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Abstract

We investigate correlation functions in a periodic box–ball system.

For the two point functions of short distance, we give explicit formulae

obtained by combinatorial methods. We give expressions for general N-

point functions in terms of ultradiscrete theta functions.

1 Introduction

Quantum integrable systems such as quantum integrable spin chains and solv-
able lattice models are systems whose Hamiltonians or transfer matrices can
be diagonalised and for which eigenstates or free energies can be explicitly ob-
tained [1]. To investigate physical properties of these systems, such as e.g. the
linear response to external forces, however, we further need to evaluate correla-
tion functions for these systems. This is one of the main problems in the field of
quantum integrable systems and in fact, obtaining correlation functions is even
fairly difficult for the celebrated XXZ model or the 6 vertex model [2].

A periodic box-ball system (PBBS) is a soliton cellular automaton obtained
by ultradiscretizing the KdV equation [3, 4]. It can also be obtained at the q → 0
limit of the generalized 6 vertex model [5, 6]. Hence, from the view point of
quantum integrable lattice models, it is interesting and may actually give some
new insights into the correlation functions of the vertex models themselves, to
obtain correlation functions of the PBBS. In this paper, we give expressions for
N -point functions for the PBBS, using combinatorial methods and the solution
for the PBBS expressed in terms of the ultradiscrete theta functions.

The PBBS can be defined in the following way. Let L ≥ 3 and let ΩL =
{

f | f : [L] → {0, 1} such that ♯f−1({1}) < L/2
}

where [L] = {1, 2, . . . , L}.
When f ∈ ΩL is represented as a sequence of 0s and 1s, we write

f(1)f(2) . . . f(L).

The mapping TL : ΩL → ΩL is defined as follows (see Fig. 1):
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Figure 1: Definition of TL for f ∈ ΩL

1. In the sequence f find a pair of positions n and n + 1 such that f(n) = 1
and f(n + 1) = 0, and mark them; repeat the same procedure until all
such pairs are marked. Note that we always use the convention that the
position n is defined in [L], i.e. n + L ≡ n.

2. Skipping the marked positions we get a subsequence of f ; for this sub-
sequence repeat the same process of marking positions, so that we get
another marked subsequence.

3. Repeat part 2 until one obtains a subsequence consisting only of 0s. A
typical situation is depicted in Fig. 1. After these preparatory processes,
change all values at the marked positions simultaneously; One thus obtains
the sequence TLf .

Sometimes we shall write T t
Lf for TL(· · · (TL(TL

︸ ︷︷ ︸

t

f))). The pair (ΩL, TL) is called

a PBBS of length L [4, 7]. An element of ΩL is called a state, and the mapping
TL the time evolution.

An N -point function of the PBBS with M balls may be defined as follows.

〈s1, s2, . . . , sN 〉 :=
1

ZH

∑

f∈ΩL;M

e
P

L
k=1 Hk(f)f(s1)f(s2) · · · f(sN )

where ΩL;M :=
{
f ∈ ΩL

∣
∣ ♯f−1({1}) = M

}
, ZH :=

∑

f∈ΩL;M
e

P

L
k=1 Hk(f) and

Hk(f) is the kth energy of the state f , which is proportional to the number of
kth arc lines defined when determining the time evolution rule [4], or the kth
conserved quantity of the PBBS [8]. (Note that Hk(f) is essentially equal to the
energy function for the transfer matrix of the crystal lattice models with k + 1
states on a vertical link [5, 7].) Noticing the fact that ΩL;M =

⊔

Y ΩY ,

〈s1, s2, . . . , sN 〉 =
1

ZH

∑

Y

∑

f∈ΩY

e
P

L
k=1 Hk(f)f(s1)f(s2) · · · f(sN ),

where Y are partitions of M corresponding to the conserved quantities of the
PBBS. (See Section 2.) Since, for fi ∈ ΩYi

