
ar
X

iv
:0

90
1.

15
67

v1
  [

qu
an

t-
ph

] 
 1

2 
Ja

n 
20

09

Classification and quantification of nonlocality in ensembles consisting of orthogonal
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An ensemble of mutually orthogonal multipartite states may not be distinguishable by means
of local operations and classical communication (LOCC) and could exhibit a kind of nonlocality
different from quantum entanglement. We here introduce a measure to quantify and classify the
nonlocality of ensembles consisting of mutually orthogonal bipartite states, which is the entangle-
ment cost in addition to LOCC to distinguish the states with vanishing error in the asymptotic
limit. We estimate various upper and lower bounds for the nonlocality measure and evaluate the
exact values for ensembles consisting of mutually orthogonal maximally entangled bipartite states.
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Introduction.–Although mutually orthogonal multipar-
tite states are always distinguishable through joint mea-
surements, it was found by Bennett et al. in 1999
that there are ensembles of mutually orthogonal bi-
partite product states that cannot be distinguished by
means of local operations and classical communication
(LOCC); this phenomenon was referred to as the nonlo-
cality without entanglement [1]. The essence of this non-
locality is that the maximal information about the sys-
tem state achievable through LOCC is strictly less than
that achievable through joint measurements. Since the
discovery of this phenomenon, substantial efforts have
been devoted to search the conditions under which a
given ensemble can exhibit such a kind of nonlocality
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. As is known, the en-
semble consisting of the four Bell states can exhibit the
nonlocality [11], while the ensembles consisting of only
two orthogonal states cannot [12]. As a latest result, it
was indicated recently that the nonlocality exists in al-
most all ensembles consisting of more than d mutually
orthogonal d⊗n states [13].

LOCC distinguishing the states in the ensemble ε =
{

pX , ρAB
X

}

can be conceived as a game. Suppose that
there is a classical information source producing symbol
X with probability pX . If the source outputs symbol
X , Alice and Bob will be given a quantum state ρAB

X .
They know the ensemble ε and their task is to determine
the value of X via a measurement implemented through
LOCC. How much information they have gained about
the value of X can be described by the mutual informa-
tion between X and the measurement result Y

I (X ; Y ) = H (X) + H (Y ) − H (XY ) , (1)

where H (·) is the Shannon entropy of the random
variables. The maximal mutual information achievable
through LOCC is called locally accessible information
and it will be denoted by ILOCC (ε). The value of X can
be determined through LOCC if and only if ILOCC (ε) =

H (X) [14]. Similarly we can define IGlobal (ε) which is
the maximal mutual information achievable through joint
measurements. When the states are mutually orthogo-
nal, there is always IGlobal (ε) = H (X); the value of X
can be determined through joint measurements. Gener-
ally there is ILOCC (ε) ≤ IGlobal (ε) ≤ H (X).

Ensembles consisting of mutually orthogonal multipar-
tite states can be divided into two categories according
to whether the states can be distinguished via LOCC.
This division is too coarse. For an ensemble whose states
are LOCC indistinguishable, one can ask how much en-
tanglement in addition to LOCC is needed to distinguish
the states [15]. While for an ensemble whose states are
LOCC distinguishable, one can ask how much entangle-
ment can be distilled through distinguishing the states.

In this paper, we focus on ensembles consisting of mu-
tually orthogonal bipartite states and consider the ten-
sor power ε⊗n instead of the ensemble ε itself, such that
some results from information theory can be used di-
rectly. Since quantum entanglement can be consumed
in distinguishing the states of ε⊗n, we introduce the en-
tanglement cost (defined below) as a measure to quantify
and classify the nonlocality of the ensemble ε. Here we do
not require the states to be distinguished without error,
but require that the error is vanished in the asymptotic
limit. To our knowledge, quantification of the nonlocal-
ity of an ensemble has only been addressed in Ref. [16],
though how to quantify quantum entanglement has been
intensively studied.

Entanglement cost and information nonlocality.–
Consider the ensemble ε =

{

pX , ρAB
X

}

consisting of
mutually orthogonal bipartite states. Its tensor power
is defined as ε⊗n =

{

pXn , ρAnBn

Xn

}

, where pXn =

pX1
pX2

· · · pXn
, ρAnBn

Xn = ρA1B1

X1
⊗ ρA2B2

X2
· · · ⊗ ρAnBn

Xn
and

Xi are independent and identically distributed classical
variables as X . Suppose that Alice holds An and Bob
holds Bn. To determine the value of Xn, they make a
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measurement that satisfies the conditions: (1) it is imple-
mented through LOCC plus n×αn ebits of entanglement
(a bipartite pure state with the quantum entropy of the
reduced state being n × αn); (2) the mutual informa-
tion between Xn and the measurement result Y satisfies
I (Xn; Y ) ≥ IGlobal (ε⊗n) − δn with limn→∞ δn = 0; (3)
when the measurement result Y with the probability pY

is obtained, n × βnY ebits of entanglement is distilled
at the same time, i.e, distilled a bipartite states whose
distance to some pure state with n × βnY ebits of en-
tanglement is ηnY and there is limn→∞ ηnY = 0. The
second condition ensures that the value of Xn can be
inferred from the measurement result Y with vanishing
error since the states of ε⊗n are mutually orthogonal such
that IGlobal (ε⊗n) = H (Xn). We now introduce the en-
tanglement cost defined as

