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Abstract

In this paper, we consider the two component derivative nonlinear Schrödinger
equation and present a simple Darboux transformation for it. By iterating this Dar-
boux transformation, we construct a compact representation for the N−soliton solu-
tions.
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1 Introduction

The nonlinear partial differential equations with multi-soliton solutions have been studied
extensively. They are often widely applicable in physics and thus constitute very im-
portant equations in mathematical physics. The celebrated examples include Korteweg-
de Vries equation, sine-Gordon equation and nonlinear Schrödinger (NLS) equation and
many others. These systems, named as soliton or integrable equations, are also very rich
in mathematical properties and whole subject is closely related to other mathematical
branches such as differential geometry, algebraic geometry, combinatorics, Lie algebras,
etc [2].

Since integrable systems have remarkable mathematical properties and numerous phys-
ical applications, their generalizations or extensions have attracted attention of many
researchers. One possible direction is multi-component generalization. This sort of exten-
sions may also be physically interested. The most famous example might be the Manakov’s
two component NLS equation, which now is one of the most important equations in theory
of pulse propagation along the optical fiber.

Another interesting soliton equation is the derivative nonlinear Schrödinger (DNLS)
equation

iqt = −qxx +
2

3
iǫ(|q|2q)x,

which appeared in Plasma physics (see [3][4]), describing Alfvén wave propagation along
the magnetic field. This equation was solved by inverse scattering transformation by Kaup
and Newell [5]. Much research has been conducted for it and many results have been
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achieved. We mention here a simple looked Darboux transform, obtained independently
by Imai [11] and Steudel [12], enables one to get its explicit N−soliton solution. The two
component extension of DNLS equation was constructed by Morris and Dodd [6]. It reads
as

iq1t = −q1xx +
2

3
iǫ
[

(|q1|
2 + |q2|

2)q1
]

x
, (1)

iq2t = −q2xx +
2

3
iǫ
[

(|q1|
2 + |q2|

2)q2
]

x
, (2)

where ǫ = ±1. This system was studied by means of inverse scattering transformation.
For convenience, we take ǫ = −1 in the subsequent discussion. The zero-curvature repre-
sentation in this case reads as

Φx = UΦ, (3)

Φt = V Φ, (4)

where Φ =
(

φ1, φ2, φ2

)T
, ζ is the spectral parameter and

U = U2ζ
2 + U1ζ, V = ζ4V4 + ζ3V3 + ζ2V2 + ζV1

with

U2 =





−2i 0 0
0 i 0
0 0 i



 , U1 =





0 q1 q2
r1 0 0
r2 0 0



 , V4 =





−9i 0 0
0 0 0
0 0 0



 ,

V3 =





0 3q1 3q2
3r1 0 0
3r2 0 0



 , V2 =





−i(r1q1 + r2q2) 0 0
0 ir1q1 ir1q2
0 ir2q1 ir2q2



 ,

V1 =





0 iq1x + 2
3 (r1q1 + r2q2)q1 iq2x + 2

3 (r1q1 + r2q2)q2
−ir1x + 2

3(r1q1 + r2q2)r1 0 0
−ir2x + 2

3 (r1q1 + r2q2)r2) 0 0



 .

Then a straightforward calculation shows that the compatibility condition of (3)-(4) leads
to a system which reduces to (1) and (2) under condition r∗k = −qk (k = 1, 2).

The purpose of this paper is to construct a compact representation of the N−soliton
solution for the two component DNLS equation. We shall take Darboux transforma-
tion approach. Indeed, the original Darboux transformation, which is associated with
Sturm-Louiville equation, has been generalized to many other differential and difference
equations. It turns out that this approach often leads to nice representations in terms
of determinants for solutions of nonlinear systems and thus an ideal method to construct
N−soliton solutions (see [7][8][9][10]). In particular, Darboux transformations for certain
multi-component integrable equations have been studied in [13][14].

