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Complete proof of Gisin’s theorem for three qubits
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Gisin’s theorem assures that for any pure bipartite entangled state, there is violation of Bell-CHSH inequality
revealing its contradiction with local realistic model. Whether, similar result holds for three-qubit pure entangled
states, remained unresolved. We show analytically that allthree-qubit pure entangled states violate a Bell-type
inequality, derived on the basis of local realism, by exploiting the Hardy’s non-locality argument.
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Not all measurement correlations in some state of a com-
posite quantum system can be described by local hidden vari-
able theory (LHVT) [1], a fact which is said to be “the most
profound discovery of science” [2]. Experimental verification
of this fact (i.e., whether measurement correlations in Nature
obey quantum rules or LHVT) goes also in favour of Quna-
tum Theory, modulo some loopholes [3]. Every LHVT de-
scription [4] of the measurement correlations of a composite
system (assumed to be finite dimensional in the present paper)
gives rise to one (or, more than one) linear inequality (or, in-
equalities) involving these correlations [5]. There are states of
a composite quantum system, which violate some or all these
inequalities for suitable choices of the subsystem observables.

Gisin’s theorem assures that for any pure entangled state
of two-qudits, the above-mentioned violation is generic for
two settings per site (i.e., for the choice of one between two
non-commuting observables per qudit) [6]. In other words,all
pure entangled states of twod-dimensional quantum systems
violate asingle Bell-type inequality with two settings per site,
where the choice of the observables depends on that of the
state. However, validity of this theorem for multi-partitesys-
tems is still not guaranteed. For example, for oddN , there is
a family of entangled pure states ofN qubits, each of which
satisfiesall Bell-type inequalities involving correlation func-
tions, arising out of measurement of one between two non-
commuting dichotomic observables per qubit [7]. Later, Chen
et al. [8] provided a Bell-type inequality involving joint prob-
abilities, associated to measurement of one between two non-
commuting dichotomic observables per qubit, which is vio-
lated by all the states of the above-mentioned family [9]. But
a single Bell-type inequality is not guaranteed to be violated
by all pure entangled states of three-qubits, although there are
claims of having numerical evidences in favour of this viola-
tion [8, 10, 11].

Quantum Theory also shows contradiction with LHVT via
‘non-locality without inequalities’ (NLWI) [12]. In this case,
a set of values of joint probabilities of outcomes of mea-
surements of one between two non-commuting observables
per site, has contradiction with LHVT but can be realized in
Quantum Theory. Unfortunately, NLWI is weaker than Bell-
type inequalities, asno maximally entangled state of two-
qudits seems to show NLWI (in the case of Hardy-type NLWI,
this has been shown in [13]) even though each of them vio-

lates a Bell-type inequality. This situation changes drastically
when we consider Hardy-type NLWI for three two-level sys-
tems [14, 15], where all but one of the joint probabilities in
the above-mentioned set are zero.Every maximally entangled
state of three qubits [16] satisfies Hardy-type NLWI for suit-
ably chosen pairs of non-commuting dichotomic observables
per qubit [17]. Moreover, an attempt was made in ref. [17] to-
wards achieving the result thatevery pure state of three qubits,
having genuine tri-partite entanglement, satisfies Hardy-type
NLWI. But in absence of the discovery of canonical form for
three-qubit pure states (which was done later in ref. [18]),it
did not yield a complete proof.

Now, from the set of joint probabilities in any NLWI ar-
gument, one can, in principle, construct a linear inequality
involving these joint probabilities by using local realistic as-
sumption. This inequality is automatically violated by every
quantum state which satisfies the corresponding NLWI argu-
ment. In the case of Hardy-type NLWI argument for two two-
level systems, this inequality (given in equation (11) of ref.
[19], equation (11) of ref. [20], and equation (26) of ref. [21])
is nothing but the corresponding CH inequality [22]. So, by
Gisin’s theorem,every two-qubit pure entangled state (irre-
spective of its amount of entanglement) will violate the for-
mer inequality. In this letter, we showanalytically thatevery
three-qubit pure entangled state violates a linear inequality of
the above-mentioned type (see eqn. (3) below) involving joint
probabilities associated with the Hardy-type NLWI, irrespec-
tive of whether the state has genuine tripartite entanglement
or pure bi-partite entanglement.

