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Teleportation in the presence of noise
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Abstract

Non-commuting noises may give rise to entanglement sudden death. By considering the deco-

herence dynamics during establishment of the channel states and noisy recovery operations, we

study further the impact of non-commuting noises on single- and two-qubit teleportation. We

show that in the presence of these noises there exists a critical rate of recovery operation below

which teleportation will fail.
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Quantum teleportation [1] is the disembodied transport of an arbitrary unknown state

|ψ〉 of a quantum system from a sender (Alice, A) to a receiver (Bob, B) using their prior

shared entangled state χ. We focus on two-level systems or qubits throughout this work.

So,

|ψ〉 = a|0〉 + b|1〉 (1)

with a = cos θ/2 and b = eiφ sin θ/2, where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. In the standard

teleportation protocol, Alice first performs a joint measurement {Πj ≡ |Ψj
Bell〉〈Ψj

Bell|} in the

Bell operator basis:

|Ψ0
Bell〉 =

1√
2
(|00〉 + |11〉),

|Ψ1
Bell〉 =

1√
2
(|01〉 + |10〉),

|Ψ2
Bell〉 =

1√
2
(|01〉 − |10〉),

|Ψ3
Bell〉 =

1√
2
(|00〉 − |11〉), (2)

on particle A1 in the state |ψ〉 and particle A2 in the entangled channel state χ. She then

communicates the measurement outcome j (j = 0, 1, 2, 3) to Bob via a classical channel.

Depending on Alice’s measurement outcome, Bob either does nothing or applies a recovery

operation to particle B also in the state χ to complete the teleportation. Ideally, these

operations consist of σ1, σ2 and σ3, the usual Pauli operators that satisfy the commutation

relations [σm, σn] = 2iǫlmnσl. Teleportation is central to a number of fundamental quantum

communication and computation schemes. However, for a large-scale realization of these, it

is necessary to be able to teleport more than one qubit. The standard teleportation protocol

may be directly generalized to teleport an N -qubit state via N copies of χ [2]. The first

experimental realization of teleportation of two-qubit system has been presented in Ref.[3].

In this paper, we consider the dynamics of single- and two-qubit teleportation in the presence

of noise.

Real systems can never be perfectly isolated from the surrounding world. Therefore, in

a realistic study of any quantum information protocol, one has to take into account the

unavoidable coupling of systems or quantum processors with their environment. Under

the assumption that the environment is Markovian, the state ρ of an open system evolves
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according to a quantum master equation [4]

d

dt
ρ = −i[H, ρ] +

∑

k

1

2
γk(2LkρL

†
k − L†

kLkρ− ρL†
kLk). (3)

Here, we set h̄ = 1. H is the system’s Hamiltonian. In particular, H = Hm ≡ ω0σ
m/2

generates an anticlockwise coherent rotation of a qubit about the m-axis at the rate ω0. This

may be a necessary unitary transformation for Bob to recover |ψ〉. Lk’s are the Lindblad

operators. They describe decoherence. For instance, consider a pair of qubits initially in the

maximally entangled Bell singlet state |Ψ2
Bell〉. If one of the particles is subject to a local

dephasing noise, say L03 = σ0 ⊗ σ3 (σ0 = I2 is the two-dimensional identity), then solving

the master equation, we find ζ(t) at time t > 0:

|Ψ2
Bell〉〈Ψ2

Bell| → ζ(t) =
1

2





















0 0 0 0

0 1 −e−2γ3t 0

0 −e−2γ3t 1 0

0 0 0 0





















. (4)

When one of the particles is instead subject to a local bit-flip noise, i.e., L01 = σ0 ⊗σ1, then

|Ψ2
Bell〉〈Ψ2

Bell| → ξ(t) =
1

4





















1 − e−2γ1t 0 0 −(1 − e−2γ1t)

0 1 + e−2γ1t −(1 + e−2γ1t) 0

0 −(1 + e−2γ1t) 1 + e−2γ1t 0

−(1 − e−2γ1t) 0 0 1 − e−2γ1t





















.

(5)

Equations (4) and (5) describe the physical situation where Alice prepares, at time t = 0,

the state |Ψ2
Bell〉 and sends one of the particles down a noisy channel to Bob to establish

the shared entangled state χ at t > 0. We say the mixed channel state χ results from

transmission noise.

