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Abstract

For a class of coupled limit cycle oscillators, we give a condition on a linear coupling operator
that is necessary and sufficient for exponential stability of the synchronous solution. We show that
with certain modifications our method of analysis applies to networks with partial, time-dependent, and
nonlinear coupling schemes, as well as to ensembles of local systems with nonperiodic attractors. We
also study robustness of synchrony to noise. To this end, we analytically estimate the degree of coherence
of the network oscillations in the presence of noise. Our estimate of coherence highlights the main
ingredients of stochastic stability of the synchronous regime. In particular, it quantifies the contribution
of the network topology. The estimate of coherence for the randomly perturbed network can be used
as means for analytic inference of degree of stability of the synchronous solution of the unperturbed
deterministic network. Furthermore, we show that in large networks, the effects of noise on the dynamics
of each oscillator can be effectively controlled by varying the strength of coupling, which provides a
powerful mechanism of denoising. This suggests that the organization of oscillators in a coupled network
may play an important role in maintaining robust oscillations in random environment. The analysis is
complemented with the results of numerical simulations of a neuronal network.
PACS: 05.45.Xt, 05.40.Ca
Keywords: synchronization, coupled oscillators, denoising, robustness to noise, compartmental model

1 Introduction

Consider a dynamical system forced by small noise:

ẋt = f(xt) + σP(t)ẇt, x : R1 → Rn, (1.1)

where function f : Rn → Rn is continuous together with partial derivatives up to the second order, P :R1 →
Rn is a bounded continuous function of time, ẇt is a n−dimensional white noise process, and small σ > 0
is the noise intensity. We call (1.1) a local system and denote (1.1)0 the underlying deterministic system
(1.1) with σ = 0. For σ > 0, stochastic differential equation (1.1) is understood in the Ito’s sense [1]. Many
models of (bio)physical phenomena are formulated as the coupled networks of N identical local systems
(1.1):

ẋt = f(xt) + gDxt + σP (t)ẇt, (1.2)

where x =
(
x(1), x(2), . . . , x(N)

)
∈ RNn, f(x) =

(
f(x(1)), f(x(2)), . . . , f(x(N))

)
∈ RNn and

P (t) = IN⊗P(t), and wt =
(

w
(1)
t ,w

(2)
t , . . . ,w

(N)
t

)
, w

(i)
t are independent copies of n−dimensional Brow-
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nian motion. The coupling is implemented by a linear operator D : RNn → RNn and g ≥ 0 is inter-
preted as the strength of coupling. D may depend on time. Our only assumption on D is that it leaves
the diagonal invariant, i.e., if x = ξ(t) solves (1.1)0 then x = ξ(t) := 1N ⊗ ξ(t) solves (1.2)0. Here,
1N = (1, 1, . . . , 1)T ∈ RN and ⊗ denotes the Kronecker product, so that ξ(t) = (ξ(t), ξ(t), . . . , ξ(t)) is
a solution of the coupled system. Such solutions, when asymptotically stable, feature synchronization, an
important mode of collective behavior. Suppose x = ξ(t) is an asymptotically stable solution of the local
system (1.1)0. Under what conditions on the coupling operator D, x = 1N ⊗ ξ(t) is an asymptotically
stable solution of (1.2)0? What information about D is important for synchronization properties of the cou-
pled system? What determines the rate of attraction of the coupled limit cycle and its robustness to noise?
Clearly, the answers to these questions depend in a nontrivial fashion on the properties of the local systems,
network topology, and the type of interactions between local systems.

Many different approaches have been proposed to study synchronization: asymptotic analysis [2, 3],
phase reduction [4, 5], constructing Lyapunov functions [10] and estimating Lyapunov exponents [7], invari-
ant manifold theory [6, 8], and graph-theoretic techniques [9]. Above we selected just a few representative
studies illustrating these approaches. For more background and more complete bibliography, we refer an
interested reader to recent monographs [11, 12, 16]. For weakly coupled networks, i.e., when 0 < g � 1,
there are effective perturbation techniques for studying synchronization such as asymptotic approximation
of the Poincare map and the method of averaging. These ideas underlie widely used method of phase re-
sponse curves and Kuramoto’s phase reduction [5, 4]. For a review of techniques available for studying
synchronization in weakly coupled networks we refer to Chapter 10 in [13] and references therein. When
the coupling is moderate g = O(1) or strong, these methods do not apply. Moreover, the mechanisms
for synchronization in weakly and strongly coupled networks are different. In the case of strong coupling,
a prevalent approach for studying synchronization is to use the properties of specific (albeit important in
applications) coupling schemes such as global all-to-all coupling (see, e.g., [14]), local nearest-neighbor
coupling, or more generally schemes resulting from discretization of Laplace operator [2, 6]. For these
network topologies, one can use explicit information about the spectra of the coupling matrices; in addition,
the former scheme has strong symmetry properties that can be used in understanding network dynamics.
Networks with general coupling operators have been studied by Pecora and Caroll [7] and by V. Belykh,
I. Belykh, and Hasler [9, 15]. The master stability function, constructed in [7], uses spectral properties of a
given coupling operator to determine whether the synchronous solution is stable. Practical implementation
of this method relies on numerical computation of matrix eigenvalues. Analytical sufficient conditions for
synchronization derived in [9, 15] use graph theoretic interpretation of the coupling operator to construct
Lyapunov functions controlling the growth of perturbations of the synchronous solution. In this Letter, we
look for an analytic or rather algebraic description of coupling operators that endow synchronous solutions
with exponential stability. We define a class of matrices, dissipative matrices (cf. Definition 1), and show
that these matrices generate exponentially stable synchronous solutions once the coupling strength exceeds
a certain value. A random dissipative matrix shown in Section 4 suggests that many dissipative matrices
do not fall into the class of coupling operators analyzed in [9, 15]. Therefore, by identifying dissipative
matrices we have substantially extended existing knowledge of linear coupling operators that enforce syn-
chrony in coupled networks. Surprisingly, dissipative matrices admit an explicit algebraic characterization:
Theorem 2 relates all dissipative matrices to a discrete Laplacian, justifying common interpretation of the
Laplacian as a prototypical diffusive coupling. To highlight the main ingredients of our treatment of syn-
chronization, in Section 2 we present the analysis in the simplest meaningful setting when the coupling is
linear and stationary. In Section 3, we discuss how to apply our method to problems with time-dependent
and nonlinear coupling operators, and ,importantly, to networks composed of local systems with nonperiodic
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attractors.
Adequate description of many physical phenomena requires including stochastic terms into differential

