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Wigner functions of thermo number state, photon subtracted and added

thermo vacuum state at finite temperature

Li-yun Hu and Hong-yi Fan

Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China

Based on Takahashi-Umezawa thermo field dynamics and the order-invariance of Weyl ordered
operators under similar transformations, we present a new approach to deriving the exact Wigner
functions of thermo number state, photon subtracted and added thermo vacuum state. We find that
these Wigner functions are related to the Gaussian-Laguerre type functions of temperature, whose
statistical properties are then analysed.

I. INTRODUCTION

In recent years photon subtracted and added quantum states have been paid much attention
because these fields exhibit an abundant of nonclassical properties and may give access to a complete
engineering of quantum states and to fundamental quantum phenomena [1-8]. However, all these
discussions are restricted to the case at zero point temperature. In fact, most systems are not
isolated, but are immersed in a “thermal reservoir”, excitation and de-excitation processes of a
system are influenced by its energy exchange with reservoirs. In this work we study field properties
by photon subtracting and adding at finite temperature.

The Wigner function (WF) is a powerful tool to investigate the nonclassicality of optical fields
[9,10]. Its partial negativity implies the highly nonclassical properties of quantum states and is often
used to describe the decoherence of quantum states [7,8,11,12]. In one dimensional case, the WF of
a density matrix ρ is defined as Tr [ρ∆(α)] , where ∆(α) is the single-mode Wigner operator, whose
normally ordered form and Weyl ordered form are given as [13-15], respectively,

∆ (α) =
1

π
: e−(q−Q)2−(p−P )2 : =

1

π
: e−2(α−a)(α∗−a†) : , (1)

and

∆ (α) =
1

2

:

:
δ (α − a) δ

(

α∗ − a†
) :

:
, (2)

where α = (q + ip) /
√

2, a = (Q + iP ) /
√

2, [Q, P ] = i, ~ = 1; a and a† (
[

a, a†
]

= 1) are Bose
annihilation and creation operators, the symbols : : and :

:
:
: denote the normal ordering and the

Weyl ordering, respectively. Our main aim is to provide a new and direct approach to deriving
the WFs of quantum states at finite temperature by using the order-invariance of Weyl ordered
operators under similar transformations [13-15], which means

S
:

:
(◦ ◦ ◦) :

:
S−1 =

:

:
S (◦ ◦ ◦)S−1 :

:
, (3)

as if the “fence” :
:
:
:did not exist, so S can pass through it. We also appeal to the Takahashi-Umezawa

thermo field dynamics (TFD) [16-18], we consider it convenient to obtaining the explicit expressions
of WFs.

II. BRIEF REVIEW OF THERMO STATE

The main point of TFD lies in converting the evaluation of ensemble average at nonzero tem-
perature into the equivalent expectation value with a pure state. This worthwhile convenience is at
the expense of introducing a fictitious field (or a so-called tilde-conjugate field, denoted as operator

ã†) in the extending Hilbert space H̃ , thus the original optical field state |n〉 in the Hilbert space

H is accompanied by a tilde state |ñ〉 in H̃ . A similar rule holds for operators: every annihilation

operator a acting on H has an image ã acting on H̃ . At finite temperature T the thermal vacuum
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|0(β)〉 is defined by the requirement that the vacuum expectation value agrees with the statistical
average [16-18], i.e.

〈A〉 = Tr (ρcA) = 〈0(β)|A |0(β)〉 = Tr

(

Ae−βH
)

/Tr
(

e−βH
)

, (4)

where β = 1
kT

, k is the Boltzmann constant and H is the system’s Hamiltonian. For the ensemble

of free bosons with Hamiltonian H0 = ωa†a, the thermal vacuum state |0(β)〉 is

|0(β)〉 = sechθ exp
[

a†ã† tanh θ
]
∣

∣0, 0̃
〉

= S (θ)
∣

∣0, 0̃
〉

, (5)

where
∣

∣0, 0̃
〉

is annihilated by a and ã,
[

ã, ã†
]

= 1, and

S (θ) ≡ exp
[

θ
(

a†ã† − aã
)]

, (6)

is the thermo squeezing operator which transforms the zero-temperature vacuum
∣

∣0, 0̃
〉

into the
thermo vacuum state |0(β)〉 , and θ is related to the Bose distribution by

tanh θ = exp
(

− ω

2kT

)

