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eAbstra
tWe present results demonstrating the o

urren
e of 
hanges in the
olle
tive dynami
s of a Hamiltonian system whi
h des
ribes a 
on�nedmi
roplasma 
hara
terized by long�range Coulomb intera
tions. In itslower energy regime, we �rst dete
t ma
ros
opi
ally, the transition froma �
rystalline�like� to a �liquid�like� behavior, whi
h we 
all the �meltingtransition�. We then pro
eed to study this transition using a mi
ros
opi

haos indi
ator 
alled the Smaller Alignment Index (SALI), whi
h utilizestwo deviation ve
tors in the tangent dynami
s of the �ow and is nearly
onstant for ordered (quasi�periodi
) orbits, while it de
ays exponentiallyto zero for 
haoti
 orbits as exp(−(λ1 − λ2)t), where λ1 > λ2 > 0 arethe two largest Lyapunov exponents. During the �melting phase�, SALIexhibits a pe
uliar, stair�like de
ay to zero, reminis
ent of �sti
ky� orbitsof Hamiltonian systems near the boundaries of resonan
e islands. Thisalerts us to the importan
e of the ∆λ = λ1−λ2 variations in that regimeand helps us identify the energy range over whi
h �melting� o

urs as amulti�stage di�usion pro
ess through weakly 
haoti
 layers in the phasespa
e of the mi
roplasma. Additional eviden
e supporting further theabove �ndings is given by examining the GALIk indi
es, whi
h generalizeSALI (=GALI2) to the 
ase of k > 2 deviation ve
tors and depend on the
omplete spe
trum of Lyapunov exponents of the tangent �ow about thereferen
e orbit.1 Introdu
tionIt has long been established that mi
ros
opi
 deterministi
 
haos provides ane�
ient me
hanism for the mixing of orbits in the phase�spa
e of dynami
alsystems, leading to the de
ay of statisti
al 
orrelations as time evolves. Thus,
haoti
 dynami
s 
an magnify small s
ale �u
tuations and justify the existen
e1

http://arxiv.org/abs/0911.4353v2


of ma
ros
opi
 variables like entropy and temperature, whi
h are of 
entralimportan
e in an analysis based on non�equilibrium statisti
al me
hani
s [21℄.The main purpose of the work presented here is to study the �melting tran-sition� in a mi
roplasma model, using standard methods, as well as 
ertainre
ently�developed te
hniques for 
haos dete
tion, su
h as the Smaller Align-ment Index (SALI) [35, 37, 38℄ and its extension to the so�
alled GeneralizedAlignment Index (GALI) [39, 36, 1℄. This latter approa
h is based on geo-metri
al aspe
ts of the mi
ros
opi
 dynami
s and has signi�
ant 
omputationaladvantages over more 
lassi
al indi
ators based either on lo
al dynami
s, su
has the Lyapunov exponents, or statisti
al properties, su
h as the mean temper-ature or the Kolmogorov�Sinai entropy. In fa
t, the use of these novel indi
esoften 
onstitutes an improvement of several orders of magnitude in CPU anddynami
al time for the identi�
ation of the 
haoti
 or ordered nature of singleorbits [11, 35, 37, 38, 36, 3, 2, 1℄.The utility of SALI (or GALI) methods in dete
ting dynami
al regime
hanges in few�parti
le Hamiltonian systems [36℄ is due to their sensitivity intra
ing out the geometri
al properties of the tangent dynami
s of the �ow.Thus, they provide a

urate information about regime 
hanges when importantparameters of the system are varied. For example, the existen
e of �sti
ky�regions and the o

urren
e of slow di�usion in weakly 
haoti
 domains is de-te
table and the distin
tion between order and strongly 
haoti
 motion is easilymade by these methods [36℄. In the 
ase of fully developed 
haoti
 motion, SALIis parti
ularly e�
ient, sin
e it de
ays exponentially as exp(−(λ1 −λ2)t) where
λ1 > λ2 > 0 are the two largest Lyapunov exponents [38℄, while for orderedorbits SALI ∝ 
onst.> 0.The system we 
onsider here 
onsists of N intera
ting parti
les des
ribed bya Hamiltonian fun
tion of the form

H(~q, ~p) = K(~p) + V (~q)where the kineti
 energy part K(~p) = 1
2

∑N

i=1 p2
i is quadrati
 in the general-ized momenta ~p = (p1, . . . , pN ) and the potential energy V (~q) is a fun
tion ofits generalized position 
oordinates ~q = (q1, . . . , qN ). In the 
ase of 
on�nedsystems, one takes V as the sum of two terms: V (~q) = Vtr(~q) + Vin(~q), where

Vtr(~q) represents the potential of the trap (being a smooth positive fun
tion),while Vin(~q) a

ounts for the intera
tions amongst the N parti
les. The fa
tthat N is a �nite number 
lassi�es the system as �small�, in 
ontrast to a �large�thermodynami
 system (where one lets N and the volume V tend to in�nity insu
h a way that N/V is a �nite real 
onstant) [24, 23℄.Small, �nite Hamiltonian systems in 
ontrast to large, in�nite, systems donot exhibit phase transitions in the standard sense. The 
hara
teristi
 dis
onti-nuities or singularities in thermodynami
 fun
tions or their derivatives, whi
h isthe signature of a phase transition in large systems would now appear as steepbut 
ontinuous 
hanges in their thermodynami
 fun
tions or their derivatives[24℄.Phase transitions in small systems, have also been asso
iated, quite re
ently,with 
ertain topology 
hanges in 
on�guration spa
e [17, 16℄. These devel-opments are stemming from earlier work on Hamiltonian systems exhibiting
haoti
 instabilities asso
iated with singular behaviour of their 
on�guration�spa
e 
urvature �u
tuations at their phase transition point [14, 15, 29℄. Fur-thermore, investigations of the temperature dependen
e of the largest Lyapunov2