The paper is organized as follows. In next section, we construct an elementary Dar-
boux transformation for the general system (3)-(4), which naturally induces a Darboux
transformation for the conjugate system. Then, we combine two Darboux transformations
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together and find a two-fold Darboux transformation, which turns out to be the proper one
for the reduction we are interested in. The reduction problem will be tackled in the section
3 and an elegant Darboux transformation will be given there for our two component DNLS
equation. In section 4, we iterate our Darboux transformation and give N-soliton solutions
of two component DNLS equation in terms of determinants. Final section includes some
discussion.

2 Darboux transformation in general

We now consider the general linear system (3)-(4) and manage to find a Darboux trans-
formation for it. Our strategy is to find a proper Darboux transformation such that it
can be easily reduced to the two-component DNLS case. To this aim, we start with an
elementary Darboux transformation

Φ̂ = T1Φ

with Darboux matrix T1 = ζT11 + T10. After some calculations and analysis, we find that
T1 has to take the following explicit form

T1 =





aζ c1 c2
c3 bζ cζ

c4 dζ eζ



 , (5)

where a, b, c, d and e are the functions of (x, t), while c1, c2, c3 and c4 need to be constants.
For convenience, we make the assumption

c1 = c3 = 1, c2 = c4 = 0. (6)

Since Tr(U) = 0, Tr(V ) = −9iζ4, we may assume

det(T1) = ζ(
ζ2

ζ2
1

− 1) (7)

where ζ1 is a complex constant. Thus, the Darboux matrix T1 is singular at ζ = ζ1. Next
we associate the entries of T1 with a special solution of our linear systems (3)-(4). To
this end, taking (ϕ1, ϕ2, ϕ3)

T as a corresponding solution of the Lax pairs at ζ = ζ1 and
requiring

T1|ζ=ζ1





ϕ1

ϕ2

ϕ3



 = 0, (8)

we obtain

a = −
ϕ2

ζ1ϕ1
, b =

−ϕ1 + ζ1Q2ϕ3

ζ1ϕ2
, c = −Q2, d = −

ϕ3

ϕ2
, e = 1. (9)

where Q2 is a potential: Q2,x = q2.
Now we have the following
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Theorem 1 Let (ϕ1, ϕ2, ϕ3)
T be a particular solution of (3)-(4) at ζ = ζ1 and the matrix

T1 be given by (5) with entries defined by (6) and (9). Then T1 is a Darboux matrix
for the linear system (3))-( (4), namely Φ̂ = T1Φ is a new solution of (3))-( (4)). The
transformations between fields are given by

q̂1 =
(q1ϕ2 + q2ϕ3 − 3iζ1ϕ1)ϕ2

ϕ2
1

, r̂1 =
(r1ϕ1 + 3iζ1ϕ2)ϕ1 + (r2ϕ2 − r1ϕ3)ζ1Q2ϕ1

ϕ2
2

,

r̂2 =
(r1ϕ3 − r2ϕ2)ζ1ϕ1

ϕ2
2

, q̂2 =
(ϕ2q1 + ϕ3q2 − 3iζ1ϕ1)ζ1Q2ϕ2 − q2ϕ1ϕ2

ζ1ϕ
2
1

,

where hatted quantities are transformed variables.

Proof: What we need to do is to check that the following equations

T1x + T1U = ÛT1, T1t + T1V = V̂ T1

hold. Where
Û = ζ2U2 + ζÛ1, V̂ = ζ4V4 + ζ3V̂3 + ζ2V̂2 + ζV̂1

and Û1, V̂3, V̂2 and V̂1 are U1, V3, V2, V1 with the corresponding entries r1, r2, q1 and q2
are replaced respectively by r̂1, r̂2,q̂1 and q̂2. Checking can be done by direct calculations.

Remark 1 It is interesting to note that under this Darboux transformation, we also have
an alternative representation for r̂2: dx = r̂2.

To proceed, we notice that the two component DNLS equation also has the following
Lax pairs

− Ψx = ΨU, (10)

−Ψt = ΨV, (11)

where Ψ =
(

φ1, φ2, φ3

)

and U and V are as above. This linear problem actually is the
conjugate problem of (3)-(4). A simple but useful observation is

Lemma 1 If the matrix T is a Darboux matrix of the original linear system (3)-(4), then
T−1 is a Darboux matrix of the conjugate linear system (10)-(11).