Hardy-type NLWI argument starts from the following set of
five joint probability conditions for three two-level systems:

P (D1 = +1, U2 = +1, U3 = +1) = 0,
P (U1 = +1, D2 = +1, U3 = +1) = 0,
P (U1 = +1, U2 = +1, D3 = +1) = 0,
P (D1 = −1, D2 = −1, D3 = −1) = 0,
P (U1 = +1, U2 = +1, U3 = +1) > 0,

(1)

where eachUj (as well asDj) is a{+1,−1}-valued random
variable. This set of conditions can not be satisfied by a local
realistic theory, and hence it has contradiction with LHVT [14,
17].

To show that in quantum theory there are states which ex-
hibit this kind of non-locality, we replaceUj andDj by the
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{+1,−1}-valued observableŝUj and D̂j respectively with
[Ûj , D̂j] 6= 0. The probabilities appearing in (1) are expec-
tation values of one dimensional projectors correspondingto
the following five product vectors:

|D̂1 = +1〉|Û2 = +1〉|Û3 = +1〉,
|Û1 = +1〉|D̂2 = +1〉|Û3 = +1〉,
|Û1 = +1〉|Û2 = +1〉|D̂3 = +1〉,
|D̂1 = −1〉|D̂2 = −1〉|D̂3 = −1〉,
|Û1 = +1〉|Û2 = +1〉|Û3 = +1〉.

One can easily check that these five vectors are linearly in-
dependent and hence span five dimensional subspace of the
eight dimensional Hilbert space associated to the total sys-
tem. Hence one can choose any one (among infinitely many)
vector which is orthogonal to the first four vectors and non-
orthogonal to the last one. Actually this result shows that
for any choice of observables in the above-mentioned non-
commuting fashion, one can always find a quantum state
which exhibits contradiction with local realism [23].

But, in this letter, our purpose is to find the converse. We
would like to see whether every three-qubit pure entangled
state exhibits contradiction with local realism. In this context,
it has to be mentioned that Gisin’s theorem could provide a
single prescription for finding the observables for any bipar-
tite pure state to show violation of the Bell-CHSH inequal-
ity, due to the existence of Schmidt decomposition. Schmidt
decomposition, in its strict sense [24], is absent for systems
comprising of three and more subsystems. This gives rise to
complications and one needs to find the observables for each
inequivalent case (depending upon the values of the parame-
ters describing the state) separately. In this direction, we start
with an arbitrary three-qubit pure state|ψ〉, which can always
be taken in the canonical form [18]:

|ψ〉 = λ0|000〉+λ1e
iφ|100〉+λ2|101〉+λ3|110〉+λ4|111〉,

(2)
where0 ≤ λj (for j = 0, 1, 2, 3, 4),

∑4

j=0
λ2

j = 1, and0 ≤
φ ≤ π.
We now fully classify the above-mentioned three-qubit state
|ψ〉 into four major classes: (A)|ψ〉 is a fully product state,
(B) |ψ〉 has pure two-qubit non-maximal entanglement, (C)
|ψ〉 has pure two-qubit maximal entanglement, and (D)|ψ〉
has genuine pure three-qubit entanglement. Depending on the
values ofλ′is andφ, in table I, we further classify each of these
four classes into several sub-classes: (A) consists of (A.1) -
(A.3); (B) consists of (B.1) - (B.5); (C) consists of (C.1) -
(C.3); (D) consists of (D.1) - (D.14).

If |ψ〉 has only bi-partite non-maximal entanglement we
then first consider the situation where|ψ〉 = |η〉⊗|χ〉, with |η〉
being a two-qubit non-maximally entangled state of the first
and the second qubits, while|χ〉 is a state of the third qubit.
Hardy [12] has shown that for all two-qubit non-maximally
entangled pure states, one can choose observables for both the

TABLE I: Classification of|ψ〉.
Condition case

λ0λ1 6= 0, λ2 = λ3 = λ4 = 0 (A.1)
λ0 6= 0, λ1 = λ2 = λ3 = λ4 = 0 (A.2)
λ0 = 0, λ1λ4e

iφ = λ2λ3 (A.3)
λ0λ1λ2 6= 0, λ3 = λ4 = 0 (B.1)
λ0λ1λ3 6= 0, λ2 = λ4 = 0 (B.2)
0 < λ0λ2 < 1/2, λ1 = λ3 = λ4 = 0 (B.3)
0 < λ0λ3 < 1/2, λ1 = λ2 = λ4 = 0 (B.4)

λ0 = 0 and
√

2

(

λ1e
iφ λ2

λ3 λ4

)

(B.5)

is neither a singular matrix nor a
unitary matrix
λ0λ2 = 1/2, λ1 = λ3 = λ4 = 0 (C.1)
λ0λ3 = 1/2, λ1 = λ2 = λ4 = 0 (C.2)