, (7)

which is determined by comparing the Bose–Einstein distribution

nc =
[

exp
( ω

kT

)

− 1
]−1

(8)

and

〈0(β)| a†a |0(β)〉 = sinh2 θ. (9)

In particular, when operator A is the Wigner operator ∆ (α) itself, it is easy to see that

Tra

(

∆(α) e−βH
)

/Tra

(

e−βH
)

= 〈0(β)|∆(α) |0(β)〉
= Tra,ã [∆ (α) |0(β)〉 〈0(β)|] , (10)

which is just the WF of thermo vacuum state. From Eq.(10) one can see that the calculation of
WF for thermo states is converted into the expectation value of Wigner operator in themo vacuum
state |0(β)〉 (ρc → |0(β)〉 〈0(β)|), which is defined in the enlarged Fock space. This implies that it
is convenient to deriving some WFs of density operators at finite temperature by doubly enlarging
the original space.

III. NORMALLY ORDERED FORM OF S† (θ)∆ (α) S (θ)

In order to deriving conveniently the WFs of density operators at finite temperature, let’s first
calculate the normally ordered form of S† (θ) ∆ (α) S (θ) . Recalling that for single-mode case the
Weyl rule [13-15] is defined as

Ĥ
(

a, a†
)

= 2

∫

d
2αh (α, α∗)∆ (α) , (11)

where h (α, α∗) is the classical function corresponding to operator Ĥ
(

a, a†
)

. Eq.(11) expresses the
Weyl correspondence rule, using (2) it can be expressed as

Ĥ
(

a, a†
)

=

∫

d
2αh (α, α∗)

:

:
δ (α − a) δ

(

α∗ − a†
) :

:

=
:

:
h
(

a, a†
) :

:
, (12)

which means that Weyl ordered of operator :
:h
(

a, a†
)

:
: , whose Weyl correspondence is h (α, α∗), can

be obtained by just respectively replacing α, α∗ in h (α, α∗) by a and a† without disturbing the form
of function h.
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According to the Weyl ordering invariance under similar transformations [13] and the following
transform relation

S† (θ) aS (θ) = a cosh θ + ã† sinh θ,

S† (θ) ãS (θ) = ã cosh θ + a† sinh θ, (13)

it is easily seen

S† (θ)∆ (α)S (θ) =
1

2

:

:
δ
(

α − a cosh θ − ã† sinh θ
)

×δ
(

α∗ − a† cosh θ − ã sinh θ
) :

:
, (14)

which is just the Weyl ordering of S† (θ) ∆ (α) S (θ) in the enlarged Fock space. Based on the Weyl

rule, the classical correspondence h
(

β, β∗; β̃, β̃∗
)

of the operator S† (θ) ∆ (α) S (θ) can be obtained

by replacing (a, a†) and (ã, ã†) with (β, β∗) and (β̃, β̃∗), respectively, i.e.,

h
(

β, β∗; β̃, β̃∗
)

=
1

2
δ
(

α − β cosh θ − β̃∗ sinh θ
)

×δ
(

α∗ − β∗ cosh θ − β̃ sinh θ
)

. (15)

It then follows from Eqs.(11) and (15) that

S† (θ) ∆ (α) S (θ) = 4

∫

d
2βd2β̃∆

(

β, β∗; β̃, β̃∗
)

h
(

β, β∗; β̃, β̃∗
)

, (16)

where ∆
(

β, β∗; β̃, β̃∗
)

is the two-mode Wigner operator, whose normally ordering form is

∆
(

β, β∗; β̃, β̃∗
)

=
1

π2
: exp

[

−2
(

a† − β∗
)

(a − β) − 2
(

ã† − β̃∗
)(

ã − β̃
)]

: . (17)

On substituting Eq.(17) into Eq.(16) and using the integral formula [19]

∫

d
2z

π
eζ|z|2+ξz+ηz∗

= −1

ζ
e−

ξη
ζ , Re (ζ) < 0, (18)

we can derive the normally ordered form of (16) as follows

S† (θ)∆ (α)S (θ) = 2

∫

d
2βd2β̃

π2
δ
(

α − β cosh θ − β̃∗ sinh θ
)

×δ
(

α∗ − β∗ cosh θ − β̃ sinh θ
)