(i = 1, 2), ∀k Hk(f1) = Hk(f2)
(k = 1, 2, 3, . . .) implies Y1 = Y2 and vice versa, by choosing a state fY in ΩY

we can write

〈s1, s2, . . . , sN〉 =
1

ZH

∑

Y

e
P

L
k=1 Hk(fY )

∑

f∈ΩY

f(s1)f(s2) · · · f(sN).
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Thus, to obtain correlation functions of PBBS, we have only to evaluate those
on the set ΩY :

〈s1, s2, . . . , sN 〉Y :=
1

|ΩY |

∑

f∈ΩY

f(s1)f(s2) · · · f(sN ). (1)

We also point out that if we put ∀k, ∀f, Hk(f) = 0, N -point functions become
trivial;

〈s1, s2, . . . , sN 〉 =
L−NCM−N

LCM

=
M(M − 1) · · · (M − N + 1)

L(L − 1) · · · (L − N + 1)
.

In the following sections we shall evaluate (1).

First we summarize some useful properties of the PBBS. We say that f has
(or that there is) a 10-wall at position n if f(n − 1) = 1 and f(n) = 0. Let the
number of the 10-walls be s and the positions be denoted by a1 > a2 > · · · > as.
Then, we have the following proposition:

Proposition 1 ([9])

(T t
Lf)(n) = ηt−1

n+1 − ηt
n+1 − ηt−1

n + ηt
n,

ηt
n = max

mi∈Z

i∈[s]





s∑

i=1

mi

(
bi + tWi − n

)
−

ℓ∑

i=1

ℓ∑

j=1

miΞijmj



 , (2)

bi = ai +
i−1∑

j=1

2 min{Wi, Wj} + Wi +
Zi

2
, (3)

Ξij =
Zi

2
δij + min{Wi, Wj},

Zi = L −
s∑

j=1

2 min{Wi, Wj},

where Wi denotes the amplitude of the “soliton” corresponding to ai obtained
by the procedure explained in [9].

The set
{
Wi

}s

i=1
consists of quantities of the PBBS and ηt

n is the ultradis-
crete theta function [10]. We shall use Proposition 1 for determining N -point
functions in Section 3.

Next we introduce two procedures which are important in this paper. For a
given f ∈ ΩL, a state Ef = E(f) is defined to be

(Ef)(n) =













f(n) (1 ≤ n ≤ as − 2),

f(n + 2k)

(
as−k+1 − 2k + 1 ≤ n ≤ as−k − 2k − 2

(k = 1, 2, . . . , s − 1)

)

,

f(n + 2s) (a1 − 2s ≤ n ≤ L − 2s),

(as > 1)







f(n + 1) (1 ≤ n ≤ as−1 − 3),

f(n + 2k + 1)

(
as−k − 2k ≤ n ≤ as−k−1 − 2k − 3

(k = 1, 2, . . . , s − 2)

)

,

f(n + 2s − 1) (a1 − 2s + 1 ≤ n ≤ L − 2s).

(as = 1)
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The mapping E : ΩL → ΩL−2s is called the 10-elimination. Ef is a subsequence
of f obtained by eliminating all 10-walls in f simultaneously. For example,

f = 0011111000011111000000001111001100001111100111000011110000000000,

Ef = 001111 0001111 0000000111 01 0001111 011 000111 000000000

= 00111100011110000000111010001111011000111000000000.

Its inverse process is called the 10-insertion, I(j1, j2, . . . , jd) = I2◦I1(j1, j2, . . . , jd) :
ΩL → ΩL+2(d+s) where s is the number of 10-walls in f ∈ ΩL. The 10-
insertion is defined as follows: Shifting the origin if necessary, we can assume
that f(L) = 0. For {j1, j2, . . . , jd} (1 < j1 < j2 < · · · < jd ≤ L + d), the
mapping I1(j1, j2, . . . , jd) : ΩL → ΩL+2d is defined as

(I1(j1, j2, . . . , jd)f)(n)