exponent and other observables related to the �topologi
al hypothesis� and theissue of phase transitions in many�degrees of freedom systems is thoroughlypresented in [16℄ and referen
es therein.In this paper, our model Hamiltonian system des
ribes a mi
roplasma 
har-a
terized by long range (non shielded) Coulomb intera
tions des
ribed by thepotential Vin(~q). The mi
roplasma is 
on�ned in a Penning trap given by thepotential Vtr(~q) and our aim is to study the motion of its ions as the energyin
reases. The system evolves, in general, in 3 spatial dimensions and 
ontains arelatively small number of ions for whi
h the tra
king of individual traje
toriesis numeri
ally as well as experimentally feasible [34, 26, 10, 13, 33, 25℄.It is important to note that Lyapunov exponents have already been usedto investigate spatially extended plasmas [5, 4, 42℄ as well as 1�dimensionalwave�parti
le plasma models [20, 27℄. Moreover, as Gaspard [22℄ has demon-strated, for a realisti
 Hamiltonian model in 3 spatial dimensions 
ontaininga relatively small number of ions, the long range nature of the Coulomb in-tera
tion Vin(~q) makes the maximum Lyapunov exponents behave di�erentlyin mi
roplasmas than in many�parti
le systems with short�range intera
tions,su
h as a hard�ball �uid or systems with shielded ioni
 intera
tions (Yukawapotentials). A detailed analysis of the di�eren
es between shielded (Yukawa�like) and unshielded Coulomb potentials 
an be found in the book by Baus andTejero [6℄. Indeed, in mi
roplasmas 
omposed of more than a few dozen of ions,the behavior of the maximum Lyapunov exponent, espe
ially in the �gas phase�,was explained following purely statisti
al me
hani
s arguments [22℄.The plan of the paper is the following: The Hamiltonian representation ofour system and a summary of previous work are presented in Se
. 2. Someba
kground material related to the SALI method and the spe
trum of Lya-punov exponents are given in Se
. 3. The 
al
ulation of Lyapunov exponentsspe
tra for our system is presented in Se
. 4, while the dete
tion of the �meltingtransition� as a passage from weak to strong 
haos is demonstrated in Se
. 5.Finally, our 
on
lusions are presented in Se
. 6.2 Des
ription of the model and summary of pre-vious workLet us 
onsider a mi
roplasma of N ions of equal mass m = 1 and ele
tri
 
harge
q in a Penning trap with ele
trostati
 potential

Φ(x, y, z) = V0
2z2 − x2 − y2

r2
0 + 2z2

0

(1)and 
onstant magneti
 �eld along the z dire
tion with a ve
tor potential of theform
A(x, y, z) =

1

2
(−By, Bx, 0). (2)Then, the Hamiltonian of the full system is given by

H =

N
∑

i=1

{

1

2m
(pi − qA(ri))

2) + qΦ(ri)

}

+
∑

1≤i<j≤N

q2

4πǫ0rij

(3)3



where ri is the position of the ith ion, rij is the Eu
lidean distan
e between the
ith and jth ions and ǫ0 is the va
uum permittivity. In the Penning trap, theions are subje
ted to a harmoni
 
on�nement in the z dire
tion with frequen
y

ωz =

√

4qV0

m(r2
0 + 2z2

0)
(4)while in the perpendi
ular dire
tion (due to the 
y
lotron motion) they rotatewith frequen
y ωc = qB/m. Thus, in a frame rotating around the z axis at theLarmor frequen
y ωL = ωc/2, the ions feel a harmoni
 
on�nement of frequen
y

ωx = ωy =

√

ω2
c

4 − ω2
z

2 in the dire
tion perpendi
ular to the magneti
 �eld. Inthe res
aled time τ = ωct, position R = r/a and energy H = H
mω2

c
a2 with

a =
(

q2

4πǫ0mω2
c

)
1

3 , the Hamiltonian (3) des
ribing the motion takes the form
H =

N
∑

i=1

[1

2
P2

i

]

+
N

∑

i=1

[(1

8
− γ2

4

)

(X2
i + Y 2

i ) +
γ2

2
Z2

i

]

+
∑

i<j

1

Rij

= E (5)whereE is the total energy of the system, Ri = (Xi, Yi, Zi) andPi = (PXi
, PYi

, PZi
)are the positions and 
anoni
ally 
onjugate momenta respe
tively, Rij is the Eu-
lidean distan
e between di�erent ions i, j given by

Rij =
√

(Xi − Xj)2 + (Yi − Yj)2 + (Zi − Zj)2 (6)and γ = ωz/ωc.The ions are trapped in bounded motion under the 
ondition that
0 < |γ| <

1√
2
. (7)The trap is 
alled prolate if 0 < |γ| < 1√

6
, isotropi
 if |γ| = 1√

6
and oblate if 1√

6
<

|γ| < 1√
2
. So, the motion is quasi 1�dimensional in the limit γ → 0 and quasi2�dimensional in the limit γ → 1/