Proof : Direct calculation.

Now we consider the conjugate linear system and its Darboux transformation. The
analysis goes as in the case of the original linear system: Taking (χ1, χ2, χ3) as a special
solution of the system (10)-(11) at ζ = ζ2, and constructing the following matrix

T2 =





âζ 1 0

1 b̂ζ ĉζ

0 d̂ζ ζ



 , (12)
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where

â = −
χ2

ζ2χ1
, b̂ = −

χ1 + ζ2R2χ3

ζ2χ2
, ĉ = −

χ3

χ2
, d̂ = R2 (13)

and
R2,x = r2,

we have

Theorem 2 The matrix T2 defined by (12) is an elementary Darboux matrix of the conju-
gate linear system (10)-(11) and the transformations between the field variables are given
by

q̂1 =
q1χ

2
1 + 3iζ2χ1χ2 + ζ2χ1R2(q1χ3 − χ2q2)

χ2
2

, r̂1 =
(r1χ2 + r2χ3)χ2 − 3iζ2χ1χ2

χ2
1

,

r̂2 =
(3iR2ζ

2
2 − r2)χ1χ2 − ζ2χ2R2(r1χ2 + r2χ3)

ζ2χ
2
1

, q̂2 =
(q1χ3 − q2χ2)ζ2χ1

χ2
2

.

Proof: Direct calculation.
Similar to the Remark 1, we have

Remark 2 An alternative formula for d̂ is d̂x = r2. Thus, d̂ = d.

Finally we may have a combined Darboux transformation in the following manner: we
take a particular solution Φ1 ≡ (ϕ1, ϕ2, ϕ3)

T of (3)-(4) at ζ = ζ1 and a particular solution
(χ1, χ2, χ3) of (10)-(11) at ζ = ζ2. Then, with (ϕ1, ϕ2, ϕ3)

T we may use Theorem 1 and
have a Darboux transformation whose Darboux matrix is T1. At this stage, (χ1, χ2, χ3) is
converted into a new solution Ψ1 ≡ (χ̂1, χ̂2, χ̂3) = (χ1, χ2, χ3)T

−1
1 |ζ=ζ2 for the conjugate

linear system. This solution, with the help of Theorem 2, enables us to construct a
Darboux matrix T2 and take a Darboux transformation for the conjugate linear system,
which in turn induces a transformation for the original linear system. Schematically it
looks as

Φ
T1−−−−−→

seed:Φ1

Φ̂
T−1

2−−−−−→
seed:Ψ1

Φ[1]

It is now easy to find the explicit formulae. Indeed, the three components of Ψ1 reads as

χ̂1 =
ζ1ζ2χ1ϕ1 + ζ2

1χ2ϕ2 + ζ2
1χ3ϕ3

(ζ2
1 − ζ2

2 )ϕ2
,

χ̂2 =
ζ2
1χ1ϕ1 + ζ1ζ2χ2ϕ2 + ζ1ζ2χ3ϕ3

(ζ2
1 − ζ2

2 )ϕ1
,

χ̂3 =
ζ1(ζ1χ1ϕ1 + ζ2χ2ϕ2 + ζ2χ3ϕ3)

(ζ2
1 − ζ2

2 )ϕ1
Q2 +

χ3

ζ2
.
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Using this seed solution, we find that the functions appeared in T2 in the present case read
as

â = −
ϕ2(ζ1χ1ϕ1 + ζ2χ2ϕ2 + ζ2χ3ϕ3)

ζ2ϕ1(ζ2χ1ϕ1 + ζ1χ2ϕ2 + ζ1χ3ϕ3)
,

b̂ =
ϕ3

ϕ2
Q2 −

ϕ1(ζ1ζ2χ1ϕ1 + ζ2
1χ2ϕ2 + ζ2

2χ3ϕ3)

ζ1ζ2ϕ2(ζ1χ1ϕ1 + ζ2χ2ϕ2 + ζ2χ3ϕ3)
,

ĉ = −Q2 +
(ζ2

2 − ζ2
1 )χ3ϕ1

ζ1ζ2(ζ1χ1ϕ1 + ζ2χϕ2 + ζ2χ3ϕ3)
,

d̂ = −
ϕ3

ϕ2
.