× : exp
[

−2
(

a† − β∗
)

(a − β) − 2
(

ã† − β̃∗
)(

ã − β̃
)]

:

=
sech2θ

π
e−2|α|2sech2θ : exp

{

−
(

aã + a†ã†
)

tanh 2θ

+2sech2θ
[

sinh θ
(

α∗ã† + αã
)

+ cosh θ
(

α∗a + αa†
)

−
(

ã†ã sinh2 θ + a†a cosh2 θ
)

]} : , (19)

which is just the normally ordered form of (16). Eq.(19) directly leads to the WF of the thermo
vacuum state |0(β)〉,

〈0(β)|∆(α) |0(β)〉 =
〈

0, 0̃
∣

∣S† (θ)∆ (α)S (θ)
∣

∣0, 0̃
〉

=
sech2θ

π
e−2|α|2sech2θ

=
1 − e−βω

π(1 + e−βω)
e
−2|α|2 1−e−βω

1+e−βω . (20)



4

IV. WIGNER FUNCTION OF PHOTON-SUBTRACTED THERMO VACUUM STATE

At finite temperature, the photon-subtracted thermo vacuum state can be expressed as [20]

ρ1 = C1a
n |0(β)〉 〈0(β)| a†n, (21)

where C1 is the normalized factor, defined by

C−1
1 = Tr

[

anS (θ)
∣

∣0, 0̃
〉 〈

0, 0̃
∣

∣S† (θ) a†n
]

, (22)

which can be calculated as follows. Using Eq.(5) and the binomial formula

∞
∑

l=0

(n + l)!

n!l!
xl = (1 − x)

−n−1
, (23)

we have

C−1
1 =

〈

0, 0̃
∣

∣S† (θ) a†nanS (θ)
∣

∣0, 0̃
〉

= sech2θ
〈

0, 0̃
∣

∣ eaã tanh θa†nanea†ã† tanh θ
∣

∣0, 0̃
〉

= sech2θ
∞
∑

k,l=0

tanhl+k θ
〈

k, k̃
∣

∣

∣
a†nan

∣

∣

∣
l, l̃
〉

= sech2θ

∞
∑

l=n

l!

(l − n)!
tanh2l θ = n! sinh2n θ. (24)

By using Eqs. (21) and (19), we calculate the WF of photon-subtracted thermal state ρ1

W1 (α) = C1

〈

0, 0̃
∣

∣S† (θ) a†n∆(α) anS (θ)
∣

∣0, 0̃
〉

=
〈

0, 0̃
∣

∣

[

S† (θ) a†nS (θ)
]

S† (θ)∆ (α)S (θ)
[

S† (θ) anS (θ)
] ∣

∣0, 0̃
〉

. (25)

Noticing Eq.(13) we see

[

S† (θ) anS (θ)
]
∣

∣0, 0̃
〉

=
(

a cosh θ + ã† sinh θ
)n ∣
∣0, 0̃

〉

=
√

n! sinhn θ |0, ñ〉 , (26)

then substituting (26) into Eq.(25) and using Eq.(19) yields

W1 (α) =
e−2|α|2sech2θ

π cosh 2θ
〈ñ| e 2 sinh θ

cosh 2θ
α∗ã†

(sech2θ)
ã†ã

e
2 sinh θ
cosh 2θ

ãα |ñ〉

=
e−2|α|2sech2θ

π cosh 2θ

n
∑

k,l=0

α∗kαl

k!l!

(

2 sinh θ

cosh 2θ

)k+l

〈ñ| ã†k (sech2θ)ã†ã ãl |ñ〉

=
e−2|α|2sech2θ

π coshn+1 2θ

n
∑

l=0

n!

l!l! (n − l)!

(

4 sinh2 θ

cosh 2θ
|α|2

)l

, (27)

where we have used the identity operator [21]

exp
[

λã†ã
]

=: exp
[(

eλ − 1
)

ã†ã
]

: . (28)

Recalling that the definition of Laguerre polynomials [22],

Ln(x) =
n
∑

l=0

n!

(l!)
2
(n − l)!