=







1 (n = L + 2d − jk − k + 1),

0 (n = L + 2d − jk − k + 2),

f(n) (1 ≤ n ≤ L + d − jd),

f(n − 2(d − k + 1)) (L + 2d − jk − k + 3 ≤ n ≤ L + 2d − jk−1 − k + 1),

f(n − 2d) (L + 2d − j1 + 2 ≤ n ≤ L + 2d)

where k ∈ [d]; furthermore, I2 : ΩL+2d → ΩL+2(d+s) is defined to be

(I2f
′)(n) =







1 (n = gk + 2(s − k) + 1),

0 (n = gk + 2(s − k) + 2),

f ′(n) (1 ≤ n ≤ gs),

f ′(n − 2(s − k + 1)) (gk + 2(s − k) + 3 ≤ n ≤ gk−1 + 2(s − k) + 2),

f ′(n − 2s) (g1 + 2s − 2 ≤ n ≤ L + 2(d + s))

where k ∈ [s], f ′ ≡ I1(j1, j2, . . . , jd)f ∈ ΩL+2d and

g′k = max
{

m ∈ [L + d]
∣
∣
∣m = ak − 1 + ♯

{
r ∈ [d]

∣
∣L + d − jr + 1 < m

}}

,

gk = g′k + ♯
{

r ∈ [d]
∣
∣L + d − jr + 1 < g′k

}
. (4)

For example,

f = 0011100111000001101000111000000,

I1(3, 11, 25)f = 001110011 ∗ 1000001101000 ∗ 1110000 ∗ 00

= 0011100111010000011010001011100001000,

I(3, 11, 25)f = 00111100011101100000011100110000101111000001000

where 10 and 10 denote the inserted 10 at f 7→ I1(j1, j2, . . . , jd)f and I1(j1, j2, . . . , jd)f 7→
I2(I1(j1, j2, . . . , jd)f) respectively.
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2 One and two point functions obtained by com-

binatorial methods

We assume that Y denoting the conserved quantities of f ∈ ΩY , is the partition

(
P1, P1, · · · , P1
︸ ︷︷ ︸

n1

, P2, P2, · · · , P2
︸ ︷︷ ︸

n2

, . . . Pℓ, Pℓ, · · · , Pℓ
︸ ︷︷ ︸

nℓ

)

where P1 > P2 > · · · > Pℓ ≥ 1. Note that Y is a partition of M , i.e. M =
∑ℓ

i=1 niPi. As mentioned in Section 1, we consider N -point functions (1) of the
PBBS,

〈s1, s2, . . . , sN 〉Y =
1

|ΩY |

∑

f∈ΩY

f(s1)f(s2) · · · f(sN ).

The value of |ΩY | is already known:

Proposition 2 ([11])

∣
∣ΩY

∣
∣ =

L

L0

(
L0 + n1 − 1

n1

)(
L1 + n2 − 1

n2

)

· · ·

(
Lℓ−1 + nℓ − 1

nℓ

)

where L0 = L − 2M, Li = L0 +
∑i

j=1 2nj(Pj − Pi+1) and Pℓ+1 = 0.

Since the N -point function 〈s1, s1 +d1, . . . , s1 +dN−1〉Y does not depend on
the specific site s1 (because of translational symmetry), we denote

CY (d1, d2, . . . , dN−1) ≡ 〈s1, s1 + d1, . . . , s1 + dN−1〉Y

where 1 ≤ d1 < d2 < · · · < dN−1 < L. Note that CY (∅) denotes the 1-point
function 〈s1〉Y .

Proposition 3

CY (∅) =
M

L
.

Proof Since
∑L

n=1 f(n) = M ,

LCY (∅) =
L∑

s1=1

〈s1〉Y =
1

|ΩY |

∑

f∈ΩY

L∑

n=1

f(n) =
1

|ΩY |
|ΩY |M = M.

2

Next we consider the 2-point functions.

Proposition 4

CY (1) =
M − s

L

where s =
∑ℓ

i=1 ni.
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Proof Since
∑L

n=1 f(n)f(n + 1) = M − s,

LCY (1) =
1

|ΩY |

∑

f∈ΩY

L∑

n=1

f(n)f(n + 1) = M − s.