equation models. In the context of synchronization this leads to an important question of robustness of
synchrony to noise. This is the second problem investigated in this Letter. We analytically estimate the
coherence of the coupled oscillations in the presence of noise. The estimate is tight. It reflects the main
ingredients of robustness of synchronous oscillations to noise. In particular, it quantifies the contribution
of the network topology to the stability of the synchronous solution. As a related result, we show that in
large networks the effects of noise on oscillations can be reduced substantially by increasing the strength of
coupling. For networks of simpler elements, so-called integrate and fire neurons, the denoising property was
shown in [19]. The present Letter extends the result of [19] to systems of coupled limit cycle oscillators.
Finally, in Section 4 we illustrate our findings with a discussion of the dynamics of a concrete biophysical
model, an ensemble of neural oscillators.

2 The analysis

We start by specifying the structure of the coupling operator. We call coupling operator D separable if

D = D⊗ L, D ∈ RN×N , L ∈ Rn×n. (2.1)

Matrices D and L play distinct roles in the network organization. D reflects the global architecture: what
local system is connected to what. L specifies how the coupling is organized on the level of a local system:
roughly, what local variables are engaged in coupling. The separable structure of the coupling is important.
It translates naturally to the stability analysis of the synchronous state. The condition that the diagonal is
invariant for separable coupling translates to 1N ∈ ker D. Moreover, if the network is connected then
ker D is one-dimensional. Thus, we are led to the following condition

D ∈ K =
{
M ∈ RN×N : ker M = Span {1N}

}
. (2.2)

Further, we assume that L is symmetric semipositive definite, i.e., LT = L and xTLx ≥ 0 ∀x ∈ Rn. D is not
assumed symmetric. For simplicity, we keep D and L constant. In Section 3, we explain our results for
time-dependent and nonlinear coupling.

If L is positive definite, we say that the coupling is full (rank), otherwise we call it partial (rank). The
distinction between the full and partial coupling is important for synchronization properties of (1.2). The
following examples illustrate how full and partial coupling arise in physical models. Let

D1 =


−N + 1 1 1 . . . 1

1 −N + 1 1 . . . 1
. . . . . . . . . . . . . . .
1 1 1 . . . −N + 1

 , (2.3)

I be the n × n identity matrix, and I′ = diag(1, 0, 0, . . . , 0) ∈ Rn×n. D := D1 ⊗ I in (1.2) implements
all-to-all coupling through all variables, while D := D1 ⊗ I′ engages only the first variables of the local
systems. The former is an example of the full coupling, whereas the latter is that of the partial coupling. The
stability analysis of partially coupled systems has to deal with the degeneracy of the coupling matrix D (due
to the zero eigenvalues of L). A reader wishing to gain better physical intuition for coupled system (1.2) and
(2.1) before embarking on analysis, is referred to the discussion of a compartmental model of a neuron in
Section 4.
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To study synchronization in (1.2)-(2.2), we derive the equation for the phase variables of the coupled
system. To set up the notation, we review phase reduction for a single oscillator. Let x = ξ(t) denote
a periodic solution of (1.1)0 with the least period 1. By O = {x = ξ(t), t ∈ S1 = R/Z} we denote the
corresponding orbit. Along O we introduce an orthonormal moving coordinate frame (cf. [17]):

{v(θ), z1(θ), z2(θ), . . . , zn−1(θ)}, θ ∈ S1, (2.4)

where the first vector is a unit vector moving along O, v(θ) = ξ̇(θ)
∣∣∣ξ̇(θ)∣∣∣−1. The change of variables

x = ξ(θ) + Z(θ)ρ, Z(θ) = col(z1(θ), . . . , zn−1(θ)). (2.5)

defines a smooth transformation x 7→ (θ, ρ) ∈ S1 × Rn−1 in a sufficiently small neighborhood of O (cf.
Theorem VI.1.1 in [17]). Using Ito’s formula, in the vicinity of the periodic orbit, we rewrite (1.1) in
terms of θ and ρ (cf. (2.5)) and project the resultant equation onto the subspaces spanned by v(θ) and
{z1(θ), . . . , zn−1(θ)} to obtain

θ̇t = 1 + σh1(θt)P(t)ẇt + . . ., (2.6)

ρ̇t = A(θt)ρt + σh2(θt)P(t)ẇt + . . ., (2.7)

where

A(θ) = Z(θ)T
[
−∂Z(θ)

∂θ
+ Df (ξ(θ)) Z(θ)

]
, (2.8)

h1(θ) = vT(θ)|ξ̇(θ))|−1, h2(θ) = ZT(θ).