For a two-qubit system AB, it is well-known that a necessary and sufficient condition for

separability is that a matrix, obtained by partial transposition of its density operator, has

non-negative eigenvalue(s) [5]. As a measure of the amount of entanglement associated with

a given two-qubit state ρAB, we employ the negativity [6]

N [ρAB] ≡ max

{

0,−2
∑

m

λm

}

, (6)

where λm is a negative eigenvalue of ρTA

AB, the partial transposition of ρAB. From Eqs.(4)

and (5), we obtain N [ζ(t)] = e−2γ3t and N [ξ(t)] = e−2γ1t. The entanglement associated

3



with |Ψ2
Bell〉 decays smoothly and asymptotically exponentially to zero, in exactly the same

manner whether it is under the influence of a dephasing or bit-flip noise. This can be

understood from the facts that |0〉 and |1〉 are eigenvectors of σ3, and that |Ψ2
Bell〉 can also

be similarly expressed in terms of the eigenvectors |±〉 ≡ (|0〉 ± |1〉)/
√

2 of σ1:

|Ψ2
Bell〉 =

1√
2
(|−〉|+〉 − |+〉|−〉). (7)

But, if we subject |Ψ2
Bell〉 simultaneously to both L01 and L03, then we find a dramatically

different effect. The resulting state µ(t) has negativity [7]

N [µ(t)] = max
{

0,
1

2
[(1 + e−2γt)2 − 2]

}

. (8)

From here on, we let γk = γ for simplicity. The entanglement goes abruptly to zero in a

finite time τd = − ln(
√

2 − 1)/(2γ) and remains zero thereafter. This phenomenon, called

“entanglement sudden death” (ESD) [8], has recently been confirmed experimentally [9, 10].

To observe ESD under dephasing, an entangled two-qubit density operator should have

nonzero diagonal elements [11]. It is thus not difficult to understand how ESD occurs here.

Since σ1 does not commute with σ3, the noise generated by σ1 causes zero diagonal elements

like those in Eq.(4) to become nonzero like those in Eq.(5). Since they do not commute, we

call the noises generated by σ1 and σ3 non-commuting. These have potentially troubling

consequence [9].

Given the fundamental and practical importance of teleportation, it is imperative to un-

derstand all possible environmental effects on the protocol (see Refs.[12, 13, 14] for some of

these studies). In this paper, motivated by the above experimental progresses and theoret-

ical insights, we analyze the impact of non-commuting noises and non-commuting recovery

operations in the presence of different types of noise on single- and two-qubit teleportation.

We show that in the presence of both transmission and recovery noises, there exists a crit-

ical ω0 below which the teleportation will fail. For two-qubit teleportation, we show that

even when the channel states are ideal, the entanglement associated with a certain class of

entangled input states suffers from ESD whenever Bob’s noisy recovery operations do not

commute.

To set the stage and for definiteness, we suppose the ideal channel state is χ0 ≡
|Ψ2

Bell〉〈Ψ2
Bell|. Then, the initial complete state of the three particles, A1, A2 and B, is

|ψ〉⊗ |Ψ2
Bell〉 =

1

2
(−i|Ψ0

Bell〉⊗σ2|ψ〉− |Ψ1
Bell〉⊗σ3|ψ〉− |Ψ2

Bell〉⊗σ0|ψ〉+ |Ψ3
Bell〉⊗σ1|ψ〉). (9)
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It follows ideally that if Alice’s measurement outcome is j, then Bob’s unitary transformation

to recover |ψ〉 will be σm withm = j⊕2. (⊕ is addition modulo four.) We assume throughout

that only Alice’s joint Bell-state measurement is perfect. In general, the unnormalized state

teleported via a noisy channel state χ is therefore given by

E (α)
χ,m(|ψ〉〈ψ|) = R(α)

m (trA1A2
[(Πj

A1A2
⊗ σ0

B)(|ψ〉A1
〈ψ| ⊗ χA2B)]). (10)

α = p, d, b, bp or i indicates if Bob’s recovery operations are perfect, or corrupted by

dephasing, bit-flip, bit-phase-flip noise (generated by σ2), or intrinsic noise. For α = p,

R(p)
m (ρ) = σmρσm. Otherwise, R(α)

m (ρ) has to be obtained by solving the appropriate master

equation (3) with ρ as the initial state. By intrinsic noise we refer to Milburn’s model of

intrinsic decoherence [15], where the Lindblad operator in Eq.(3) is given by the Hamiltonian

H .