N (ε) = inf lim
n→∞

(

αn −
∑

Y

pY × βnY

)

, (2)

where the infimum operation is taken over all measure-
ments satisfying the above conditions.

The entanglement cost N (ε) defined for ensemble ε =
{

pX , ρAB
X

}

may be positive, negative, and zero. It is
not hard to know that it can be positive only for en-
sembles whose states are LOCC indistinguishable, i.e.,
ILOCC (ε) < IGlobal (ε) = H (X). These ensembles have
the mentioned nonlocality that is different from quantum
entanglement. When N (ε) is positive, we refer to the
corresponding nonlocality of the ensemble as information
nonlocality. The positive N (ε) can be used as a measure
for this nonlocality since it quantifies the minimal non-
local resources (entanglement) that is needed asymptot-
ically to get the full information IGlobal (ε) = H (X) for
identifying the system’s state in addition to LOCC. We
can manifest the meaning of N (ε) through the symbolic
expression

N (ε) [qq] + LOCC |ε => IGlobal (ε) , (3)

where [qq] means an ebit of quantum entanglement.
When N (ε) is negative, asymptotically no nonlocal re-

sources is needed to get the full information IGlobal (ε) for
identifying the system’s state (if the entanglement is still
needed to assist the process, it could be viewed as a kind
of catalyst), and additionally |N (ε)| ebits of entangle-
ment can be distilled. Similarly the meaning of N (ε)
may be manifested through the expression

LOCC |ε => IGlobal (ε) + |N (ε)| [qq] . (4)

In this case, the ensemble ε has no information nonlocal-
ity, however it still has another kind of nonlocality since
certain entanglement can be distilled. Hereafter we may
refer to such kind of nonlocality of the ensemble as en-
tanglement nonlocality, and employ |N (ε)| as a measure
to quantify it.

Interestingly, when N (ε) is zero, the ensemble ǫ has
neither information nonlocality nor entanglement nonlo-
cality mentioned above. As a typical example, N (ε) = 0

for ensembles that consist of LOCC distinguishable prod-
uct states. Notably, a single quantum state may also be
regarded as a special ensemble, and N (ε) = −D (ε) in
this case, where D (ε) denotes the distillable entangle-
ment of the state.

Bounds for the entanglement cost.–Although the en-
tanglement cost N (ε) is usually hard to compute, some
useful bounds of it can be obtained. Bennett et al. ac-
tually gave the first upper bound for N (ε), which is the
quantum entropy of the ensemble state seen by Alice [1],
i.e., N (ε) ≤ S

(

ρA
)

where ρA = TrB

(
∑

X pXρAB
X

)

and
S (·) is the quantum entropy. This is obtained through
the protocol that Alice first compresses her state [17]
and teleports it to Bob [18] and Bob then distinguishes
the states locally. Actually, there are more tight upper
bounds.

Theorem 1 Suppose ε =
{

pX , ρAB
X

}

is an ensemble con-
sisting of mutually orthogonal bipartite states. The en-

tanglement cost satisfies

N (ε) ≤ S (A |B ) = S
(

ρAB
)

− S
(

ρB
)

, (5)

N (ε) ≤ S (B |A ) = S
(

ρAB
)

− S
(

ρA
)

, (6)

where ρAB =
∑

X pXρAB
X , ρB = TrAρAB, ρA = TrBρAB

and S (·) is the quantum entropy.

Proof. The theorem can be derived from the quantum
state merging [19, 20]. To distinguish the states in the
ensemble ε⊗n, the part An on Alice’s side can be merged
to Bob and then he distinguishes the states locally. In
the process of merging [19, 20], the net entanglement
consumed can be S (A |B ) ebits per ensemble, so Eq.
(5) is obtained. If the part Bn on Bob’s side is first
merged to Alice and then she distinguishes the states
locally, similarly the net entanglement consumed can be
S (B |A ) ebits per ensemble, so Eq. (6) is obtained.

The above upper bounds depend only on the ensem-
ble state ρAB, so different ensembles may have the same
upper bound. It is possible to get a smaller bound if we
examine the states in the ensemble carefully since it is
possible that only a part of A needs to be merged to Bob
and then the states become LOCC distinguishable.