2

In order to investigate CY (2), let us put

ki :=

{

nj (i = Pj),

0 otherwise,

k̂i :=

P1∑

j=i

ki,

L̃ := L − 2k̂1 (= L − 2s),

NY (2) :=

P1∑

i=3

ki(i − 2).

We also define

Vf0 :=
{

f ∈ ΩY

∣
∣Ef = f0

}
,

G2(f) := ♯
{

n ∈ [L]
∣
∣ f(n)f(n + 2) = 1

}
.

The following lemma is the key to evaluating CY (2).

Lemma 1
Let

V
(j)
f0

:=
{

f ∈ Vf0

∣
∣G2(f) = NY (2) + j

}
.

Then, if Vf0 6= φ, Vf0 =
⊔k1

j=0 V
(j)
f0

and

∣
∣
∣V

(k1−j)
f0

∣
∣
∣ =

νj

k1!
(5)

where

νj :=

(
j−1
∏

i=0

(L̃ − 2k̂2 − i)

)(
k1+j−1
∏

i=0

(2k̂2 + i)

)

×

(
∑

0≤i1<···<ij<k1+j−1

ih+1<ih+1

j
∏

h=1

1

(2k̂2 + ih)(2k̂2 + ih + 1)

)

.

Proof When f ∈ Vf0 , there exists a set of positive numbers {ji}
k1

i=1 (1 < j1 <

j2 < . . . < jk1 ≤ L̃ + k1) such that

f = I(j1, j2, . . . , jk1)f0.

6



By examining the positions of 101 and 111, we find that

G2(f) = NY (2) + γ + J

where γ = γ
(
f0; {ji}

k1

i=1

)
is the number of 10s inserted into the positions adja-

cent to consecutive 1s, and J = ♯
{

i ∈ [d − 1]
∣
∣ ji + 1 = ji+1

}
. (See the table

below.) For example,
f0 = 001110000100110000

and f = I(5, 6, 14, 15, 18)f0, then

f = 0011110100010100011000111010100000

( = 0011110100010100011000111010100000 ).

In this example, k1 = 5, k̂2 = 3, NY (2) = 3, γ = 2 and J = 2. Since

0 ≤ γ + J ≤ k1, we have the decomposition Vf0 =
⊔k1

j=0 V
(j)
f0

.

f0 00111000

G2(f0) 1

f = I(k)f0 001011110000 001101110000 001111010000 001111000100

(k = 7) (k = 6) (k = 4) (k = 2)

G2(f) 3 2 3 2
(γ = 1, J = 0) (γ = 0, J = 0) (γ = 1, J = 0) (γ = 0, J = 0)

To know
∣
∣
∣V

(j)
f0

∣
∣
∣, we have only to count the number of states with γ + J = j.

For k1 = 1,
∣
∣Vf0

∣
∣ = L̃. Since there are k̂2 sets of consecutive 1s, 2k̂2 states

have γ + J = 1 (γ = 1, J = 0) and the other L̃ − 2k̂2 states have γ + J = 0
(γ = 0, J = 0).

For k1 = 2, let f = I(j1, j2)f0. As was seen in case k1 = 1, there are 2k̂2

positions at which γ+J can be increased by one. If one 10 pair is inserted in one
of these positions, then there are 2k̂2 +1 positions for the other pair to increase
γ+J by one, and L̃−2k̂2 positions not to increase it. On the other hand, if one 10
pair is inserted at one of the L̃−2k̂2 non-increasing positions, then there are 2k̂2+
2 positions for the other pair to increase γ+J by one, and L̃−2k̂2−1 positions not
to increase it. Hence, considering duplication of insertion, there are (2k̂2)(2k̂2 +

1)/2! states with γ + J = 2,
[

(2k̂2)(L̃ − 2k̂2) + (L̃ − 2k̂2)(2k̂2 + 2)
]

/2! states

with γ + J = 1, and (L̃ − 2k̂2)(L̃ − 2k̂2 − 1)/2! states with γ + J = 0.
In general, we can proceed in a similar manner and, referring to the chart

in Fig. 2, we obtain (5). 2

Proposition 5

CY (2) =

k1∑

j=0

νj

(
P1∑

i=3

ki(i − 2) + (k1 − j)

)

L

k1∑

j=0

νj

.
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Figure 2: A chart corresponding to γ + J in the proof of Lemma 1.