The detailed derivation of the system of equations near a periodic orbit of a deterministic system in the
moving coordinates can be found in the proof of Theorem VI.1.2 in [17]. The treatment of the stochastic
case requires Ito’s formula, which does not affect the leading order terms written out in (2.6) and (2.7) (see
the proof of Lemma 4.1 in [18] for details). The solution of an initial value problem for (2.6) and (2.7)
yields a real-valued function θt. The phase of the oscillations is given by (θt mod 1) ∈ S1. It will be more
convenient to work with θt, which we will call a phase variable, rather than with it’s projection on S1.

Assume that the eigenvalues of As(θ) = A(θ) +AT (θ), λi(θ), i = 1, 2, . . . , n− 1, are negative

max
θ∈S1

λi(θ) ≤ −λ̄ < 0. (2.9)

By applying the phase reduction to each oscillator in the network, in complete analogy to (2.6), we derive
the phase equations for the coupled system

θ̇
(i)
t = 1 + σh1(θ

(i)
t )P(t)ẇ

(i)
t

+ g
vT(θ

(i)
t )

|ξ̇(θ(i))|

∑
i6=j

dijL
(
ξ(θ

(j)
t )− ξ(θ(i)t )

)
+ . . ., (2.10)

where dij denote the entries of D (cf. (2.1)). The expression for the coupling terms in (2.10) simplifies to

vT(θ(i))

|ξ̇(θ(i))|
L
[
ξ(θ(j))− ξ(θ(i))

]
=
ξ̇(θ(i))TLξ̇(θ(i))∣∣∣ξ̇(θ(i))∣∣∣2 ×
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×
(
θ(j) − θ(i)

)
+ . . . (2.11)

Here and below, we ignore quadratic terms O
(
(θ(i) − θ(j))2

)
. By plugging (2.11) in (2.10), we arrive at the

following system of equations

θ̇t = 1N + gVN (θt)Dθt + σH1(θt)P (t)ẇt + . . . , (2.12)

where

VN (θ) = diag
(
l(θ(1)), l(θ(2)), . . . , l(θ(N))

)
, H1(θ) = diag

(
h1(θ

(1)), . . . , h1(θ
(N))

)
,

and
l(θ) :=

∣∣∣ξ̇(θ)∣∣∣−2 ξ̇(θ)TLξ̇(θ) = v(θ)TLv(θ). (2.13)

Next, we derive the system for the vector of the phase differences

φ = Sθ =
(
φ(1), . . . , φ(N−1)

)
, φ(i) = θ(i+1) − θ(i), (2.14)

where (N − 1)×N matrix S is defined by

S =


−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 1

 . (2.15)

Multiply both sides of (2.12) by S and note that

S1N = 0 and SVNθ = VN−1Sθ +O(|φ|), (2.16)

where φ is defined in (2.14). From (2.12) and (2.16) we have

φ̇t = gVN−1(θt)D̂φt + σSH1(θt)P (t)ẇt + . . . , (2.17)

where D̂ is defined by SD = D̂S. For D ∈ K, D̂ is well-defined (cf. Appendix [19]). In the derivation
of (2.17), we treated terms ∼ |φ|D̂φ = O(|φ|2) inherited from (2.16) as higher order terms. Since θ(i) =
θ(1) +O(|φ|) (cf. (2.14)),

VN−1(θ) = l(θ(1))IN−1 +O(|φ|),
H1(θ) = IN ⊗ h1(θ(1)) +O(|φ|),

and (2.17) is reduced to

φ̇t = gl(θ
(1)
t )D̂φt + σS(IN ⊗ h1(θ

(1)
t ))(IN ⊗ P(t))ẇt + . . .

= gl(θ
(1)
t )D̂φt + σS(IN ⊗ h1(θ

(1)
t )P(t))ẇt + . . . . (2.18)

In (2.18), O(|φ|2) terms are treated as higher order, because they do not affect exponential stability of the
synchronous solution. Note how separable coupling translates to the structure of the phase equation. Matrix
D̂, which carries the information about the network topology effectively determines the stability of the
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synchronous solution. Semipositive matrix L enters the factor l(θ(1)) (cf. (2.13)). The stability of (2.18) is
determined from the homogeneous deterministic system:

φ̇t = gl(θ
(1)
t )D̂φt, (2.19)

where by θ(1)t we mean the first component of the solution of deterministic equation (1.2)0. We continue our
analysis assuming that L > 0, i.e., the coupling is full. In Section 3, we comment on how our results apply
to partially coupled systems. Thus, l(θ(1)t ) ≥ α > 0 and after changing the independent variable we have

φ̇τ = gD̂φτ . (2.20)

For exponential stability of synchronous solution, the symmetric part of D̂ must be negative definite. This
motivates the following definition.

Definition 1. Matrices from

D =
{

M ∈ K : xTM̂x < 0 ∀x ∈ RN−1/{0}
}

(2.21)

are called dissipative.

Thus, we arrive at the first conclusion of this Letter: synchronous solution of (1.2)0-(2.2) is exponentially
stable iff D is dissipative. When studying (1.2)0-(2.2) it is tempting to relate the stability of synchronous
solution to the spectrum of D. It is important to realize that it is the spectrum of D̂ that is responsible for
synchronization. Remarkably, dissipative matrices admit an explicit characterization.