λ0 = 0 and
√

2

(

λ1e
iφ λ2

λ3 λ4

)

(C.3)

is a unitary matrix
λ0λ1λ2λ3λ4 6= 0, φ > 0 (D.1)
λ0λ1λ2λ3λ4 6= 0, φ = 0, λ2λ3 6= λ1λ4 (D.2)
λ0λ1λ2λ3λ4 6= 0, φ = 0, λ2λ3 = λ1λ4 (D.3)
λ0λ1λ2λ3 6= 0, λ4 = 0 (D.4)
λ0λ1λ2λ4 6= 0, λ3 = 0 (D.5)
λ0λ1λ3λ4 6= 0, λ2 = 0, λ0 6= λ4 (D.6)
λ0λ1λ3λ4 6= 0, λ2 = 0, λ0 = λ4 (D.7)
λ0λ1λ4 6= 0, λ2 = λ3 = 0 (D.8)
λ0λ3λ4 6= 0, λ1 = λ2 = 0 (D.9)
λ0λ2λ3λ4 6= 0, λ1 = 0, λ2 6= λ4 (D.10)
λ0λ2λ3λ4 6= 0, λ1 = 0, λ2 = λ4 (D.11)
λ0λ2λ3 6= 0, λ1 = λ4 = 0 (D.12)
λ0λ2λ4 6= 0, λ1 = λ3 = 0 (D.13)
λ0λ4 6= 0, λ1 = λ2 = λ3 = 0 (D.14)

qubits in such a way that the condition of non-locality without
inequality holds. Now in our three-qubit case, we first choose
|Û3 = +1〉 = (1/

√
2)(|χ〉 + |χ⊥〉) and|D̂3 = +1〉 = |χ⊥〉,

where〈χ⊥|χ〉 = 0. We can then choose two pairs of non-
commuting dichotomic observables(Û1, D̂1) and(Û2, D̂2) in
such a way that the state|η〉 satisfies Hardy’s NLWI condi-
tions for two two-level systems corresponding to these observ-
ables . This immediately shows that the state|ψ〉 satisfies the
Hardy-type NLWI condition (1). As condition (1) is symmet-
ric with respect to the qubits, we see that for each of the cases
(B.1) - (B.5), the state|ψ〉 will satisfy the Hardy-type NLWI
argument (1).

Again, let|ψ〉 = |η〉 ⊗ |χ〉, where|η〉 is a two-qubit maxi-
mally entangled state of the first and the second qubits, while
|χ〉 is a state of the third qubit. If we now demand|ψ〉 to
satisfy (1), it will immediately follow that|η〉 must satisfy
Hardy’s NLWI conditions for two two-level systems – an im-
possibility [12]. As above, we see that in none of the cases
(C.1) - (C.3), state|ψ〉 will satisfy the Hardy-type NLWI ar-
gument.

If |ψ〉 have genuine tri-partite entanglement then to show
that it satisfies the Hardy-type NLWI argument (1), one can
choose the three pairs of{+1,−1}-valued non-commutating
observables (̂Uj , D̂j) (wherej is associated withj-th system
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(j = 1, 2, 3)) as follows:

|Ûj = +1〉 = kj(αj |0〉+βj|1〉), |D̂j = +1〉 = lj(γj |0〉+δj|1〉),

where0 < |kj lj(αjγ
∗
j + βjδ

∗
j )|, |kj lj(αjδj − βjγj)| < 1,

|kjαj |2 + |kjβj |2 = |ljγj |2 + |ljδj |2 = 1, andkj ’s, lj ’s are
the normalization constants (forj = 1, 2, 3). The values of
αj , βj , γj , δj are given in table II for all the cases (D.1) -
(D.14).

We now derive a linear inequality (mentioned in equation
(7) of ref. [25] for n qubits) involving the joint probabili-
ties in equation (1), starting from local realistic theory.For
this, we first assume that all the experimental probabilities
P (Ak = ik), P (Ak = ik, Al = il), P (Ak = ik, Al =
il, Am = im) (with Ak ∈ {Uk, Dk}, and ik ∈ {+1,−1}
for k, l,m = 1, 2, 3, andk 6= l 6= m) can be described by
a local hidden variableω, defined on the probability spaceΩ
with probability densityρ(ω). For local realistic theory, the
probabilities would satisfy the following conditions:
i) Pω(Ak = ik) (for ik ∈ {+1,−1}with k = 1, 2, 3) can only
take values 1 or 0.
ii)Pω(Ak = ik, Al = il) = Pω(Ak = ik)Pω(Al = il),
Pω(Ak = ik, Al = il, Am = im) = Pω(Ak = ik)Pω(Al =
il)Pω(Am = im).