Proof From Lemma 1, we see that if Vf0 6= φ,

∑

f∈Vf0

L∑

n=1

f(n)f(n + 2) =

k1∑

j=0

νj

k1!

(

NY (2) + (k1 − j)
)

and
∣
∣Vf0

∣
∣ =

k1∑

j=0

νj

k1!
.

Since the right hand side of the last equation does not depend on f0, and since
any state f ∈ ΩY belongs to some Vf0 , we obtain

LCY (2) =
1

|ΩY |

∑

f∈ΩY

L∑

n=1

f(n)f(n + 2) =

k1∑

j=0

νj

(

NY (2) + (k1 − j)
)

k1∑

j=0

νj

.

2

For CY (d) (d ≥ 3) we can use similar arguments based on elementary com-
binatorics. However, the expressions become more and more complicated when
the difference d increases. Instead in the next section we shall use Proposition 1
to obtain expressions for general N -point functions.
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3 N-point correlation functions for the PBBS

Let the state f0 and the set XY ⊂ Z
n1
+ × Z

n2
+ × · · · × Z

nℓ

+ (= Z
s
+) be

f0 = 000 · · ·00
︸ ︷︷ ︸

L0

,

and

XY :=

{

{
xi(k)

}ℓ, ni

i=1,k=1

∣
∣
∣
∣
∣

1 < xi(1) < xi(2) < · · · < xi(ni) ≤ Li−1 + ni

(i = 1, 2, . . . , ℓ)

}

.

(6)
We define the state fX recursively as

fj := I(∅) · · · I(∅)
︸ ︷︷ ︸

Pℓ−j+1−Pℓ−j+2−1

I(Xj)fj−1 ( j = 1, 2, . . . , ℓ ),

fX := fℓ

where Xj =
{
xj(k)

}nj

k=1
⊂ X ∈ XY . Note that, from the definition of an

10-insertion, I(∅) is the procedure needed to insert 10 s between 10:

f = 0011100111000001101000111000000,

I(∅)f = 00111100011110000001110011000011110000000

and fX ∈ ΩY by construction. We also define Ω̃Y by

Ω̃Y :=
{

fX

∣
∣X ∈ XY

}
.

Lemma 2

〈s1, s2, . . . , sN 〉Y =
1

L|Ω̃Y |

∑

f∈Ω̃Y

L∑

k=1

f(k + s1)f(k + s2) · · · f(k + sN ). (7)

Proof By virtue of the definition of fX , Ω̃Y is the set of states with conserved
quantities Y and the last entry of the 10 sequence is one of the 0s that are not
marked in the time evolution rule, i.e., fX(L) = (TLfX)(L) = 0. By defining the
shift operator S by (Sf)(n) := f(n + 1), and (Skf) := S(Sk−1f) (k = 1, 2, . . .)
with S0f := f and for sets

SkΩ̃Y :=
{

SkfX

∣
∣X ∈ XY

}
(k = 1, 2, . . . , L),

we find
∀f ∈ ΩY , ♯

{

k
∣
∣
∣ f ∈ SkΩ̃Y (k = 1, 2, . . . , L)

}

= L0.

9



Note that SLf = f . Since |ΩY | = L
L0

|Ω̃Y |,

〈s1, s2, . . . , sN 〉Y =
1

|ΩY |

∑

f∈ΩY

f(s1)f(s2) · · · f(sN )

=
1

L|Ω̃Y |

L∑

k=1

∑

f∈SkΩ̃Y

f(s1)f(s2) · · · f(sN )

=
1

L|Ω̃Y |

L∑

k=1

∑

f∈Ω̃Y

f(s1 + k)f(s2 + k) · · · f(sN + k).