Theorem 2. D ∈ D iff
D = QΛ0, Λ0 = STS (2.22)

for some Q ∈ RN×N with negative definite symmetric part.

Proof. Suppose (2.22) holds. Let D̂ = SQST. Then

SD = SQSTS = D̂S.

Furthermore, for any x ∈ RN−1/{0}

(D̂x,x) = (SQSTx,x) = (Qy,y), y = STx, (2.23)

where by (·, ·) we denote the inner product in RN−1. We will use the same notation for the inner product in
any other Euclidean space used in this Letter, e.g., RN and CN . Note that y = STx 6= 0, because the rows
of S are linearly independent. Thus, from (2.23) we conclude

(D̂x,x) < 0 ∀x ∈ RN−1/{0},

i.e., D ∈ D.
Conversely, suppose D ∈ D. Note that on the orthogonal complement of ker Λ0, (ker Λ0)⊥ = 1N

⊥,
Λ0 is invertible and define Q ∈ RN×N as follows: for x ∈ RN let

Qx =

{
D(Λ0

∣∣
1N
⊥ )−1x, x ∈ 1N

⊥,

−x, x ∈ Span{1N}.
(2.24)
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We show that the symmetric part of Q
∣∣
1N
⊥ (and, therefore, Q itself) is negative definite. For any z ∈

1N
⊥/{0} there exists x ∈ RN−1/{0} such that z = Λ0x, because Λ0

∣∣
1N
⊥ is invertible. Moreover, such

x, can be chosen from 1N
⊥/{0} because ker Λ0 = Span {1N}. Thus,

(Qz, z) = (D(Λ0

∣∣
1N
⊥ )−1Λ0x,Λ0x) = (Dx,STSx) = (SDx,Sx) = (D̂Sx,Sx) < 0. (2.25)

Here, we used the fact that R(Λ0) = 1N
⊥ and Sx 6= 0 (because x ∈ (ker S)⊥). The combination of (2.24)

and (2.25) yields (2.22).
�

Theorem 2 gives explicit and for separable coupling exhaustive characterization of coupling matrices
that generate exponentially stable synchronous solutions. Synchronization is often attributed to systems
with diffusive coupling that are obtained by discretizing elliptic differential operators or, more generally,
differential operators modeling diffusion on graphs. In this respect, it is remarkable that Theorem 2 relates
all dissipative matrices to the discrete Laplacian

Λ0 = STS =


1 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 1

 . (2.26)

This is consistent with the common interpretation of the Laplacian as a prototypical elliptic operator. The
explicit characterization of dissipative matrices by (2.22) is the second result of this Letter. Before turning
to the question of the robustness to noise we state two corollaries of Theorem 2. The first corollary gives
a convenient computational formula for D̂, while second one characterizes the spectrum of a dissipative
matrix.

Corollary 3. For D ∈ D, D̂ = SQST, where Q satisfies (2.22).

Corollary 4. If D ∈ D then D has a zero eigenvalue of multiplicity 1. All nonzero eigenvalues of D are
real and negative.

Proof. Matrix D has a simple zero eigenvalue by (2.2). Suppose λ ∈ C is a nonzero eigenvalue of D and
x ∈ Cn be a corresponding eigenvector

QΛ0x = λx. (2.27)

Note that x /∈ Span{1N}. By multiplying both sides of (2.27) by Λ0x 6= 0, we have

(QΛ0x,Λ0x) = λ(x,Λ0x) = λ(Sx,Sx). (2.28)

The scalar product multiplying λ on the right hand side of (2.28) is positive, while (QΛ0x,Λ0x) is negative.
Therefore, λ < 0. �

Having understood the mechanism for synchronization in the deterministic network (1.2)0. We now
turn to the question of robustness of the synchronous regime to noise. To this end, we return to (2.18). For
the remainder of this Letter, D ∈ D. For small σ > 0, on a finite time interval solution of (2.18) can be
expanded as

φt = φ̄t + σφ̃t + . . . , (2.29)

where deterministic function φ̄t solves (2.19) (cf. Theorem 2.2, [20]). Since φ ≡ 0 is an exponentially stable
solution of (2.19), we take φ̄t ≡ 0. The leading order correction σφ̃t is a Gaussian process, which for small
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σ > 0 approximates φt on a finite interval of time. This specifies the scope of applicability of our analysis.
In particular, we are not concerned with large deviation type effects which become relevant on much longer
timescales.

From (2.12) we have
θ
(1)
t = t+O(σ). (2.30)

By plugging (2.29) and (2.30) in (2.18), we have

˙̃
φt = gl(t)D̂φ̃t + S(IN ⊗ h1(t)P(t))ẇt + . . . . (2.31)

After changing time to τ =
∫ t
0 l(s)ds and ignoring higher order terms, (2.32) is rewritten as

˙̃
φτ = gD̂φ̃τ + S(IN ⊗ h1(τ)P̃(τ))ẇτ , h(τ) :=

h1(t(τ))√
l(t(τ))

, P̃(τ) := P(t(τ)). (2.32)