√
2. The Z dire
tion is a symmetry axis andhen
e the Z 
omponent of the angular momentum LZ =

∑N

i=1 XiPYi
− YiPXiis 
onserved, being thus, a se
ond integral of the motion. We suppose from nowon that the angular momentum is equal to zero (i.e. LZ = 0) and that themotion is studied in the Larmor rotating frame.In [22℄, it was shown that the motion of the ions governed by Hamiltonian(5) is generally very sensitive to initial 
onditions and has at least one posi-tive maximum Lyapunov exponent, while a �rst study of its dependen
e on theenergy, number of ions and trap geometry was also presented. At low kineti
energies, where the mi
roplasma forms an ion 
rystal, 
haos is 
onsiderablyredu
ed, sin
e the motion is quasi�harmoni
 around stable equilibrium 
on�g-urations. On the other hand, at high temperatures (or kineti
 energies), themaximum Lyapunov exponent de
reases, as Coulomb intera
tions be
ome neg-ligible and the mi
roplasma forms a thermal 
loud of nearly independent ionsmoving throughout the full extent of the harmoni
 potential of the trap. Fi-nally, for intermediate values of the energy, there is a regime of 
haoti
 behaviorwhi
h be
omes wider as the number of ions in
reases. It is in this regime that4



the maximum Lyapunov exponent attains a peak, whose value in
reases as afun
tion of the number of ions.A 
ru
ial aspe
t related to our work is that of the geometry of the trap.As has been demonstrated in [22℄ for prolate traps the maximum Lyapunovexponent (and therefore the K-S entropy of the system) show a distin
tivelysmoother in
rease in 
omparison to the oblate traps in the energy values intervalfrom Emin (its minimum) to E0 (its maximum). The transition of interest forour analysis is taking pla
e within a small interval of energies at the beginning,i.e. just after Emin. Therefore, the slower the in
rease of the fun
tion E = E(H)the higher the resolution required and the more a

urate (and time�
onsuming)the numeri
al 
omputation needed. Of 
ourse, if one argues in analogy to thestandard phase transition theory, the dimensionality of the problem makes iteasier to dete
t transitions in two or three spatial dimensions. But systems withlong range intera
tions may still exhibit a transition even in one dimension.This justi�es the 
hoi
e of small γ adopted in the present paper as being bothphysi
ally 
hallenging and numeri
ally tra
table.2.1 Crossover through di�erent dynami
al regimesAt zero temperature, the system freezes at a 
rystalline state (see [22℄ and inparti
ular refs. [20℄ � [25℄ therein) reminis
ent of Wigner 
rystals [44℄. In that
ase, the ion 
rystal is 
omposed of several 
on
entri
 rings for the 
ase of anoblate (quasi 2�dimensional) trap or a single line of ions in the 
ase of a prolate(quasi 1�dimensional) trap. As temperature rises slightly above zero, the ionsexe
ute quasi�periodi
 motion about stable periodi
 orbits moving around theirequilibrium position. This is the regime where stable normal modes of vibrationplay an important role, as expe
ted.At slightly higher temperatures, the system �bifur
ates� from the regimeof quasi�harmoni
 motion to one where it exe
utes quasiperiodi
 motion inthe form of a 
olle
tive soft-mode. We use the term �soft-mode� here sin
ethe dynami
s is similar to what would be expe
ted under a 
olle
tive for
e onthe parti
les, whi
h diminishes as the energy in
reases. The frequen
ies of thenormal vibrational modes be
ome smaller and smaller and tend to zero at thetransition.As the energy 
ontinues to in
rease, these soft modes over
ome the energybarriers and set out to explore broader domains of phase spa
e. At even highertemperatures, their motion be
omes errati
 and the ion 
rystal �melts�, enteringa regime of strongly 
haoti
 motion in phase spa
e.As the temperature in
reases further, the ions form a thermal 
loud in whi
hthe mean Coulomb potential energy starts to be
ome negligible with respe
t tothe mean kineti
 energy and mean harmoni
 potential energy. It has been shownthat the maximum Lyapunov exponent λ1 rea
hes its peak value at energies wellabove the �melting phase�, while this transition is not manifested in the behaviorof the Lyapunov exponents as a fun
tion of the number of parti
les N or theenergy E.Finally, for energies beyond the peak value of the maximum Lyapunov ex-ponent, the motion is dominated by the kineti
 energy part and the systembe
omes amenable to a statisti
al me
hani
al treatment with 
onsiderable a
-
ura
y, in spite of the small number of parti
les present. Indeed, at su
h hightemperatures T , the spatial disorder of the mi
roplasma 
an be des
ribed in5



terms of its thermodynami
 entropy and its maximum Lyapunov exponent λ1expressed by the theoreti
al estimate [22℄
λ1 ∼

〈

N2

Rij

〉

1

2

∼ N
(lnT )