Condition (i) is equivalent to assigning definite values to
the observables. In any LHVT, the experimental probabilities
would be reproduced in the following way:

P (Ak = ik) =
∫

Ω
ρ(ω)dωPω(Ak = ik), P (Ak =

ik, Al = il) =
∫

Ω
ρ(ω)dωPω(Ak = ik, Al = il), P (Ak =

ik, Al = il, Am = im) =
∫

Ω
ρ(ω)dωPω(Ak = ik, Al =

il, Am = im), where
∫

Ω
ρ(ω)dω = 1.

Now consider the following quantity

B(ω) = Pω(D1 = −1)Pω(D2 = −1)Pω(D3 = −1)

+ Pω(D1 = +1)Pω(U2 = +1)Pω(U3 = +1)

+ Pω(U1 = +1)Pω(D2 = +1)Pω(U3 = +1)

+ Pω(U1 = +1)Pω(U2 = +1)Pω(D3 = +1)

− Pω(U1 = +1)Pω(U2 = +1)Pω(U3 = +1).

One can easily check thatB(ω) ≥ 0 for all ω ∈ Ω. Then
obviously

∫

Ω

ρ(ω)dωB(ω) ≥ 0,

which, in turn, gives rise to the following Bell-type inequality:

P (D1 = −1, D2 = −1, D3 = −1) + P (D1 = +1, U2 = +1, U3 = +1) + P (U1 = +1, D2 = +1, U3 = +1) (3)

+P (U1 = +1, U2 = +1, D3 = +1) − P (U1 = +1, U2 = +1, U3 = +1) ≥ 0.

Thus we see that every LHVT satisfies the inequality (3).

From our above-mentioned discussion on Hardy-type
NLWI, it follows that every three-qubit pure state will vio-
late the inequality (3) unless it is a fully product state or it has
pure bi-partite maximal entanglement. We now show that this
inequality is even violated when|ψ〉 has pure bi-partite maxi-
mal entanglement, although, in this case,|ψ〉 does not satisfy
the Hardy-type NLWI condition (1). Without loss of general-
ity, we can take|ψ〉 in this case as:|ψ〉 = (1/

√
2)(|00〉 +

|11〉) ⊗ |0〉. Choose|Û1 = +1〉 = (
√

0.96|0〉 + 0.2|1〉),
|D̂1 = +1〉 = |0〉, |Û2 = +1〉 = (0.2|0〉 +

√
0.96|1〉),

|D̂2 = +1〉 = |1〉, |Û3 = +1〉 = (1/
√

2)(|0〉 + |1〉)
|D̂3 = +1〉 = |1〉. With this choice,|ψ〉 will violate the
inequality (3).

Thus we have established the desired result thatevery pure
entangled state of three qubits violates the Bell-type inequality
(3).

If a three-qubit state|ψ〉 violates the inequality (3) max-
imally corresponding to the setS(ψ) of three pairs of non-
commuting observables(Û1, D̂1), (Û2, D̂2), and (Û3, D̂3),
then the minimum value of the coefficientv ∈ [0, 1] for which
the stateρ(ψ, v) ≡ v|ψ〉〈ψ| + ((1 − v)/8)I (I being the
8× 8 identity matrix) also violates the inequality (3), is called

here as the ‘threshold visibility’ of the state|ψ〉. Lower the
amount of threshold visibility, higher the amount of noise the
inequality can sustain. The maximum negative violation of
the inequality (3) by the GHZ state is numerically found to be
−0.175459 (approx.), and so the threshold visibilityvthr

GHZ of
this state turns out to be0.68125 (approx.), which is approx-
imately same as that found in [11]. On the other hand, the
maximum negative violation of the inequality (3) by the W-
state(1/

√
3)(|001〉 + |010〉 + |100〉) is numerically found to

be−0.192608 (approx.), and so the threshold visibilityvthr
W

of this state turns out to be0.6606676 (approx.), which is also
approximately same with the value0.660668 of vthr

W , found in
[11]. It is to be noted that so far as the values ofvthr

GHZ , vthr
W

are concerned, although the probabilistic Bell-type inequal-
ity (18) of ref. [11] and the above-mentioned inequality (3)
provide approximately the same values, unlike inequality (3),
neither inequality (18) of [11] nor any other inequality, men-
tioned in the literature till date (see, for example, [8, 10,11]),
is analytically guaranteed to be violated by all pure entangled
states of three qubits. By considering a modified form of the
inequality (3) (e.g., inequality (11) of [20]), one may get a
lower value of the threshold visibility for the states.