The solution of (2.32) subject to initial condition φ̃0 = 0 is a Gaussian random process with zero mean and
covariance matrix (cf. §5.6, [1])

cov φ̃τ =

∫ τ

0
eg(τ−s)D̂S(IN ⊗ h(s)P̃(s))(IN ⊗ h(s)P̃(s))TSTeg(τ−s)D̂

T
ds

=

∫ τ

0
h̃2(s)eg(τ−s)D̂Λeg(τ−s)D̂

T
ds, (2.33)

where Λ := SST and h̃2(t) = IN⊗ (h(t)P̃(t)P̃(t)ThT (t)) is a nonnegative scalar function. Using standard
properties of trace and the mean value theorem, from (2.33) we have

Tr cov φ̃τ =

∫ τ

0
h̃2(u)Tr {Λeg(τ−u)D̂s}du

= h̃2(ζ(τ))Tr {ΛegτD̂s

∫ τ

0
e−guD̂

s
du}

= h̃2(ζ(τ))Tr
{
−Λg−1(D̂s)−1

[
IN−1 − egτD̂

s
]}

= µ(τ)
κ(D)

g
+O(e−c1τ ), (2.34)

where continuous function ζ(τ) is due to the application of the mean value theorem, µ(τ) := h̃2(ζ(τ)),
D̂s := D̂ + D̂T, and

κ(D) = Tr {−Λ(D̂s)−1}. (2.35)

Note that 0 ≤ µ(τ) ≤ M is uniformly bounded. Define the average variance of the variables φ(k)t , k =
1, 2, . . . , N as

var φt =
1

N − 1

N−1∑
k=1

var φ
(k)
t =

1

N − 1
Tr cov φt. (2.36)

Equation (2.34) yields an important estimate for the network variability

var φτ ≈ σ2var φ̃τ = σ2µ(τ)
κ(D)

g(N − 1)
+O(e−c1τ ), (2.37)
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where c1 is a positive constant. Nonnegative function µ(τ) reflects the properties of the local system such
as geometric properties of the limit cycle and matrix P multiplying stochastic term, whereas κ(D) captures
network topology. For a network of fixed size, var φt can be made arbitrarily small by taking large g.
Moreover, by Chebyshev’s inequality, for any δ > 0,

P
{∣∣∣θ(j)t − θ(i)t ∣∣∣ > δ

}
≤ σ2MNκ(D)

δ2g
→ 0 as g →∞,

i.e., for strong coupling the phases of individual oscillators can be localized within arbitrarily narrow bounds.
The control of the coherence by varying the coupling strength is more effective in networks with smaller
κ(D). Thus, (2.37) shows explicitly the factors controlling the coherence in the presence of noise. Moreover,
κ(D) quantifies the contribution of the network topology to the stability of the synchronous state. This is
the third conclusion of this Letter.

What features of the network topology are captured by κ(D)? We first go over the ingredients of the
formula for κ(D) (cf. (2.35)). Matrix Λ is a Laplacian:

Λ = SST =


2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 2

 . (2.38)

Unlike Λ0, Λ is nonsingular. The following examples show that κ(D) can change by many times for
networks with different topologies. Let D1 be as in (2.3) and D2 = −Λ0 (cf. (2.26)). D1 and D2 are
coupling matrices corresponding to the graphs modeling all-to-all and nearest-neighbor interactions in the
network. By direct verification,

D̂s
1 = −2N IN−1 and D̂s

2 = −2Λ. (2.39)

By plugging the explicit expressions (2.39) in (2.35), we find

κ(D1) = 1 +O(N−1) and κ(D2) =
N − 1

2
. (2.40)

Note that the all-to-all topology features a significant reduction in κ compared to the nearest-neighbor cou-
pling. This reduction is proportional to the ratio of the degrees of the corresponding graphs: 2 - for the
nearest-neighbor and (N − 1) - for the all-to-all coupling. Thus, (2.37) suggests that networks with the
higher density of connections are more robust to noise.

Equation (2.37) estimates the variability of the phase differences, revealing the main factors contributing
to robustness of synchrony to noise. If D is symmetric, Equation (2.37) can also be used to estimate the
variability of the phase variables θ(i)t themselves. We follow the method used in [19] for a related problem.
First, we derive the equation for the average phase of the coupled system

θ̄ = ηT θ, η = N−11N.

By multiplying both sides of (2.12) by ηT , we have

˙̄θt = 1 + σh1(t)P(t)Ẋt + . . . , Ẋ =
1

N

N∑
i=1

ẇ
(i)
t . (2.41)
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Here, we used the following approximations

VN (θ) = l(θ
(1)
t )IN +O(|φ|) and θ

(1)
t = t+O(σ).

As a linear combination of independent Gaussian processes w
(i)
t , X(t) is distributed as N−1/2wt, where wt

is a n−dimensional Brownian motion. Thus,

˙̄θt = 1 +
σh1(t)P(t)√

N
ẇt + . . . (2.42)

and

var θ̄t ≈
σ2

N

∫ t

0
h1(s)P(s)P(s)Th1(s)Tds ≤ σ2C1T

N
, t ∈ [0, T ], (2.43)

where C1 > 0 does not depend on N and T . Next, by noting as in [19] that each phase variable θ(i) can be
represented as a linear combination of the average phase θ̄ and phase differences φ(1), φ(2), . . . , φ(N), we
estimate var θ(i) using (2.43) and (2.37). Omitting further details, which are the same as in step 3. of the
proof of Theorem 3.1 in [19], we state the final result

max
i

sup
t∈[0,T ]

var θ
(i)
t ≤ σ2

(
C2T

N
+
C3Nκ(D)

g

)
, (2.44)

where C2 and C3 are positive constants independent from N, g and T . The first term on the right hand side
of (2.43) can be made arbitrarily small by increasing N , while the second term decreases for increasing g.
Therefore, in large networks, the effects of noise on oscillations can be controlled by varying the strength of
coupling. The two terms on the right hand side of (2.43) represent two main ingredients of the mechanism
of denoising: the first term is due to the averaging of statistically independent stochastic forces acting on
connected local systems, whereas the second term reflects the dissipativity of the coupling. The latter is
a critical property of the coupling operator that underlies both synchronization and denoising in coupled
networks.