1

2

T
3

4

for T → ∞ (8)whi
h may be used to 
hara
terize the 
rossover to the regime of thermal 
loudmotion, albeit at a high 
omputational 
ost for the determination of λ1.
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Figure 1: Plot of typi
al orbits for N = 5 and γ = 0.07 (prolate quasi 1�dimensional geometry): (a) At E = 2 the motion is dominated by its stablenormal modes and �
rystalline� behavior is observed. (b) At E = 2.35 a tran-sition to 
haoti
 motion o

urs, where �melting� is expe
ted to take pla
e. (
)At E = 9 the onset of �thermal 
loud� behavior is evident.Furthermore, in [22℄, the maximum value of λ1 is numeri
ally observed toobey a power law with respe
t to the energy as well as the number of ions.Thus, one rea
hes the 
on
lusion that, for a prolate trap geometry (quasi 1�dimensional), the �melting transition� and its asso
iated mi
ros
opi
 dynami
albehavior should be dete
table at low energies and few number of ions (e.g. for
N = 5 and γ = 0.07).The di�erent 
hara
teristi
 kinds of motion in su
h a setting are depi
tedin Fig. 1. Panel (a) presents a typi
al behavior of the ions at energy E = 2,where the dynami
s is dominated by stable normal modes that 
orrespond to�
rystalline� behavior. At the slightly in
reased energy E = 2.35 of panel (b)we observe the o

urren
e of a transition from stable 
olle
tive (quasi�periodi
)motion to 
haoti
 behavior. Finally, in panel (
), the onset of a fully �thermal�
loud behavior is apparent at the energy E = 9. So, for the rest of the paperwe 
onsider the 
ase of N = 5 ions in the prolate trap geometry with γ = 0.07.6



Figure 2: Plot of the dependen
e of the temperature T (as in eq. (9), dimen-sionless s
ale) on the energy E for the mi
roplasma system (5) of N = 5 ionsin a prolate Penning trap (γ = 0.07). The error bars represent one standarddeviation from the time averaged temperature T . Clearly, the 
rossover fromordered to weakly 
haoti
 motion around E ∈ (2, 2.5) does not o

ur in a man-ner justifying the use of statisti
al me
hani
s 
onsiderations. In the inset, theratio of the standard deviation of the time averaged T to the time averagedtemperature T shows that they are 
omparable.The temperature, in dimensionless units,
T ∝ v2

rms =
〈

‖P‖2
〉

N
≡ 1

N

N
∑

i=1

‖Pi‖2 (9)(where ‖Pi‖ denotes the Eu
lidean norm of the ith ions' velo
ity Pi) averagedover the time t whi
h is a proportional quantity of the mean kineti
 energy ofthe ions is plotted in Fig. 2, as a fun
tion of the energy E for the mi
roplasma(5) with N = 5 ions in the prolate Penning trap with γ = 0.07. Evidently, themelting of the 
rystal here is not asso
iated with a sharp in
rease of T at some
riti
al energy, as would be expe
ted from a �rst order phase transition. Notealso in Fig. 2 that the �u
tuations of T (measured by its standard deviation)
annot provide a 
lear indi
ation of the 
rossover from a regime of stable os
il-lations, through �melting�, to strongly developed 
haoti
 motion. So, the useof statisti
al me
hani
s 
onsiderations must fo
us on the importan
e of large�u
tuations. Indeed, the inset of Fig. 2 shows that the �u
tuations of thetime averaged temperature T , in the 
rossover regime, are 
omparable with thevalues of the time averaged temperature itself.One 
an, therefore, say that there is no �ma
ros
opi
� methodology for de-te
ting dynami
al regime 
hanges in system (5) that might be useful to theo-rists or experimentalists. It, therefore, be
omes espe
ially important to adopt adi�erent approa
h and attempt to study dynami
al regime 
hanges in our mi-
roplasma system, by performing a detailed study of its mi
ros
opi
 dynami
s.To this end, we shall fo
us hereafter on the lower energy range of Hamilto-nian (5), where the transition from �
rystalline�like� to �liquid�like� 
olle
tive7



behavior takes pla
e. In the next se
tion, we review the methods used for thedete
tion of these dynami
al regimes, i.e. the Smaller Alignment Index (SALI)[35, 37, 38℄ and the spe
trum of Lyapunov exponents [7, 8℄ and 
ompare theinformation provided by these approa
hes.As we shall see, in the 
rossover regime, the SALI exhibits a rather intri
ate�stair�like� power law de
ay to zero, with di�erent Lyapunov exponents, rem-inis
ent of the �sti
kiness� behavior typi
ally observed in the neighborhood ofresonan
e islands of Hamiltonian systems [36℄. In our 
ase, this type of weakly
haoti
 dynami
s will turn out to 
hara
terize the energy range over whi
h thepassage from ordered to irregular dynami
s o

urs, through what we 
all the�melting transition�.3 Methods for distinguishing between order and
haos3.1 The Smaller Alignment Index (SALI)The SALI method was initially introdu
ed in [35℄ and has been applied su

ess-fully to distinguish between ordered and 
haoti
 dynami
s in maps of variousdimensions [12, 11℄, in Hamiltonian systems [37, 38℄, as well as in problems of 
e-lestial me
hani
s [40, 41℄, gala
ti
 dynami
s [28℄, �eld theory [19℄ and nonlinear1�dimensional latti
es [2, 3, 31℄.Following [35℄, one 
onsiders the 2N�dimensional phase spa
e of an arbitraryautonomous Hamiltonian system
H(~q, ~p) ≡ H(q1(t), . . . , qN (t), p1(t), . . . , pN (t)) = E (10)where ~q is the 
anoni
al position ve
tor, ~p is the 
orresponding 
anoni
al 
on-jugate momentum ve
tor and E is the total 
onstant energy. The time evo-lution of an orbit of Hamiltonian (10) asso
iated with an initial 
ondition