The Darboux matrix we are seeking, T = T−1
2 T1, which after removing an overall factor

ζ2
2

(ζ2−ζ2
2
)
, is

T =





aζ2 − 1 c1ζ c2ζ

c3ζ bζ2 − 1 cζ2

c4ζ dζ2 eζ2 − 1



 , (14)

where

a =
D2

ζ1ζ2D1
, b =

D3

ζ1ζ
2
2D2

, e =
D4

ζ1ζ
2
2D2

, (15)

c =
(ζ2

2 − ζ2
1)χ3ϕ2

ζ1ζ
2
2D2

, d =
(ζ2

2 − ζ2
1)χ2ϕ3

ζ1ζ
2
2D2

, (16)

c1 =
(ζ2

2 − ζ2
1 )χ2ϕ1

ζ1ζ2D1
, c2 =

(ζ2
2 − ζ2

1 )χ3ϕ1

ζ1ζ2D1
, (17)

c3 =
(ζ2

2 − ζ2
1 )χ1ϕ2

ζ1ζ2D2
, c4 =

(ζ2
2 − ζ2

1 )χ1ϕ3

ζ1ζ2D2
, (18)

and

D1 = ζ1χ1ϕ1 + ζ2χ2ϕ2 + ζ2χ3ϕ3,

D2 = ζ2χ1ϕ1 + ζ1χ2ϕ2 + ζ1χ3ϕ3,

D3 = ζ1ζ2χ1ϕ1 + ζ2
2χ2ϕ2 + ζ2

1χ3ϕ3,

D4 = ζ1ζ2χ1ϕ1 + ζ2
1χ2ϕ2 + ζ2

2χ3ϕ3.

The transformations between field variables can be reformed neatly

q1[1] = q1 − c1,x, q2[1] = q2 − c2,x, (19)

r1[1] = r1 − c3,x, r2[1] = r2 − c4,x, (20)

and ci’s are given by (17)-(18).
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3 Reduction

In last section, we constructed a combined or two-fold Darboux transformation for our
linear system (3)-(4). The relevant Darboux matrix and field variable transformations
are given by (14) and (19)-(20) respectively. What we are interested in is to present a
Darboux transformation for the two component DNLS equation and thus we have to do
reduction. Next we will show that our Darboux transformation can be reduced easily to
the interested case.

The constraints between field variables are

r1 = −q∗1, r2 = −q∗2

which should be kept invariant under Darboux transformation. Now we notice that, for
the solution (ϕ1, ϕ2, ϕ3)

T of the linear system (3)-(3) at ζ = ζ1, (ϕ∗
1, ϕ

∗
2, ϕ

∗
3) is the solution

of conjugate linear system equation (10)-(11) at ζ = ζ∗1 . Therefore, we use it as our seed
for the second step Darboux transformation. Namely,

Ψ1 = (ϕ∗
1, ϕ

∗
2, ϕ

∗
3), ζ2 = ζ∗1 .

With these considerations, it is easy to verify that

c∗1 = −c3, c∗2 = c4

therefore
r1[1] = −q1[1]

∗, r2[1] = −q2[1]
∗

The final transformation is neatly written as

q1[1] = q1 −
ζ∗21 − ζ2

1

|ζ2
1 |

(

ϕ1ϕ
∗
2

|ϕ2
1|ζ1 + ζ∗1 (|ϕ2

2| + |ϕ2
3|)

)

x

, (21)

q2[1] = q2 −
ζ∗21 − ζ2

1

|ζ2
1 |

(

ϕ1ϕ
∗
3

|ϕ2
1|ζ1 + ζ∗1 (|ϕ2

2| + |ϕ2
3|)