(−x)l, (29)
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(a) (b) 

| |

(d)
(c)

FIG. 1: Wigner function distributions of photon-subtracted thermo state in (q, p) phase space with (a)
n = 1, θ = 0.2, (b) n = 1, θ = 0.8, (c) n = 2, θ = 0.8, and in (|α| , θ) space with (d) n = 1.

Eq. (27) can be further put into the following neat form,

W1 (α) =
e−2|α|2sech2θ

π coshn+1 2θ
Ln

(

−4 sinh2 θ

cosh 2θ
|α|2

)

, (30)

which is just the WF of photon-subtracted thermo vacuum state, a Gaussian-Laguerre type function

of temperature, since tanh θ = exp
(

− ω
2kT

)

. Due to cosh 2θ > 0 and Ln(− 4 sinh2 θ
cosh 2θ

|α|2) > 0, for the
photon-subtracted case, W1 (α) has no chance to present the negative value in phase space, which
can be seen from Fig.1. On the other hand, the amplitude value of WF in (|α| , θ) space decreases
with the increasing temperature (corresponding to θ). In appendix A, in order to check the result in
Eq. (30), we have derived the WF of photon-subtracted thermo vacuum state by using the coherent
state representation of Wigner operator. Comparing with the result in Ref.[20], Eq.(30) seems more

concise and convenient for further discussion.

V. WIGNER FUNCTION OF PHOTON-ADDED THERMO VACUUM STATE

At finite temperature, the photon-added thermo vacuum state is expressed as [23]

ρ2 = C2a
†n |0(β)〉 〈0(β)| an. (31)

By the same procedures as deriving Eqs. (22) and (26), we have

C−1
2 = n! cosh2n θ, (32)

and

S† (θ) a†nS (θ)
∣

∣0, 0̃
〉

=
√

n! coshn θ
∣

∣n, 0̃
〉

. (33)
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(a) (b)

(c) (d)

FIG. 2: Wigner function distributions of photon-added thermo state in (q, p) phase space with θ = 0.2 for
(a) n = 1, (b) n = 2, and in (|α| , θ) space with (c) n = 1 and (d) n = 5.

Uisng Eq.(32) and (33), the WF W2 (α) of ρ2 is given by

W2 (α) = C2

〈

0, 0̃
∣

∣S† (θ) anS (θ)
[

S† (θ) ∆ (α) S (θ)
]

S† (θ) a†nS (θ)
∣

∣0, 0̃
〉

=
〈

n, 0̃
∣

∣S† (θ) ∆ (α) S (θ)
∣

∣n, 0̃
〉

=
(−1)n e−2|α|2sech2θ

π coshn+1 2θ

n
∑

l=0

n!

l!l! (n − l)!

(

−4 cosh2 θ

cosh 2θ
|α|2

)l

=
(−1)

n
e−2|α|2sech2θ

π coshn+1 2θ
Ln

(

4 cosh2 θ

cosh 2θ
|α|2

)

, (34)

a Gaussian-Laguerre type function which may present negative region in phase space (see Fig.2). In
particular, when n = 1, Eq.(34) reduces to

W2 (α) = −e−2|α|2sech2θ

π cosh2 2θ

(

1 − 4 cosh2 θ

cosh 2θ
|α|2

)

. (35)

In Fig. 2, the behaviour of WF distributions of photon-added thermo state are plotted in (q, p) phase
space and (|α| , θ) space. From Fig.2, one can see clearly the modulation action of photon-added
number and temperature. The “oscillating frequency” of WF increases with the increasing photon-
added number; while the amplitude value of WF in (|α| , θ) space decreases with the increasing
temperature (corresponding to θ), which indicates that the nonclassicality is weakened at finite
temperature.

VI. WIGNER FUNCTION OF THERMO NUMBER STATE

At finite temperature, according to TFD, the number state |n〉 is replaced by |n, ñ〉 , thus the
thermo number state (i.e., number states at finite temperature) is S (θ) |n, ñ〉 in the enlarged Fock
space. Using the un-normalized coherent state representation of number state,

|n, ñ〉 =
1

n!

d2n

dzndz̃n
|z, z̃〉|z=z̃=0 , 〈z′ |z〉 = ez′∗z, (36)
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where |z, z̃〉 = exp[za† + z̃ã†]
∣

∣0, 0̃
〉

is the non-normalized two-mode coherent state, and employing
Eq.(19), we calculate the WF W3 (α) of thermo number state as