~x(t0) = (q1(t0), . . . , qN (t0), p1(t0), . . . , pN (t0)) at time t = t0 is de�ned as thesolution of Hamilton's equations of motion
dqi(t)

dt
=

∂H

∂pi(t)
,

dpi(t)

dt
= − ∂H

∂qi(t)
, i = 1, . . . , N (11)and is 
alled the orbit ~x(t) of eqs. (11) passing through ~x(t0).To de�ne the Smaller Alignment Index (SALI), one uses the variationalequations, whi
h represent the linearization of Hamilton's equations of motion(11) about a referen
e orbit ~x(t) of the system and are de�ned as

d~υi(t)

dt
= J (~x(t)) · ~υi(t), ∀i = 1, . . . , 2N (12)where J (~x(t)) is the Ja
obian of the right�hand side of eqs. (11) 
al
ulatedabout the orbit ~x(t). The ve
tors ~υi(t), ∀i = 1, . . . , 2N are known as deviationve
tors of the ~x(t). If we follow two of them, say ~υk(t) and ~υl(t), we 
an de�nethe Smaller Alignment Index (SALI) asSALI(t) ≡ min

{
∥

∥

∥

∥

~υk(t)

‖ ~υk(t)‖ − ~υl(t)

‖~υl(t)‖

∥

∥

∥

∥

,

∥

∥

∥

∥

~υk(t)

‖ ~υk(t)‖ +
~υl(t)

‖~υl(t)‖

∥

∥

∥

∥

} (13)8



where ‖ · ‖ denotes the usual Eu
lidean norm de�ned in R
2N .If ~x(t) is 
haoti
 then limt→∞ SALI(t) = min{0, 2} = 0 sin
e both deviationve
tors tend to align with the dire
tion of the maximum Lyapunov exponent as

t in
reases [38, 43℄. Furthermore, it has been shown that the time evolution ofthe SALI for 
haoti
 orbits tends to zero exponentially at a rate related to thedi�eren
e of the two largest Lyapunov exponents λ1 and λ2 as [38℄
SALI(t) ∝ e−(λ1−λ2)t. (14)On the other hand, if the orbit is ordered, SALI exhibits small os
illationsabout a 
onstant α ∈ (0,

√
2]. This is so, be
ause both deviation ve
tors tendto be
ome tangential to the torus on whi
h the orbit is evolving while remain-ing mutually linearly independent in time due the existen
e of lo
al or globalintegrals of motion [37℄.It follows that this sharply di�erent behavior of the SALI for ordered and
haoti
 orbits makes it a reliable and 
omputationally fast tool for distinguishingbetween order and 
haos in Hamiltonian systems of any number of degrees offreedom. The 
hoi
e of the initial deviation ve
tors is arbitrary and in generaldoes not a�e
t the method apart from some very spe
ial 
ases demonstratedtheoreti
ally and veri�ed numeri
ally in a number of previous works [35, 37, 38℄.3.2 The spe
trum of Lyapunov exponentsOne of the most standard and well�established means for extra
ting informationabout the nature of a given orbit of a dynami
al system is to 
al
ulate itsmaximum Lyapunov Chara
teristi
 Exponent (LCE) λ1. If λ1 > 0 the orbit is
hara
terized as 
haoti
. The theory of Lyapunov exponents was �rst appliedto 
hara
terize 
haoti
 orbits by Oselede
 [30℄, while the 
onne
tion betweenLyapunov exponents and exponential divergen
e of nearby orbits was given in[9, 32℄. Benettin et al. [7, 8℄ studied the problem of the 
omputation of allLCEs theoreti
ally and proposed in [8℄ an algorithm for their e�
ient numeri
alevaluation. In parti
ular, λ1 is 
omputed as the limit for t → ∞ of the quantity

L1(t) =
1

t
ln

‖ ~υ1(t)‖
‖ ~υ1(0)‖ , i.e. λ1 = lim

t→∞
L1(t) (15)where ~υ1(0), ~υ1(t) are deviation ve
tors from the orbit we want to 
hara
-terize, at times t = 0 and t > 0 respe
tively. Similarly, all other LCEs,

λ2,λ3, . . . , λ2N are 
omputed as limits for t → ∞ of analogous quantities,
L2(t),L3(t), . . . , L2N(t). In the present paper, we shall 
ompute the values ofall Lyapunov exponents (
alled the Lyapunov spe
trum) using the algorithmproposed by Benettin et al. [7, 8℄.Let us also re
all that the Lyapunov spe
trum of an N degree of freedomHamiltonian system, i.e. {λi}2N

i=1, exhibits a basi
 symmetry with N − 1 of itsmembers having the opposite sign of the other N − 1 and two exponents, i.e.
λN , λN+1, being equal to 0. So, the dis
ussion from here on 
on
erns only thepositive half of the Lyapunov spe
trum, {λi}N−1

i=1 where λi > 0.The 
al
ulation of the Lyapunov spe
trum is 
omputationally demanding,as its 
onvergen
e often requires the integration of traje
tories over very longtime intervals. This 
onvergen
e depends on the inverse of the largest Lyapunov9



exponent or Lyapunov time. So, the 
loser λ1 is to zero the longer the integrationis needed to obtain reliable estimates for the full spe
trum.On the other hand, of parti
ular importan
e to statisti
al me
hani
s is the
onne
tion of the sum of all positive Lyapunov exponents (an index of 
haosbased on mi
ros
opi
 quantities) to the Kolmogorov�Sinai entropy HKS (a mea-sure of disorder of a ma
ros
opi
 nature), given by Pesin's 
elebrated theorem[32℄
HKS =