Quantitatively, the average teleportation fidelity

F (α)
av [χ] ≡ 1

4π

∫ π

0
sin θdθ

∫ 2π

0
dφ

3
∑

m=0

〈ψ|E (α)
χ,m(|ψ〉〈ψ|)|ψ〉 (11)

describes if the teleportation protocol is successful. For example, when χ = ζ(t) or ξ(t) but

α = p, we have F (p)
av [ζ(t)] = (2 + e−2γt)/3 = F (p)

av [ξ(t)] [12]. In both cases, F (p)
av [χ] decays

smoothly and asymptotically exponentially to the limiting value of 2/3 - the best possible

score if Alice and Bob communicate with each other only via a classical channel. In contrast,

we have for χ = µ(t),

F (p)
av [µ(t)] =

2

3
+

1

6
[(1 + e−2γt)2 − 2]. (12)

We note that F (p)
av [µ(t)] = 2/3 when t = τd, exactly at the moment when the entanglement

of µ suffers a sudden death. Entanglement is a necessary resource for teleportation, and pro-

vided Bob’s recovery operations are perfect, every bit of entanglement associated with ζ(t),

ξ(t), or µ(t) will yield an average teleportation fidelity better than classical communication

alone does. The protocol can still be successfully completed with Bob’s perfect recovery

operations if the channel state µ is established within τd. ESD sets a limit on the success

of the protocol, in terms of the finite lifetime τd of the entanglement associated with the

channel state µ.

Before analyzing the effects of both transmission and recovery noises, let us suppose the

transmission is noiseless and Alice shares χ0 with Bob, while Bob’s recovery operations are
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noisy. Firstly, if Bob’s operations are corrupted by intrinsic noise [15], then we have

F (i)
av [χ0] =

1

4
(3 − e−2γt cosω0t). (13)

The maxima of F (i)
av [χ0] are reached whenever t satisfies 2γ cosω0t + ω0 sinω0t = 0 and

(ω2
0 −4γ2) cosω0t−4ω0γ sinω0t < 0. The first (and largest) maximum, Φ(i)

max[χ0], is achieved

at T (i)
χ0

= (π − tan−1 2γ/ω0)/ω0. For a given γ, T (i)
χ0

increases with decreasing ω0. However,

Φ(i)
max[χ0] is always greater than 2/3 by at least 1/12. Secondly, if Bob’s operations are

instead infected with dephasing noise, then

F (d)
av [χ0] =

1

12
[(8 + e−2γt) − e−2γt cosω0t− 2e−γt cosωt], (14)

where ω ≡
√

ω2
0 − γ2. In this case, the maxima of F (d)

av [χ0] are reached when t satisfies

e−γt[(2γ cosω0t+ ω0 sinω0t) − 2γ] + 2(γ cosωt+ ω sinωt) = 0 and e−γt[(ω2
0 − 4γ2) cosω0t−

4ω0γ sinω0t+4γ2]+ 2[(ω2−γ2) cosωt−2ωγ sinωt] < 0. Again, the first maximum Φ(d)
max[χ0]

is achieved at T (d)
χ0

that increases with decreasing ω0. But, in contrast to Eq.(13), Φ(d)
max[χ0]

decays smoothly and asymptotically to 2/3 with increasing T (d)
χ0

. Hence, for both instances,

provided Alice and Bob share an ideal channel state, Bob’s noisy operations do not result

in an average teleportation fidelity worse than that achievable by classical communication

alone. Specifically, there is no constraint on the rate at which Bob’s operations have to be

completed before the teleportation fails. The difference between Eqs.(13) and (14) can be

accounted for by the facts that in Milburn’s model of decoherence, the Lindblad operators

Lm = σm commute with the Hamiltonian Hm by definition; whereas in the presence of

dephasing noise, except for H3, H1 and H2 do not commute with the Lindblad operator L3.

Finally, we note that F (b)
av [χ0] = F (d)

av [χ0].

Now, we consider χ = ζ(t0) with Bob’s operations executed in the presence of intrinsic

noise. After some straightforward calculations, we obtain

F (i)
av [ζ(t0)] =

1

12
[(7 + 2e−2γt0) − (1 + 2e−2γt0)e−2γt cosω0t]. (15)

Clearly, the first maximum Φ(i)
max[ζ(t0)] is achieved at T

(i)
ζ(t0) = T (i)

χ0
. However, in contrast to

Eq.(13), we have to demand that

(1 + 2e−2γt0)
{

1 − exp
[

−2γT
(i)
ζ(t0)

]

cosω0T
(i)
ζ(t0)

}

> 2, (16)

in order for Φ(i)
max[ζ(t0)] to exceed 2/3. Equation (16) gives the constraint on a critical