The analysis of the phase equations above produced a necessary and sufficient condition for synchro-
nization in systems with separable coupling and gave a compact explicit estimate for the spread of phases
of coupled stochastic oscillators. For the phase equations to be valid, the trajectory of the coupled system
must remain close to the limit cycle. To complete the analysis, we consider the system of equations for
ρt = (ρ

(1)
t , ρ

(2)
t , . . . , ρ

(N)
t ). The derivation of the system for ρ is completely analogous to that for θt (cf.

(2.12)). We omit the details and state the final result

ρ̇t = [A(t) + gD(t)] ρt + σh2(t)P (t)ẇt + . . . , (2.45)

where A(t) = IN ⊗ A(t), D(t) = D ⊗ (ZT(t)LZ(t)). Matrices Z(t) and A(t) are defined in (2.5) and
(2.8) respectively. By Vazhevski’s inequality [21], the combination of (2.9), D ∈ D, and L ≥ 0 implies
exponential stability of the equilibrium at ρ = 0 in (2.45)0. Therefore, on finite time intervals with over-
whelming probability, |ρt| remains small, provided |ρ0| and σ > 0 are sufficiently small. This justifies the
phase reduction that we used above. Note that this conclusion holds for both full and partial coupling.

3 Generalizations

The analysis of this Letter admits several important generalizations.
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A) Partial coupling. If the coupling is partial, nonnegative function l(·) in (2.32) in general takes zero
values. Dealing with the degeneracies in (2.32) requires additional care. For a common in applications case
when l(·) has isolated zeros, with technical modifications one can get a qualitatively similar estimate to
(2.37).

B) Time-dependent coupling. Our analysis remains unchanged if instead constant L one uses a bounded
measurable function of time. The definition of the full coupling is then modified to xTL(t)x ≥ αxTx for
some α > 0 and ∀x ∈ Rn/{0} uniformly in t ≥ 0. Likewise, D can be taken time-dependent as long as
D(t) ∈ D for all t. In this case, exponential stability of φ ≡ 0 follows from (2.20) if we require that all
eigenvalues of D̂s(t) = D̂(t) + D̂T(t) are negative and bounded away from zero uniformly in t:

xTD̂s(t)x = xTD̂(t)x ≤ −γxTx ∀x ∈ RN−1/{0}, t ≥ 0

for some γ > 0. By Theorem 2, such matrices can be written as D = Q(t)Λ0, where Q(t) is such that

xTQ(t)x ≤ −γ̃xTx ∀x ∈ RN/{0}, t ≥ 0

for some γ̃ > 0. Also, in the time-dependent case, one can get a slightly weaker but qualitatively similar
estimate on var φt (cf. (2.37)).

C) Nonlinear coupling. The analysis can be extended to the systems with nonlinear coupling of the
following form

ẋ(i) = f(x(i)) + g
N∑
j=1

dij(t)L̃(x(i)), i = 1, 2, . . . , N, (3.1)

where D(t) = (dij(t)) ∈ K for every t ≥ 0 and L̃ : Rn → Rn is a smooth function. Since D(t) ∈ K, (3.1)
can be rewritten as

ẋ(i) = f(x(i)) + g

N∑
j=1

dij(t)
(

L̃(x(j))− L̃(x(i))
)
, i = 1, 2, . . . , N. (3.2)

Suppose x = ξ(t) is a periodic solution of the local system ẋ = f(x). Then xp = 1N ⊗ ξ(t) solves (3.2). In
a neighborhood of xp, (3.2) can be rewritten using Taylor’s formula

ẋ(i) = f(x(i)) + g

N∑
j=1

dij(t)L(t)(x(j) − x(i)) + O(max
k,l
|x(k) − x(l)|2), i = 1, 2, . . . , N,

or, equivalently,

ẋ = f(x) + g(D(t)⊗ L(t))x+ . . . , where L(t) :=
∂L̃(ξ(t))

∂x
. (3.3)

Equation (3.3) is now in the form, for which the analysis of Section 2 applies (cf. B) above).
D) Nonperiodic attractors. Moving coordinate systems similar to the one used in this Letter can be

introduced in the vicinity of locally invariant sets of more general nature. For example, motions along
certain attracting normally hyperbolic slow manifolds admit a similar description (cf. [17, 23]). Thus, our
analysis can be adopted to study synchronization in a more general setting. Furthermore, in the case when
the attractor of the local system is periodic and synchronization takes place, the analysis of Section 2 yields
a precise description of the asymptotic behavior of trajectories of the coupled system. Specifically, the
attractor of the coupled system includes a periodic orbit that is a direct product of the periodic orbits of the
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local systems. If one is only concerned with synchronization and does not aim at describing the asymptotic
behavior of the coupled system, then the transformation to moving coordinates is not needed. To outline the
analysis for this case, let x = ξ(t) be a solution of the local system. This solution is not necessarily periodic.
Instead, we assume that x = ξ(t) does not leave a bounded domain in Rn. Then ξ(t) = 1N ⊗ ξ(t) solves
the coupled system