∑

λi>0

λi (16)
in the 
ase of zero es
ape rates. This 
onne
tion has opened new dire
tions inthe appli
ations of thermodynami
s, using the underlying mi
ros
opi
 dynami
sof 
haoti
 orbits (for a review see [18, 21℄).
4 Cal
ulation of Lyapunov spe
traFor the purposes of simplifying our analysis, let us 
onsider the 
ase of few ions,e.g. N = 5 and γ = 0.07 (i.e. a small system in a prolate trap). As mentionedabove, in this setting, it is easier to dete
t dynami
al regime 
hanges, su
h asseen in Fig. 3, where we have plotted the Kolmogorov�Sinai entropy HKS (seeeq. (16)) as a fun
tion of the energy E of the mi
roplasma Hamiltonian (5).Both HKS and Lyapunov exponents grow less steeply than in the oblate 
ase(quasi 2�dimensional trap) for the region of small energies, as already pointedout in [22℄.This slow in
rease of HKS and λi's exhibits an in�e
tion point at low energiesas is evident in the inset of Fig. 3. We remark that this in�e
tion point o

ursjust above the energy threshold that permits ions to move around their �xedpoints, while beyond this energy we observe the transition from weak to strong
haoti
 behavior. Note that HKS as well as the Lyapunov exponents exhibit amaximum around E ≈ 6.2. 10
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Figure 3: The Kolmogorov�Sinai entropy HKS , for γ = 0.07 and N = 5, 
om-puted by the eq. (16) (dashed highest line) and the Lyapunov exponents (bla
ksolid lines) are plotted from the maximum down to the lowest one (15th) as afun
tion of the energy. Note that, as shown in the inset, their maximum o

ursat energies 
lose to E ≈ 6.2, whi
h is mu
h higher than the regime where the�melting transition� takes pla
e (see text).
As a �rst attempt to derive useful information from the spe
trum of Lya-punov exponents (see Fig. 3), in the energy range where the �melting transition�is expe
ted to o

ur, we 
al
ulate the logarithms of the ratios of su

essive pair-wise di�eren
es of Lyapunov exponents

Pi(E) =
λi − λi+1

λi+1 − λi+2
, i = 1, . . . , N − 2, λi ≡ λi(E) (17)as a fun
tion of the energy (see Fig. 4). The 
al
ulation of all λi's was 
arriedout for ea
h traje
tory up to a �nal integration time tf = 106, ensuring that arelative 
onvergen
e to 4 or 5 signi�
ant de
imal digits has been a
hieved.Note in Fig. 4(a) that the ratios (17) �u
tuate wildly initially and only for

E ≥ 2.3 do they start to settle down to small os
illations about their ultimatevalues, whi
h, at least for the �rst 2 or 3 ratios appear to be quite distin
t.This suggests that it is within an interval E0 . E < 2.3 where E0 ≃ 1.89 thatwe should expe
t to �nd the �melting transition�, where the positive Lyapunovexponents are very small, far from the values they attain in the regime of strong
haos (see inset of Fig. 3 for E ≥ 2.3).11
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Figure 4: (a) Plot of the logarithms of the ratios Pi(E), i = 1, . . . , 9 (seeeq. (17)), for γ = 0.07 and N = 5, as a fun
tion of the energy E. Note the
hara
teristi
 gaps in the spe
trum appearing for large values of E. (b): Sameas in panel (a) for i = 1, . . . , 4 and small values of E, with the 
hara
teristi
gaps in the spe
trum be
oming errati
 in the regime of weak 
haos, settlingdown to more 
learly de�ned values around E ≥ 2.3.Undoubtedly, although the information 
on
erning the existen
e of two dis-tin
t dynami
al regimes at small energies is somehow 
ontained in the plots ofFig. 4, expressions (17) still fail to provide a pre
ise pi
ture of this 
hange.This is perhaps due to ina

ura
ies of the inherent averaging pro
ess used inthe 
al
ulation of the Pi(E) at low energies, where the Lyapunov exponents arevery small. We, therefore, pro
eed to study more 
arefully the underlying lo
almi
ros
opi
 dynami
s by employing the SALI method we introdu
ed previously.5 Weak 
haos dete
tionIn this se
tion, we apply the pro
edure outlined in Se
. 3.1 to analyze mi
ro-s
opi
ally traje
tories of the few�parti
le (i.e. N = 5 ions) mi
roplasma systemdes
ribed by the Hamiltonian (5) in the prolate trap with γ = 0.07. We arethus able to identify at low energies a regime of weak 
haos, through whi
h thesystem passes from a �
rystalline�like� type of ordered motion to the strongly
haoti
 behavior of 
olle
tive soft modes. This is a
hieved by dete
ting quali-tative 
hanges in the SALI behavior for traje
tories within the energy intervalwhere the transition o

urs.Fig. 5 shows the behavior of the SALI as a fun
tion of time t at sele
tednumber of energies. These plots represent three distin
t 
lasses of long timebehaviors for typi
al traje
tories within the interval 1.9 . E ≤ 3.5. We havealso 
omputed, for the same sample of energies, the 
orresponding Lyapunovspe
tra for su�
iently long integration times (typi
ally tf = 106) to make surethat the Lyapunov exponents have 
onverged to their limiting values up to adesired a

ura
y (typi
ally to 4 or 5 signi�
ant de
imal digits).Fig. 5(a) represents the SALI evolution for a representative traje
tory ofsystem (5) at E = 1.9. We see that it �u
tuates around non�zero positive12