ω0, denoted by ω(i)
c [ζ(t0)], smaller than which will result in a failure to teleport. Suppose
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γ = 1/10 and it takes t0 = 10 for Alice’s entangled qubit to reach Bob so as to establish

the entangled channel, then we have to require that ω(i)
c [ζ(t0)] ≈ 1.09915. Therefore, in the

presence of both transmission and recovery noises, there exists a critical ω0 below which the

teleportation will fail. We attribute this to the non-commutativity between L3, generator

of the transmission noise, and the noisy recovery operations R(i)
1 and R(i)

2 . We note that we

could have expressed our results in terms of the transmission time t0 if we fix ω0 instead -

there will then exist a critical t0 beyond which the teleportation will fail, just like in Eq.(12).

Next, if Bob’s operations are corrupted by dephasing noise,

F (d)
av [ζ(t0)] =

1

12
[(7 + e−2γt0) + e−2γt0e−2γt(1 − cosω0t)

−(1 + e−2γt0)e−γt cosωt− (1 − e−2γt0)
γ

ω
e−γt sinωt]. (17)

In this case, the critical ω(d)
c [ζ(t0)] ≈ 0.754443 if γ = 1/10 and t0 = 10. This is again

attributable to the fact that R(d)
1 and R(d)

2 do not commute with L3. Lastly, when the

operations are infected with bit-flip noise,

F (b)
av [ζ(t0)] =

1

24
[(13 + 3e−2γt0) + (1 + e−2γt0)e−2γt(1 − cosω0t)

−(1 + 3e−2γt0)e−γt cosωt+ (1 − e−2γt0)
γ

ω
e−γt sinωt]. (18)

We note that F (bp)
av [ζ(t0)] = F (b)

av [ζ(t0)]. For γ = 1/10 and t0 = 10, we have ω(b)
c [ζ(t0)] ≈

1.38597. In contrast to Eqs.(15) and (17), Eq.(18) is due to non-commutativity between

L3 and all three noisy recovery operations. Preliminary numerical results indicate that

ω(b)
c [ζ(t0)] is larger than both ω(i)

c [ζ(t0)] and ω(d)
c [ζ(t0)] regardless of γ and t0, while ω(d)

c [ζ(t0)]

may be greater than ω(i)
c [ζ(t0)] for some γ and t0 [16]. We must stress that we have achieved

what we set out to show, namely that in the presence of both transmission and recovery

noises there exists a critical ω0 below which the teleportation fails to attain an average

fidelity better than classically possible.

Before concluding, we consider two-qubit teleportation. A direct generalization of Eq.(10)

gives

E (α)
χ,mn(|Ψ〉〈Ψ|) = R(α)

mn(trA1A2A3A4
[(Πj1

A1A3
⊗Πj2

A2A4
⊗I4)(|Ψ〉A1A2

〈Ψ|⊗χA3B1
⊗χA4B2

)]), (19)

the unnormalized state teleported via the pair of channel states χ ⊗ χ. As in Eq.(10), for

outcomes j1 and j2, R(p)
mn(ρ) = (σm ⊗ σn)ρ(σm ⊗ σn), where m = j1 ⊕ 2 and n = j2 ⊕ 2.

Otherwise, R(α)
m (ρ) has to be obtained by solving the appropriate master equation (3) with
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ρ as the initial state. In two-qubit teleportation, it is not only important to achieve a high

fidelity F (α)
mn [χ, |Ψ〉] ≡ 〈Ψ|Ẽ (α)

χ,mn(|Ψ〉〈Ψ|)|Ψ〉 [17], but also a high negativity N [Ẽ (α)
χ,mn(|Ψ〉〈Ψ|)]

if the input state |Ψ〉 originally has non-zero entanglement. We want to show that to achieve

both there also necessarily exists a critical ω0. To this end, it is sufficient to consider (with

0 ≤ θ ≤ π)

|Ψ〉 = cos θ|00〉 + sin θ|11〉, (20)

which has negativity N [|Ψ〉〈Ψ|] = | sin 2θ| ≡ η(θ).