Thus we obtain (7). 2

Proposition 6
For X ∈ XY , fX is explicitly given as

fX(n) = u0
n(X)

where

ut
n(X) := ηt−1

n+1(X) − ηt
n+1(X) − ηt−1

n (X) + ηt
n(X),

ηt
n(X) := max

mij∈Z,

i∈[ℓ]; j∈[ni]

[
ℓ∑

i=1

ni∑

k=1

mik

(
tPi − n − xi(k) + L + k + 1 +

Zi

2

)

−
ℓ∑

i=1

ni∑

k=1

ℓ∑

j=1

nj∑

h=1

mikΞikjhmjh



 , (8)

Ξikjh :=
Zi

2
δijδkh + Pmax[i,j],

Zi := L − 2



Pi

i∑

j=1

nj +

ℓ∑

j=i+1

njPj



 .

Proof From Proposition 1, fX is determined by the parameters Wn and an

(n = 1, 2, . . . , s). Here Wn is the amplitude of the nth soliton and an is its
position, i.e. the position of the nth 10-wall, counting from the right. From the
definition of the position and of the amplitude of a soliton, it follows that both
can be determined from 10 insertions. Because of the way fX was constructed,
the set {xj(k)}

nj

k=1 corresponds to the position of nj solitons with amplitude
Pj , though it does not directly gives their position. Hereafter we shall refer to
a soliton with amplitude P as a P -soliton. By considering the relation between
the position of a soliton and 10-insertions, we find that the position of the kth

Pj-soliton counting from the right is L−x
(ℓ)
j (k)+2, where x

(ℓ)
j (k) is determined

10



recursively: we define x
(i)
j (k)

(
i ∈ [ ℓ ], j ∈ [ i ], k ∈ [nj ]

)
as

x
(i)
j (k) := xj(k) + (Pj − Pi+1)(2βj(k) + 2k − 1)

+

i∑

s=j+1

2(Ps − Pi+1)α
(s)
j (k) − k + 1

where

α
(i)
j (k) := ♯

{
r ∈ [ni]

∣
∣Li−1 + ni − xi(r) + 1 > g

(i)
j (k)

}
,

β1(k) := 0, βi(k) :=

i−1∑

s=1

♯
{

r ∈ [ns]
∣
∣
∣ g(i)

s (r) > Li−1 + ni − xi(k) + 1
}

,

g
(i)
j (k) := max

{

m ∈ [Li−1 + ni]

∣
∣
∣
∣
∣

m = Li−1 − x
(i−1)
j (k) + 1

+♯
{

r ∈ [ni]
∣
∣Li−1 + ni − xi(r) + 1 < m

}

}

.

Note that x
(i)
j (1) < x

(i)
j (2) < · · · < x

(i)
j (nj).

Recalling the fact that ♯
{

r ∈ [d]
∣
∣L + d− jr + 1 < g′k

}
in (4) is the number

of inserted 10s, on the left of the kth soliton (here we do not count the inserted

10s as solitons), the concrete meaning of these variables becomes clear: α
(i)
j (k)

denotes the number of Pi-solitons on the right of the kth Pj-soliton, and βj(k)
denotes the number of solitons with amplitudes less than Pj , to the right of the
kth Pj-soliton.

Since {L−x
(ℓ)
j (k)+2}

ℓ, nj

j=1,k=1 is the complete set of positions of the solitons,

there exists a one to one mapping ρ :
{

(j, k)
∣
∣ j ∈ [ ℓ ], k ∈ [nj ]

}
→ [ s ] such

that
aρ(j,k) = L − x

(ℓ)
j (k) + 2.

From these recursion relations we have

x
(ℓ)
j (k) = xj(k) + Pj

(
2βj(k) + 2k − 1

)
+

ℓ∑

i=j+1

2Piα
(i)
j (k) − k + 1

= xj(k) + 2






Pj

(
βj(k) + (k − 1)

)
+

ℓ∑

i=j+1

Piα
(i)
j (k)






+ Pj − k + 1.