ẋ = f(x) + g(D⊗ L)x, x = (x(1), x(2), . . . , x(N)) ∈ RNn. (3.4)

Linearization about x = ξ(t) yields

ẋ = (IN ⊗ A(t) + g(D⊗ L))x+ . . . , A(t) =
∂f(ξ(t))

∂x
. (3.5)

By multiplying both sides of (3.5) by S = S⊗ I, we get the equation of y = Sx:

ẏ = (IN−1 ⊗ A(t) + g(D̂⊗ L))y + . . . . (3.6)

Asymptotic stability of y ≡ 0 implies synchronization for (3.4). A sufficient condition for asymptotic
stability of the trivial solution of (3.6) is that the eigenvalues of symmetric matrix

B = IN−1 ⊗ As(t) + gD̂s ⊗ L (3.7)

are negative and bounded from zero uniformly in t ≥ 0. Since |As(t)| is bounded, the desired property forB
for large g follows from D ∈ D and L being symmetric positive definite. Thus, we get a sufficient condition
for synchronization for the full coupling. In the partial coupling case, D̂s ⊗ L has N × (n− rank (L)) zero
eigenvalues and one has to make sure that they do not give rise to negative eigenvalues of B. The condition
for this can be obtained from the well-known formulas for the perturbations of the eigenvalues of symmetric
matrices (cf. Appendix in [24]). A more complete analysis of synchronization for the partial coupling case
will be given elsewhere [25].

4 Numerical example

To illustrate the analytical results of this Letter, we use a nondimensional model of a pacemaker neuron from
[22]:

εv̇
(i)
t = g1(v

(i)
t )
(
E1 − v(i)t

)
+ g2(u

(i)
t )
(
E2 − v(i)t

)
+ ḡ3

(
E3 − v(i)

)
+ I(i)v + σẇ

(i)
t , (4.1)

u̇
(i)
t = ω

(
g1(v

(i)
t )
(
E1 − v(i)t

)
− u

(i)
t

τ

)
+ I(i)u , i = 1, 2, . . . , N. (4.2)

Dynamic variables v(i) and u(i) represent membrane potential and calcium concentration in a given compart-
ment of an axon or a dendrite of a neural cell. The compartments are sufficiently small so that the membrane
potential and calcium concentration can be assumed constant throughout one compartment (Fig. 1a). Terms
on the right hand side of the voltage equation (4.1) model ionic currents: a calcium current, a calcium de-
pendent potassium current, and a small leak current. In addition, small white noise is added to account for
random synaptic input or other fluctuations. The equation for calcium concentration (4.2) takes into account
calcium current and calcium efflux due to calcium pump. The ionic conductances are sigmoid functions of
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Figure 1: Schematic representation of spatial structure of a compartmental model: (a) linear cable, (b)
branched cable. Dynamic variables v(i) and u(i), i = 1, 2, . . . , N , approximate voltage and calcium concen-
tration in each compartment.

the voltage and calcium concentration

g1(v) =
ḡ1
2

(
1 + tanh

(
v − a1
a2

))
, (4.3)

g2(u) =
ḡ2u

4

u4 + a43
. (4.4)

We briefly comment on the meaning of the model parameters: ḡ1,2,3 and E1,2,3 stand for maximal conduc-
tances and reversal potentials of the corresponding ionic currents; a1,2,3 are constants used in the descrip-
tions of activation of calcium and calcium dependent currents; ω and ε are certain constants that come up
in the process of nondimesionalization of the conductance based model of a dopamine neuron (see [22] for
details). The values of the parameters that were used in our simulations are given in the appendix to this
Letter.

The coupling terms

I(i)v = g
N∑
j=0

dij(v
(j)
t − v

(i)
t ), (4.5)

I(i)u = δ

N∑
j=0

dij(u
(j)
t − v

(i)
t ) (4.6)

model electrical current and calcium diffusion between adjacent compartments respectively. In case of
a linear cable geometry of an axon (dendrite) shown in Fig. 1a, D = (dij) is the matrix corresponding
to the nearest-neighbor coupling (cf. (2.26)). For branched dendrites (see Fig. 1b), D may have a more
complex structure. In either case, the structure of D reflects the geometry of the neuron. By combining this
information, we obtain a model in the form of (1.2), (2.1), with

L =

(
1 0
0 δ1

)
and P =

(
1 0
0 0

)
, (4.7)
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where δ1 = g−1δ. The coupling is full rank. If we disregard calcium diffusion, i.e., set δ = 0, the coupling
becomes partial with L = diag (1, 0). System of equations (4.1) and (4.2) with δ = 0 admits an alternative
interpretation. One can view v(i) and u(i) as the membrane potential and calcium concentration of Cell i
in a neuronal population. The coupling is due to the current through the gap-junctions between adjacent
cells. In this case, D reflects network connectivity. If gap-junctional conductance depends on voltage or
calcium concentration, the coupling is nonlinear as in (3.1). If the gap-junctions permit ions in one direction,
coupling matrix D is not symmetric.