W3 (α) = 〈n, ñ|S†∆(α)S |n, ñ〉

=
1

n!2
d2n

dfndrn

d2n

dzndtn
〈f∗, r∗|S†∆(α)S |z, t〉|f=r=z=t=0

= A d2n

dfndrn

d2n

dzndtn
exp {− (tz + fr) tanh 2θ

+ (rt − fz) sech2θ + zE∗ + fE + rF ∗ + tF}f=r=z=t=0 , (37)

where we have set

A =
e−2|α|2sech2θ

πn!2 cosh 2θ
, E = 2αsech2θ cosh θ, F = 2αsech2θ sinh θ. (38)

Expanding the exponential term exp [(rt − fz) sech2θ] as series, we have

W3 (α) = A d2n

dfndzn

d2n

drndtn
exp [− (fr + tz) tanh 2θ]

×
∞
∑

l,k=0

(−1)
k
sechl+k2θ

l!k!
(rt)

l
(fz)

k
exp [zE∗ + fE + tF + rF ∗]z=t=f=r=0

= A
∞
∑

l,k=0

(−1)
k
sechl+k2θ

l!k!

∂2l

∂F l∂F ∗l

∂2k

∂Ek∂E∗k

× d2n

dfndzn

d2n

drndtn
exp [− (fr + tz) tanh 2θ + fE + rF ∗ + zE∗ + tF ]z=t=f=r=0 . (39)

Then making the variable replacement for f, r, t, z we can rewrite Eq.(39) as

W3 (α) = A tanh2n 2θ

∞
∑

l,k=0

(−1)
k
sechl+k2θ

l!k!

∂2l

∂F l∂F ∗l

∂2k

∂Ek∂E∗k

× d2n

dfndrn

d2n

dzndtn
exp

[

−fr + fE +
rF ∗

tanh 2θ
− tz + zE∗ +

tF

tanh 2θ

]

z=t=f=r=0

= A tanh2n 2θ

∞
∑

l,k=0

(−1)
k
sechl+k2θ

l!k!

× ∂k+l

∂Ek∂F ∗l

∂k+l

∂E∗k∂F l
Hn,n

(

E,
F ∗

tanh 2θ

)

Hn,n

(

E∗,
F

tanh 2θ

)

. (40)

Noticing the formula

∂l+k

∂ξl∂ηk
Hm,n (ξ, η) =

m!n!

(m − l)! (n − k)!
Hm−l,n−k (ξ, η) , (41)

we have

W3 (α) =
n!2e−2|α|2sech2θ

π cosh 2θ

n
∑

l,k=0

(−1)
k
sechl+k2θ tanh2(n−l) 2θ

l!k! [(n − l)! (n − k)!]
2

×
∣

∣

∣

∣

Hn−k,n−l

(

E,
F ∗

tanh 2θ

)∣

∣

∣

∣

2

. (42)

From Eq.(42) one can see clearly that the WF of thermo number state is a real number.



8

In particular, when n = 0, noticing that tanh θ = e−
1
2ωβ , cosh2 θ = 1

1−e−βω , sinh2 θ = e−βω

1−e−βω ,

Eq.(42) reduces to the WF of thermo vacuum state |0(β)〉 in Eq.(20). On the other hand, when
T → 0,(i.e., finite temperature case reduces to zero temperature case) e−βω → e−∞ → 0, sinh θ → 0,

cosh θ → 1, E → 2α, F∗

tanh 2θ
→ α∗, and noticing Eq.(29) and the definition of two-variable Hermite

polynomials [24,25],

Hm,n (ξ, κ) =

min(m,n)
∑

l=0

m!n! (−1)
l
ξm−lκn−l

l! (n − l)! (m − l)!
, (43)

which leads to Hn−k,0 (2α, α∗) = (2α)
n−k

, then Eq.(42) becomes

W3 (α) =
1

π
e−2|α|2

n
∑

k=0

(−1)
k
n!

k! [(n − k)!]2
|Hn−k,0 (2α, α∗)|2

=
(−1)

n

π
e−2|α|2

n
∑

k=0

n!

k! [(n − k)!]
2

(

−4 |α|2
)n−k

=
(−1)

n

π
e−2|α|2Ln(4 |α|2), (44)

which is just the WF of number state |n〉 at zero temperature.
In sum, by using TFD and Weyl ordered operators’ order-invariance under similar transforma-

tions, we present a new approach to deriving the exact expressions of Wigner functions for thermo
number state, photon subtracted and added thermo vacuum state. These WF are related to the
Gaussian-Laguerre type functions, which are easily to be further analysed. The affection of tem-
perature to nonclassical behaviour of the fields is manifestly shown. For discussions about the
decoherence at finite temperature, we refer to [30,31].