Firstly, we consider χ = ζ(t) but α = p. In this case, regardless of Alice’s mea-

surement outcomes and Bob’s corresponding recovery operations, we have Ẽ (p)
ζ(t)(|Ψ〉〈Ψ|) =

cos2 θ|00〉〈00| + e−4γt cos θ sin θ|00〉〈11| + e−4γt cos θ sin θ|11〉〈00| + sin2 θ|11〉〈11|. It follows

that N [Ẽ (p)
ζ(t)(|Ψ〉〈Ψ|)] = e−4γtη(θ) and F (p)[ζ(t), |Ψ〉] = 1 − 1/2(1 − e−4γt)η2(θ). So, like in

single-qubit teleportation, every bit of entanglement associated with ζ(t) can be used to

teleport some entanglement of |Ψ〉 and with fidelity better than the classically achievable

2/5 [3]. The same conclusions can be made with χ = ξ(t). However, we have for χ = µ(t),

N [Ẽ (p)
µ(t)(|Ψ〉〈Ψ|)] =

1

2
[e−4γt(1 + e−4γt)η(θ) − (1 − e−4γt)]. (21)

Ẽ (p)
µ(t)(|Ψ〉〈Ψ|) suffers ESD at τ ′d = − ln{[√η2 + 6η + 1 − (η + 1)]/(2η)}/(4γ). τ ′d increases

with increasing η. In particular, for θ = π/4 or η = 1, τ ′d = τd/2. Hence, the two-qubit

teleportation scheme fails to teleport any entanglement before µ suffers ESD. This is in

contrast to Eq.(12). The teleportation fidelity at a given time t,

F (p)[µ(t), |Ψ〉] =
1

4
[(1 + e−2γt)2 − e−2γt(2 − e−2γt − e−6γt)η2(θ)], (22)

decreases with increasing η. At t = τ ′d, F (p)[µ(t), |Ψ〉] = 1/2 if η = 1. Therefore, the

teleportation fidelity may be better than 2/5 even though there’s zero entanglement left in

the teleported state. Entanglement teleportation is certainly more demanding [14].

Now, suppose Alice and Bob share the ideal channel states χ0 ⊗ χ0 but α = d. We

note that since the channel states are ideal, the states of Bob’s particles obtained after

Alice’s measurement have the exact amount of entanglement as the original input state.

Bob’s recovery operations are local operations that will decrease the entanglement between

his particles if they are noisy. Indeed, we find that other than measurement outcomes

(j1, j2) = (1, 1), (1, 2), (2, 1) and (2, 2); all noisy recovery operations result in ESD of

Ẽ (d)
χ0,mn(|Ψ〉〈Ψ|) at time τ

′(d)
d (see Table I). For given θ and γ, τ

′(d)
d depends on ω0 (see Table
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(j1, j2) (3, 3) (0, 3), (3, 0) (1, 3), (3, 1) (0, 0) (0, 1), (1, 0) (0, 2), (2, 0), (2, 3), (3, 2)

τ
′(d)
d 4.41327 4.26935 4.82192 4.47320 4.82192 8.82654

τ
′′(d)
d 0.673553 0.620059 0.798830 0.636653 0.769228 0.846130

TABLE I: Alice’s measurement outcomes are j1 and j2. τ
′(d)
d and τ

′′(d)
d are obtained assuming

θ = π/4, γ = 1/10, and ω0 = 1. In addition, for τ
′′(d)
d , we have t0 = 10.

ω0 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

τ
′(d)
d 4.20973 4.14431 4.16111 4.22990 4.27950 4.26935 4.22880 4.18849 4.16516 4.16827 4.19592

TABLE II: Alice’s measurement outcomes are j1 = 3 and j2 = 0. τ
′(d)
d is obtained assuming

θ = π/4 and γ = 1/10.

II). The existence of ESD here implies that to ensure Ẽ (d)
χ0,mn(|Ψ〉〈Ψ|) has nonzero negativity

and fidelity F (d)
mn[χ0, |Ψ〉] ≡ 〈Ψ|Ẽ (d)

χ0,mn(|Ψ〉〈Ψ|)|Ψ〉 larger than 2/5 there is a critical ω0 below

which these are impossible to achieve. For instance, to have N [Ẽ (d)
χ0,12(|Ψ〉〈Ψ|)] 6= 0 and

F (d)
12 [χ0, |Ψ〉] > 2/5, we require that the minimum ω0 be between 0.5 and 0.6, when θ = π/4

and γ = 1/10. When χ = ζ(t0) and α = d, Ẽ (d)
ζ(t0),mn(|Ψ〉〈Ψ|) suffers ESD at τ

′′(d)
d . In general,

τ
′′(d)
d < τ

′(d)
d (see Table I).

In conclusion, we have revealed further interesting dynamical properties of quantum

systems when they are subject to non-commuting noises in our study. These results are

relevant to protocols, such as teleportation-based computation, where teleportation has to

be considered as a dynamical process.
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