One may also try to find similar feature (i.e., violation of
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TABLE II: Observables for genuine tri-partite pure entanglement.

Case Set of observables for different cases
(D.1), (D.2), (D.4), (D.5)α1 = λ1, β1 = −λ0e

iφ, γ1 = 0, δ1 = 1; α2 = 1, β2 = 0, γ2 = λ2λ3e
iφ − λ1λ4, δ2 = λ1λ2

; α3 = λ2e
iφ, β3 = −λ1, γ3 = 1, δ3 = 0

(D.3) α1 = 0, β1 = 1, γ1 = λ0λ1, δ1 = (1−λ2

o); α2 = λ1τ−λ3ǫ, β2 = λ3τ+λ1ǫ, γ2 = λ3, δ2 = −λ1; α3 =
λ1 + λ2, β3 = λ2 − λ1, γ3 = λ2, δ3 = −λ1, where,τ = λ2

0λ3(λ1 + λ2), ǫ = λ2

0λ1(λ1 + λ2) + (1− λ2

0)

(D.6) α1 = 0, β1 = 1, γ1 = λ1e
−iφ(λ2

4 − λ2

0), δ1 = −λ0(1 − λ2

0); α2 = λ3(1 − λ2

0), β2 = −λ1e
−iφ(1 −

λ2

4), γ2 = λ3, δ2 = −λ1e
−iφ; α3 = 1, β3 = 0, γ3 = λ4(1 − λ2

4), δ3 = λ3(λ
2

4 − λ2

0)

(D.7) α1 = λ1e
−iφ, β1 = −λ0, γ1 = 0, δ1 = 1; α2 = λ3, β2 = −λ1e

−iφ, γ2 = 1, δ2 = 0; α3 = 1, β3 =
0, γ3 = λ0, δ3 = −λ3

(D.8) α1 = 0, β1 = 1, γ1 = λ1e
−iφ(ǫ + λ4), δ1 = −λoǫ; α2 = 1, β2 = 1, γ2 = λ4, δ2 = −ǫ; α3 = ǫ, β3 =

λ1e
−iφ, γ3 = λ4, δ3 = −λ1e

−iφ; with ǫ being a solution ofz2(1 − λ2

4) + zλ4(1 − λ2

0) + λ4

4 = 0
(D.9), (D.10) α1 = λ2(λ

2

2 + λ2

4) + λ4(1− λ2

0), β1 = −λ0λ3λ4, γ1 = 1, δ1 = 0; α2 = 1, β2 = 1, γ2 = λ4, δ2 = −λ2;
α3 = 0, β3 = 1, γ3 = λ3λ4, δ3 = λ2

2 + λ2

4

(D.11) α1 = 0, β1 = 1, γ1 = λ2

2λ3, δ1 = λ0(λ
2

2 + λ2

3); α2 = λ2

2 + λ2

3, β2 = −λ2

2, γ2 = 1, δ2 = 0;
α3 = 1, β3 = 0, γ3 = λ3, δ3 = λ2

(D.12) α1 = 0, β1 = 1, γ1 = δλ0λ2λ3, δ1 = λ3

2δ + λ3

3; α2 = 1, β2 = 1, γ2 = λ3, δ2 = −λ2δ; α3 = 1, β3 =
δ, γ3 = λ2, δ3 = −λ3; with δ being a solution ofz2λ4

2 + zλ2λ3 + λ4

3 = 0
(D.13) α1 = 1, β1 = 1, γ1 = λ2, δ1 = −λ0ǫ; α2 = 1, β2 = 0, γ2 = λ4, δ2 = −(λ0ǫ + λ2); α3 = ǫ, β3 =

1, γ3 = λ2, δ3 = −λ0; with ǫ being a solution ofz2λ4

0 + zλ0λ2(λ
2

0 + λ2

2) + λ2

2(λ
2

2 + λ2

4) = 0
(D.14) α1 = 1, β1 = 1, γ1 = iλ0, δ1 = −λ4; α2 = 1, β2 = 1, γ2 = iλ0, δ2 = −λ4 ; α3 = λ2

4, β3 = iλ2

0, γ3 =
λ4, δ3 = −λ0

Bell-type inequality, derived from Hardy-type NLWI argu-
ment, by all pure entangled states) in the case ofn-partite
quantum systems.
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