values up to an integration time of order tf = 106, indi
ating that the motion(at least up to that time) is ordered and quasi-periodi
. By 
ontrast, in Fig.5(b), we follow an orbit with energy E = 3.5 and �nd that SALI de
ays to zeroexponentially fast, driven by the �rst gap in the Lyapunov spe
trum of Fig. 4,a

ording to the formula e−(λ1−λ2)t [38℄. In this 
ase, the �rst two Lyapunovexponents of the traje
tory, λ1 ≈ 0.03112 and λ2 ≈ 0.01746, are large enoughand distin
t, implying strongly 
haoti
 motion.Finally, let us turn our attention to the intermediate and more interesting
ase where SALI exhibits a stair�like de
ay to zero as a fun
tion of time, atenergies 2 < E < 2.3 (see Fig. 5(
)). Choosing, for example, a traje
tory with
E = 2.033 we observe that SALI di�ers signi�
antly 
ompared to what is shownin Fig. 5(a) or 5(b). At �rst, one might think that, as in Fig. 5(a), the orbitis quasi-periodi
, sin
e SALI �sti
ks� to non�zero values for a fairly long timeinterval (t . 4.4×105). Then, its behavior 
hanges qualitatively, showing a nearexponential de
ay to zero ∝ e−(λ1−λ2)t. This suggests that, even though theLyapunov exponents (and their di�eren
es) are very small, eq. (14) still holds,as in the strongly 
haoti
 domains of phase spa
e [38℄.

Figure 5: Plot of the evolution of SALI as a fun
tion of time t for N = 5,
γ = 0.07 and 5 typi
al energies: (a) E = 1.9 where the motion is ordered. (b)
E = 3.5 (strong 
haoti
 behavior) where we also plot the theoreti
al predi
tionSALI(t) ∝ e−(λ1−λ2)t for 
omparison. (
) E = 2.033, E = 2.05 and E =
2.283, plotting also the 
orresponding theoreti
al predi
tions. Note that allthree verti
al axes are logarithmi
. 13



If we slightly in
rease the energy, however, to E = 2.05, SALI displays anintermediate and rather intri
ate behavior, following a stair�like de
ay to zero,shown by the middle 
urve in Fig. 5(
). Here, the exponential law (14) doesnot explain the SALI de
ay to zero. It appears that the motion lies within aweakly 
haoti
 domain and �sti
ks� temporarily to islands of regular motion,exe
uting a multi�stage di�usion pro
ess [36℄. Finally, by in
reasing the energyto E = 2.283, we observe that SALI de
ays to zero exponentially fast, following
losely the theoreti
al predi
tion e−(λ1−λ2)t, with λ1 ≈ 0.00166 and λ2 ≈ 0.0007.These results imply that the 
orresponding traje
tory is fully 
haoti
 and thesystem has �melted�, passing to a regime with strongly mixing properties.We now examine more 
losely this step�wise de
ay of the SALI, observedin Fig. 5(
), over a range of energies spanning the melting transition. To thisend, we start with our mi
roplasma in the form of a Wigner 
rystal, at E0 andpro
eed to the onset of thermal 
loud formation, in
reasing the energy by stepsof ∆E = 0.05 up to Emax = 6.2.
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Figure 6: Plot of the quantity Q = ∆λ
K
, for γ = 0.07 and N = 5, as a fun
tionof the energy E ∈ [E0, Emax] where ∆λ is the di�eren
e of the two largest Lya-punov exponents and K is the slope 
al
ulated by linear regression performedon the log(SALI(t)) vs. t 
urves. We also plot the line Q = 1 to indi
ate theenergy range where ∆λ = λ1 − λ2 ≈ K and eq. (14) are satis�ed.One way to quantify the departure of the SALI from the exponential de
aylaw (14) (see Fig. 5(
)) is to 
al
ulate for ea
h energy in the interval [E0, Emax]the quantity

Q =
∆λ

K
(18)de�ned as the ratio of the di�eren
e between the two largest Lyapunov exponents

∆λ = λ1 − λ2 and K, the linear regression estimate of this di�eren
e, obtainedfrom semi�logarithmi
 plots of SALI, like those depi
ted in Fig. 5(b) and (
).The result is shown in Fig. 6. As expe
ted, for the strongly 
haoti
 
ases where
K ≈ ∆λ, we obtain values of Q near 1 with 
learly negative log(SALI) slopes.The interesting part of Fig. 6, however, is observed in the energy interval
2.0 < E < 2.5 where K be
omes one order of magnitude smaller than ∆λ.14



It is in this regime that we observe the �melting transition� for our system.The divergen
e of SALI from its theoreti
al estimate of eq. (14) signi�es thepresen
e of other 
olle
tive modes of motion. This motion is organized aroundislands of stability, suggesting a 
ertain type of �sti
kiness� around di�erenttori at su

essive time intervals. During these time intervals SALI de
ays in astep�like manner by di�erent power laws.

In fa
t, we 
an provide more eviden
e to support the above interpretation ofthe dynami
s in the �melting phase�, using a re
ent generalization of the SALI,
alled the Generalized Alignment Indi
es (GALI) [39℄. These indi
es representthe volumes of a parallelepiped, 
alled GALIk, formed by k ≥ 2 unit deviationve
tors, whi
h (a) for ordered motion, os
illate about positive 
onstants as longas k ≤ d (d being the dimension of the torus) and de
ay following power lawsfor k > d, while (b) for 
haoti
 orbits, they all vanish exponentially with expo-nents that be
ome more negative as k in
reases and depend on more Lyapunovexponents [39, 36℄. In pra
tise, sin
e the 
omputation of the GALI requires the
al
ulation of a fairly big number of large determinants at every time step, wehave adopted an alternative way of evaluating it whi
h is signi�
antly faster inCPU time, the so 
alled Linear Dependen
e Index (LDI) [1℄.

