in Cryptology—EUROCRYPT,'89
LNCS, vol. 434, (Springer, 1990), pp. 329-354

6. S. Goldwasser, M. Bellare, Leture Notes on Cryptograpimpublished manuscript, July 2008. Available
at:http://cseweb.ucsd.edu/ "mihir/papers/gb.html

7. J. Dj. Goli¢, Cryptanalysis of alleged A5 stream ciplierAdvances in Cryptology—EUROCRYPT,97
LNCS, vol. 1233, (Springer, 1997), pp. 239-255

8. M. E. Hellman, A cryptanalytic time-memory trade-ofEEE Trans. on Infor. Theory26, 401-406
(1980)

9. J. Hong, The cost of false alarms in Hellman and rainbodewés.Des. Codes Cryptogrto appear

10. D. Ma, J. Hong, Success probability of the Hellman trafieinf. Process. Lett109(7), 347-351 (2009)

11. A. J. Menezes, P. C. van Oorschot, S. A. Vanstétendbook of Applied CryptographfCRC Press,
1997)

12. P. Oechslin, Making a faster cryptanalytic time-mentaage-off. inAdvances in Cryptology—CRYPTO
2003 LNCS, vol. 2729, (Springer, 2003) pp .617-630

13. F.-X. Standaert, G. Rouvroy, J.-J. Quisquater, J.-[Dat,eA time-memory tradeoff using distinguished
points: New analysis & FPGA results, @ryptographic Hardware and Embedded Systems—CHES 2002
LNCS, vol. 2523, (Springer, 2003), pp. 593-609