Theorem 2 Suppose ε =
{

pX , ρAB
X

}

is an ensemble con-

sisting of mutually orthogonal bipartite pure states. The
entanglement cost satisfies

N (ε) ≥
∑

pXS
(

ρA
X

)

− IρAB (A; B) , (7)

where S (·) is the quantum entropy and IρAB (A; B) =

S
(

ρA
)

+ S
(

ρB
)

− S
(

ρAB
)

is the quantum mutual in-

formation with ρAB =
∑

X pXρAB
X , ρA = TrBρAB,

ρB = TrAρAB and ρA
X = TrBρAB

X .

The quantum mutual information IρAB (A; B) is al-
ways nonnegative and it can be regarded as a quan-
tification of the total correlation between A and B, so
Eq. (7) means that the entanglement cost is not smaller
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than the average entanglement of the states in the en-
semble minus the total correlation between A and B.
When ρAB = ρA ⊗ ρB there is IρAB (A; B) = 0 and

N (ε) ≥
∑

pXS
(

ρA
X

)

; the average entanglement of the
states in the ensemble is a lower bound of the entangle-
ment cost. This case will happen when we consider the
nonlocality of an ensemble consisting of a full basis states
with equal probability.
Proof. According to the definition of N (ε) we should
consider distinguishing the states of the ensemble ε⊗n =
{

pXn , ρAnBn

Xn

}

using LOCC plus n × αn ebits of entan-
glement. It is equivalent to distinguish the states of
the ensemble

{

pXn , ρAnBn

Xn ⊗ ΦA0B0

n

}

using LOCC only,

where ΦA0B0

n is a bipartite pure state with S
(

ΦA0

n

)

=

S
(

ΦB0

n

)

= n×αn. The mutual information between Xn

and the measurement result Y will satisfy [21]

I (Xn; Y ) ≤ n
(

S
(

ρB
)

+ S
(

ρA
)

−
∑

pXS
(

ρA
X

)

)

+ n
(

αn −
∑

pY βnY

)

. (8)

Note that I (Xn; Y ) ≥ IGlobal (ε⊗n) − δn is required and
there is IGlobal (ε⊗n) = nS

(

ρAB
)

, we can get

αn −
∑

pY βnY ≥
∑

pXS
(

ρA
X

)

− IρAB (A; B) − δn/n.

(9)
Since δn/n will go to zero in the asymptotic limit, we can
get Eq. (7) from Eq. (9).

The above two theorems give upper and lower bounds
on N (ε). It is valuable to know when the upper and
the lower bounds will be close for ensembles consisting
of mutually orthogonal bipartite pure states. We first
rewrite the lower bound expression in theorem 2 as

N (ε) ≥ S (A |B ) − χA (ε) = S (B |A ) − χB (ε) , (10)

where χA (ε) = S
(

ρA
)

−
∑

pXS
(

ρA
X

)

and χB (ε) =

S
(

ρB
)

−
∑

pXS
(

ρB
X

)

are the Holevo information of the
ensembles seen by Alice and Bob, respectively. It is not
hard to find that the contents of the two theorems can
be summarized as

S (A |B ) − χA (ε) ≤ N (ε) ≤ S (A |B ) (11)

when χA (ε) ≤ χB (ε) and

S (B |A ) − χB (ε) ≤ N (ε) ≤ S (B |A ) (12)

when χB (ε) ≤ χA (ε). From Eqs. (11) and (12), we
know that the upper and the lower bounds will be closer
if ever χA (ε) or χB (ε) is smaller. Noting that χA (ε)
is the upper bound of the information about the value
of X that Alice can gain solely [14], Eq. (11) means
that the difference between the bounds is small if Alice
can gain little information about the value of X without
cooperation with Bob. When χA (ε) = 0 or χB (ε) = 0,
the exact value of N (ε) can be obtained. This occurs
only when all ρA

X (or ρB
X) are the same. Consequently,

we have the following result.

Corollary 3 Suppose that ε =
{

pX , ρAB
X

}

is an ensem-
ble consisting of mutually orthogonal d × d maximally

entangled pure states. The entanglement cost satisfies

N (ε) = S
(

ρAB
)

− S
(

ρB
)

= H (X) − log d, (13)

where H (·) is the Shannon entropy.

The corollary is true since all ρA
X and ρB

X are the same
maximally mixed state, so there are both χA (ε) = 0 and
χB (ε) = 0; the upper and the lower bounds of N (ε) be-
comes the same value. As is known, the four Bell states
are LOCC indistinguishable [11], however the corollary
indicates that an ensemble consisting of the four Bell
states may not have the information nonlocality since
its entanglement cost N (ε) may be non-positive. The
reason lies in that whether an ensemble has the informa-
tion nonlocality depends not only on its states but also
on the probabilities of the states, while the LOCC in-
distinguishability depends solely on the states. So the
introduced information nonlocality is different from the
LOCC indistinguishability.