In the remainder of this section, we present the results of numerical simulations of (4.1) and (4.2). We
choose the variant of the model with partial coupling, i.e., with δ = 0. When δ > 0, the model has even
better synchronization properties. The upper panel of Fig. 2 shows the phase plane and the time series of
five uncoupled oscillators forced by small noise. The initial condition is chosen on the limit cycle of the
deterministic system and is the same for each oscillator. Fig. 2a shows phase trajectories of all five oscillators
for approximately one cycle. As one can see from Fig. 2b, after a few first cycles, under the influence of
noise the oscillations gradually loose coherence. In contrast, the trajectories shown in Fig. 2c and d remain
tightly bundled. In these simulations, we used nearest-neighbor D2 and all-to-all coupling D1 respectively.

To illustrate Theorem 2, for simulations shown in Figure 2e, we use a random dissipative matrix. Specif-
ically, we pick the entries of (−Q)1/2 from a uniform distribution on [0, 1]:

(−Q)1/2 =


0.7577 0.7060 0.8235 0.4387 0.4898
0.7431 0.0318 0.6948 0.3816 0.4456
0.3922 0.2769 0.3171 0.7655 0.6463
0.6555 0.0462 0.9502 0.7952 0.7094
0.1712 0.0971 0.0344 0.1869 0.7547


and let

D3 = QΛ0 =


−1.0251 2.2043 −1.6032 0.5044 −0.0804
−0.1264 0.2772 −0.3006 0.2060 −0.0562
−1.1549 2.5819 −1.9613 0.5210 0.0133
−0.8807 1.9231 −1.0823 0.0333 0.0066
−0.9049 1.8778 −1.0060 0.3772 −0.3441

 . (4.8)

The trajectories in Figure 2e are not as close to each other as in the two previous plots. To see how the value
of κ computed for different network topologies correlates with the degree of coherence in our simulations,
we compute κ(D1) = 0.8, κ(D2) = 2, and κ(D3) = 23.1675. In accord with (2.34), the numerics show
that coherence is better for smaller values of κ.

In conclusion, we relate the class of dissipative matrices to that of matrices that have been previously
known to promote synchrony. The coupling matrices analyzed in [9, 15] are subject to the constraint that the
off diagonal elements are nonnegative. Note that many of the off diagonal elements of our randomly picked
dissipative matrix D3 are negative. A straightforward albeit tedious calculation shows that if one chooses
a dissipative matrix at random in the way we did in this example, the probability that at least one (or for
that matter any fixed) off diagonal element is negative, is positive. This shows that the class of dissipative
matrices is substantially bigger than those satisfying sufficient conditions for synchronization in [9, 15].

5 Discussion

In this Letter, we have identified dissipative operators, a class of linear coupling operators that enforce syn-
chrony in networks of oscillators provided that the interactions between oscillators are sufficiently strong.
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Figure 2: Numerical simulations of compartmental model (4.1)-(4.2). (a) Phase trajectories of five uncou-
pled oscillators are plotted for approximately one cycle. (b) Timeseries of five uncoupled oscillators. All
oscillators were given identical initial condition lying on the limit cycle of the deterministic system. Even
small noise leads to desynchronization of five oscillators already after first several cycles. In contrast, simu-
lations of the system coupled using nearest-neighbor (c), all-to-all (d), and random dissipative (e) coupling
matrices show good coherence. The coherence is better for smaller values of κ.
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Our results apply to a broad class of networks including those with asymmetric, time-dependent, and nonlin-
ear separable coupling schemes; as well as networks of local systems with nonperiodic attractors. Further-
more, we have derived an analytic estimate (2.37) for the coherence of the network dynamics in the presence
of noise. Robustness to noise is one of the main indicators gauging physical feasibility of the dynamical
regimes generated by mathematical models. In this respect, (2.37) gives important practical information
about the factors contributing to the robustness of synchronous oscillations to noise. On the other hand,
stability of the relevant dynamical states is among the key parameters determining the asymptotic value of
the variance of the trajectories of a randomly perturbed dynamical system. For large systems like (1.2), an-
alytical estimates of the quantities characterizing stability (e.g., Lyapunov exponents) are rare. By studying
the variability of the synchronous regime in a randomly perturbed problem (1.2) and (2.1), one can infer the
degree of stability of the synchronous solution of the underlying deterministic system. Specifically, smaller
values of κ(D) imply better stability of the synchronous solutions of (1.2)0 and (2.1). Importantly, κ(D)
reveals the contribution of the network topology to the stability of the synchronous state. Therefore, using
the randomly perturbed model (1.2), (2.1) and the main estimate (2.37) may be viewed as a probabilistic
method for studying stability of the synchronous solutions in the deterministic system.

Acknowledgments. Discussions with Dmitry Kaliuzhnyi-Verbovetskyi are greatly appreciated. This work
was done during sabbatical leave at Program of Applied and Computational Mathematics (PACM) at Prince-
ton University. The author thanks PACM for hospitality.

Appendix. Parameter values for (4.1) and (4.2)

The equations for the local systems in the neural network (4.1) and (4.2) are adopted from a nondimensional
model of a dopamine neuron [22]. For biophysical background and details of nondimesionalization, we
refer an interested reader to [22]. For the purposes of the present Letter, the values of several parameters
of the original model were modified to make the oscillations less stiff. The parameter values used in the
simulations shown in Figure 2 are summarized in the following table.

TABLE

E1 1 E2 −0.9 E3 −0.3 ḡ1 0.8 ḡ2 2 ḡ3 1 g 0.3
a1 −0.35 a2 1.4 · 10−2 a3 1.8 ε 0.1 τ 5.0 ω 5.0 σ 0.0001
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