Appendix A Checking Eq.(30)
In fact, in original Fock space, the photon-subtracted thermo state is expressed as [20]

ρ1 = C1Trã

[

an |0(β)〉 〈0(β)| a†n
]

= C1a
nρca

†n, (A1)

where ρc is the thermo state

ρc =

∞
∑

l=0

nl
c

(nc + 1)l+1
|l〉 〈l| =

1

nc + 1
ea†a ln nc

nc+1 , nc = sinh2 θ. (A2)

Using the the coherent state representation of Wigner operator [26],

∆ (α) = e2|α|2
∫

d
2z

π2
|z〉 〈−z| exp [−2 (zα∗ − z∗α)] , (A3)

where |z〉 is the coherent state [27,28], we have

W1 (α) = Tr (∆ (α) ρ1)

=
C1e

2|α|2

nc + 1

∫

d
2z

π2
〈−z|anea†a ln nc

nc+1 a†n |z〉 exp [−2 (zα∗ − z∗α)] . (A4)

Note that

ea†a ln nc
nc+1 a†ne−a†a ln nc

nc+1 =
nn

c

(nc + 1)
n a†n, (A5)

and

ea†a ln nc
nc+1 |z〉 = e

− 2nc+1

2(nc+1)2

∣

∣

∣

∣

ncz

nc + 1

〉

, (A6)
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Eq.(A4) can be rewritten as

W1 (α) =
nn

c C1e
2|α|2

(nc + 1)
n+1

∫

d2z

π2
〈−z|ana†n

∣

∣

∣

∣

ncz

nc + 1

〉

× exp

[

− 2nc + 1

2 (nc + 1)
2 |z|2 − 2 (zα∗ − z∗α)

]

. (A7)

Further using the operator identity [29]

ana†n = (−1)
n

: Hn,n

(

ia†, ia
)

: , (A8)

where Hm,n (x, y) is the two-variable Hermite polynomials, whose generating function is

Hm,n (x, y) =
∂m+n

∂tm∂t′n
exp [−tt′ + tx + t′y]

∣

∣

∣

∣

t=t′=0

, (A9)

we have

W1 (α) =
(−1)

n
e2|α|2

n! (nc + 1)
n+1

∂2n

∂tn∂τn
e−tτ

×
∫

d
2z

π2
exp

{

−2nc + 1

nc + 1
|z|2 +

(

iτnc

nc + 1
− 2α∗

)

z + (2α − it) z∗
}

t=τ=0

=
(−1)

n

n!π (nc + 1)
n

e2|α|2

2nc + 1

∂2n

∂tn∂τn
exp [−tτ ]

exp

[

nc + 1

2nc + 1

(

iτnc

nc + 1
− 2α∗

)

(2α − it)

]

t=τ=0

=
(−1)

n

n!π (nc + 1)
n

e−
2|α|2

2nc+1

2nc + 1

∂2n

∂tn∂τn
exp

{

− nc + 1

2nc + 1
tτ

+ 2iα∗ nc + 1

2nc + 1
t + 2iα

nc

2nc + 1
τ

}

t=τ=0

=
e−

2|α|2

2nc+1

(2nc + 1)
n+1

(−1)
n

n!π
Hn,n

(

2incα
√

(2nc + 1) (nc + 1)
, 2i

√

nc + 1

2nc + 1
α∗

)

, (A10)

then using the relation

(−1)
n

n!
Hn,n (x, y) = Ln (xy) , (A11)

and noticing that nc = sinh2 θ, 2nc + 1 = cosh 2θ, Eq.(A10) can be put into

W1 (α) =
e−

2|α|2

2nc+1

π (2nc + 1)
n+1 Ln

(

−4nc |α|2
2nc + 1

)

, (A12)

which is just the Eq.(30). Thus we have checked the result using a new appraoch.
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