There are other ways to obtain upper bounds for en-
tanglement cost N (ε). For any ensemble ε =

{

pX , ρAB
X

}

whose states are mutually orthogonal, there exist nonlo-
cal unitary operations UAB such that the states of the en-
semble ε̄ =

{

pX , UABρAB
X U †AB

}

are LOCC distinguish-

able. The operation UAB can be implemented through
LOCC plus some entanglement. The average entangle-
ment needed to implement UAB is an upper bound of the
entanglement cost N (ε). For an example we consider the
ensemble ε consisting of the following states:

U (−θ) |0〉A |0〉B , U (−θ) |0〉A |1〉B , (14)

U (−θ) |1〉A |0〉B , U (−θ) |1〉A |1〉B , (15)

where U (−θ) = exp
{

−iθσA
x σB

x

}

. The similar example
has appeared in Ref. [22] where the entanglement cost
for nonlocal measurements is discussed. The states have
the same entanglement

H
(

cos2 θ
)

= − cos2 θ log2 cos2 θ− sin2 θ log2 sin2 θ. (16)

We first consider the case that the states have the equal
probabilities. In this case the upper bounds obtained
from theorem 1 can be expressed as N (ε) ≤ 1, which is
not satisfactory. Note that if Alice and Bob implement
U (θ) on AB the changed states will be LOCC distin-
guishable. The average entanglement Ē (θ) needed to
implement U (θ) is an upper bound of the entanglement
cost N (ε), i.e., N (ε) ≤ Ē (θ). Several expressions for
Ē (θ) are given [22, 23, 24, 25], and the one given in
Ref. [23] shows that Ē (θ) will be smaller than unit when
2θ ≤ 0.75. It means when 2θ ≤ 0.75 the upper bound
expression obtained by calculating the average entangle-
ment to implement U (θ) will be better than that in the-
orem 1. However this may not be true when the states
have different probabilities pX . To see this we note that
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S
(

ρA
)

≥
∑

X pXS
(

ρA
X

)

= H
(

cos2 θ
)

, so from theorem
1 there is

N (ε) ≤ S
(

ρAB
)

− S
(

ρA
)

≤ H (X) − H
(

cos2 θ
)

. (17)

The above upper bound for N (ε) depends on the proba-
bilities pX and surely it will be smaller than Ē (θ) when
H (X) is smaller than Ē (θ) + H

(

cos2 θ
)

.
Discussion.–The entanglement cost N (ε) is defined for

all ensembles consisting of mutually orthogonal bipartite
states, so it is applicable not only to ensembles whose
states are LOCC indistinguishable but also to ensembles
whose states are LOCC distinguishable. Clearly, the en-
sembles may be quantitatively classified in terms of the
value of N (ε). Comparing with the coarse classification
based on the LOCC distinguishability, this new classifica-
tion is likely more precise. In addition, the entanglement
cost N (ε) has an operational meaning.

The nonlocality measure N (ε) is defined for ensem-
bles whose states are mutually orthogonal while its def-
inition is also applicable to an ensemble ε =

{

pX , ρAB
X

}

whose states are not mutually orthogonal. In this case
the states of ε cannot be distinguished even through joint
measurements since IGlobal (ε) < H (X). However the
entanglement cost N (ε) still has an operational mean-
ing. The entanglement cost N (ε) can be positive only
when ILOCC (ε) < IGlobal (ε), the same as the case that
the states are mutually orthogonal, and it means that
joint measurements can get more information about the
value of X than that can be obtained through LOCC. To
make up the difference between LOCC and joint mea-
surements in obtaining information about the value of

X , quantum entanglement in addition to LOCC can be
consumed. The positive N (ε) just quantifies the minimal
entanglement that is needed asymptotically to make up
this difference. When N (ε) is negative, asymptotically
LOCC can get the information IGlobal (ε) , and addition-
ally |N (ε)| ebits of entanglement can be distilled. The
upper bound expressions in theorem 1 are also applicable
but the lower bound expression in theorem 2 needs to be
changed into

N (ε) ≥
∑

pXS
(

ρA
X

)

− IρAB (A; B) − ∆(ε) , (18)

where ∆ (ε) = S
(

ρAB
)

− IGlobal (ε), which can be ob-
tained in the same way.

Conclusion.–We have introduced the entanglement
cost as a measure to quantify and classify the nonlocality
of ensembles consisting of mutually orthogonal bipartite
states. It can be applied not only to ensembles whose
states are LOCC indistinguishable but also to ensembles
whose states are LOCC distinguishable. The nonlocal-
ity measure has an operational meaning even when the
states of the ensemble are not mutually orthogonal. The
present work is expected to evoke more profound under-
standings of nonlocality in ensembles.
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