Thus, in Fig. 7, we use this approa
h to 
ompute the GALIk, k = 2, . . . , 10and �nd that they demonstrate the existen
e of an (at least 6�dimensional) torusfor E = 1.9 [36℄, while they show a step�wise de
rease for E = 2, whi
h 
ontinuesto hold up to E . 2.283, as predi
ted by the SALI (= GALI2) 
al
ulations(
ompare Fig. 5(a), (
) with Fig. 7(a) and (b)). Of 
ourse, as the energyin
reases, the (weakly) 
haoti
 nature of the orbits be
omes evident at earliertimes (e.g. for E = 2 we have t ≈ 3× 106 and for E = 2.283 we get t ≈ 6× 104for the LDI (or GALI) to be
ome ≃ 10−11) as we see in Fig. 7(b) and (
).15



Figure 7: Plot of the LDIk (=GALIk), k = 2, . . . , 10 as a fun
tion of time t forthe mi
roplasma system (5) of N = 5 ions in a prolate trap (γ = 0.07) for 3typi
al energies. (a) LDI2�LDI10 for the energy E = 1.9. (b) Same as in panel(a) for the slightly bigger energy E = 2. (
) Same as in panel (a) for the biggerenergy E = 2.283. Note that all axes are logarithmi
.Thus, the above results suggest that the behavior of the SALI during dynam-i
al regime 
hanges is espe
ially useful, as it alerts us to examine quantities like
Q (see eq. (18)), related to variations in the di�eren
es of Lyapunov exponents.Su
h quantities indeed furnish important information, not readily available byother more standard mi
ros
opi
 
haoti
 indi
ators or by related ma
ros
opi
entropi
 quantities.6 Con
lusionsIn this paper, we have reported results demonstrating the o

urren
e of dynam-i
al regime 
hanges in a Hamiltonian system des
ribing a mi
roplasma 
on�nedin a prolate quasi 1�dimensional 
on�guration and 
hara
terized by long�rangeCoulomb intera
tions. More spe
i�
ally, in the lower energy regime, we ma
ro-16



s
opi
ally dete
ted the transition from �
rystalline�like� to �liquid�like� behav-ior, through what we 
all the �melting phase�. As expe
ted, well beyond thisphase, the mi
roplasma exhibits strong 
haoti
 behavior that may be des
ribedby the ma
ros
opi
 variables of statisti
al me
hani
s. The question, therefore,is how 
an one determine the dynami
al nature and identify the energy rangeof this �melting transition� from ordered to strongly 
haoti
 behavior.To this end, we �rst showed that the �melting� of our quasi 1�dimensional
rystal (
omposed of few ions 
on�ned in a prolate trap) is not asso
iated witha sharp in
rease of the temperature at some 
riti
al energy, as might have beenexpe
ted. Furthermore, the positive Lyapunov exponents (and the Kolmogorov�Sinai entropy expressed by their sum) attain their highest values at energiesmu
h higher than the regime where the mi
roplasma �melts�. Thus, it appearsthat there is no 
lear �ma
ros
opi
� methodology for identifying and studyingthis �melting� pro
ess in detail.Next, we argued that even though information about dynami
al regime
hanges must be 
ontained in the Lyapunov exponents, Lyapunov spe
tra bythemselves still fail to provide, a more pre
ise pi
ture of this 
hange. Indeed,while the ratios of the larger of them show strong �u
tuations at low energies,these require further analysis before they 
an reveal, with any pre
ision, theenergies over whi
h the �melting transition� o

urs.For these reasons, we found it useful to employ a more a

urate tool, 
alledthe SALI method, to study in more detail the lo
al mi
ros
opi
 dynami
s of themi
roplasma system. In this way, we dis
overed an energy range of weak 
haos,where the positive Lyapunov exponents are very small and SALI exhibits a stair�like de
ay to zero with varying de
ay rates. As SALI(t) ∝ e−(λ1−λ2)t in 
haoti
domains, this inspired us to look more 
losely at the statisti
al �u
tuationsof the di�eren
es of the two largest Lyapunov exponents ∆λ = λ1 − λ2 inthat regime. We, thus, observed that these di�eren
es exhibit their largest�u
tuations over a de�nite energy interval, where �melting� o

urs in a wayreminis
ent of �sti
ky� orbits, exe
uting a multi�stage di�usion pro
ess near theboundaries of resonan
e islands in the phase spa
e of Hamiltonian systems. Theabove results were also supported by the use of an extended set of indi
es whi
hgeneralize SALI to the 
ase of more than 2 deviation ve
tors.Finally, we remark that it is also the rapid 
onvergen
e of these indi
es,whi
h turns them into e�
ient diagnosti
 tools that may be used to repla
edemanding mole
ular simulations in identifying weakly 
haoti
 regimes in multi�parti
le systems. As we intend to show in a future publi
ation, these indi
es
an provide a viable alternative to the notoriously time 
onsuming simulationsrequired to study the presen
e of weak 
haos and slow di�usive e�e
ts in thedynami
s of metastable states.7 A
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