Since the position of the kth Pj-soliton is aρ(j,k), Wρ(j,k) = Pj and the set
of amplitudes of the solitons on the right of the kth Pj-soliton is nothing but
{
Wh

}ρ(j,k)−1

h=1
. From the definition of α

(i)
j (k), βj(k),

α
(i)
j (k) = ♯

{

W ∈
{
Wh

}ρ(j,k)−1

h=1

∣
∣
∣W = Pi

}

,

βj(k) = ♯
{

W ∈
{
Wh

}ρ(j,k)−1

h=1

∣
∣
∣W > Pj

}

and
♯
{

W ∈
{
Wh

}ρ(j,k)−1

h=1

∣
∣
∣W = Pj

}

= k − 1.

Thus we obtain

x
(ℓ)
j (k) = xj(k) +

ρ(j,k)−1
∑

h=1

2 min
{
Wρ(j,k), Wh

}
+ Wρ(j,k) − k + 1.

11



Therefore we find a concrete expression of aρ(j,k), and (8) is immediately ob-
tained from (2) and (3). 2

From Lemma 2 and Proposition 6, we immediately obtain the following
theorem:

Theorem 1
Let X be the set defined in (6) we have

CY (d1, d2, . . . , dN−1) =
1

L|X |

∑

X∈X

L∑

n=1

un(X)
N−1∏

i=1

un+di
(X),

for un(X) ≡ u0
n(X) as given in (8).

4 Concluding remarks

In this article, we investigated correlation functions for the PBBS and obtained
explicit forms for 1-point and 2-point functions at short distances. We also
give expressions in terms of ultradiscrete theta functions for general N -point
functions. Investigating their asymptotic properties and to clarify the relation
to correlation functions for quantum integrable systems are problems that will
be addressed in the future.

Finally we should comments on the time averages of quantities in the PBBS.
The time average:

Cf (d1, d2, . . . , dN−1) =
1

L|Tf |

Tf∑

t=1

L∑

n=1

(T t
Lf)(n)

N−1∏

j=1

(T t
Lf)(n + dj)

where Tf is the fundamental cycle of f ∈ ΩL depends not only on the con-
served quantities of the state but, in general, also on the initial state f it-
self. For example, the conserved quantities of the states f1 = 0100100 and
f2 = 0101000 are the same, but Cf1(3) = 1

7 and Cf2 (3) = 0. Hence, in general,
Cf (d1, d2, . . . , dN−1) 6= CY (d1, d2, . . . , dN−1) even for f ∈ ΩY . Note that, for
the 1-point function Cf (∅), we can easily show that

∀f ∈ ΩY , Cf (∅) = CY (∅) =
M

L
.
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A Example of values for the correlation function

From Theorem 1, we obtain the following examples.

(a) L = 12; P1 = 3, n1 = 1; P2 = 1, n2 = 2 :

CY (∅) =
5

12
, CY (1) =

1

6
, CY (2) =

13

84
, CY (3) =

19

126
, CY (1, 2) =

5

84
;
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(b) L = 14; P1 = 2, n1 = 2; P2 = 1, n2 = 2 :

CY (∅) =
3

7
, CY (1) =

1

7
, CY (2) =

5

49
, CY (3) =

82

441
, CY (1, 2) = 0;

(c) L = 14; P1 = 3, n1 = 1; P2 = 1, n2 = 3 :

CY (∅) =
3

7
, CY (1) =

1

7
, CY (2) =

5

28
, CY (3) =

69

392
, CY (1, 2) =

5

112
;

(d) L = 14; P1 = 3, n1 = 1; P2 = 2, n2 = 1; P2 = 1, n2 = 1 :

CY (∅) =
3

7
, CY (1) =

3

14
, CY (2) =

3

28
, CY (3) =

13

112
, CY (1, 2) =

1

16
.
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