)

x

. (22)

If we start with the vacuum solution q1 = q2 = 0, then the linear system (3)-(4) has a
solution

ϕ1 = e−2iζ2
1
x−9iζ4

1
t, ϕ2 = eiζ

2
1
x = ϕ3

which leads to

q1[1] = q2[1] =
6ζ2

1 Im(ζ2
1 )e−iR

[

sinh(I)(ζ∗21 − 2|ζ2
1 |) + cosh(I)(ζ∗21 + 2|ζ2

1 |)
]

ζ∗1
[

sinh(I)(ζ2
1 + 2|ζ2

1 |) + cosh(I)(ζ2
1 − 2|ζ2

1 |)
]2

where R = 3Re(ζ2
1 )x + 9Re(ζ4

1 )t, I = 3Im(ζ2
1 )x + 9Im(ζ4

1 )t. It is nothing but a solution
of the DNLS equation. To find more interesting ones we need to iterate our Darboux
transformation and we will do so in next section.
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4 Iterations: N-fold Darboux matrix

The appealing feature of a Darboux transformation is that it often leads to determinant
representation for N−solitons. To this aim, one has to do iteration. In this section, we
consider the iteration problem for our Darboux transformation.

First, let us rewrite our Darboux matrix T given by (14) with the reductions in mind.
Introduce a new matrix

N(ζ) = diag(
ζϕ1

ζ1D
,
ζϕ2

ζ1D∗
,
ζϕ3

ζ1D∗
)

where D = D1|χj=ϕ∗

j ,ζ2=ζ∗
1
.Then, the Darboux matrix T takes the following form

T =
ζ2 − ζ∗21

ζ∗21

+
ζ∗21 − ζ2

1

ζ∗21

N(ζ)





ζϕ∗
1 ζ∗1ϕ

∗
2 ζ∗1ϕ

∗
3

ζ∗1ϕ
∗
1 ζϕ∗

2 ζϕ∗
3

ζ∗1ϕ
∗
1 ζϕ∗

2 ζϕ∗
3



 .

Now, on the one hand we have already known

T |ζ=ζ1





ϕ1

ϕ2

ϕ3



 = 0. (23)

i.e. our seed Φ1 = (ϕ1, ϕ2, ϕ3)
T lies in the kernal of the matrix T |ζ=ζ1. On the other hand,

let us suppose

T |ζ=ζ∗
1





ψ1

ψ2

ψ3



 =
ζ∗21 − ζ2

1

ζ∗1
N(ζ∗1 )





ϕ∗
1ψ1 + ϕ∗

2ψ2 + ϕ∗
1ψ3

ϕ∗
1ψ1 + ϕ∗

2ψ2 + ϕ∗
1ψ3

ϕ∗
1ψ1 + ϕ∗

2ψ2 + ϕ∗
1ψ3



 = 0 (24)

for certain vector function Ψ1 = (ψ1, ψ2, ψ3)
T , then for ζ1 6= ζ∗1 one has to impose ϕ∗

1ψ1 +
ϕ∗

2ψ2 + ϕ∗
1ψ3 = 0, or

Φ†
1Ψ1 = 0,

obviously
Ψ1

1 = (−ϕ∗
2, ϕ

∗
1, 0)

T ,Ψ2
1 = (−ϕ∗

3, 0, ϕ
∗
1)

T

meet the requirment
T |ζ=ζ∗

1
Ψk

1 = 0. (25)

We observe that the conditions (23) and (25) can in turn be used to determine the nine
quantities appeared in T uniquely.

Now we are ready to do iterations. Assume that we are given N distinct complex
numbers ζ1, ζ2, ..., ζN such that ζ∗2k 6= ζ2

k (k = 1, 2, ..., N). We further assume that the
vector

Φk = (ϕ
(k)
1 , ϕ

(k)
2 , ϕ

(k)
3 )T

is a solution of linear equation at ζ = ζk, i.e.

[∂x − U(ζ = ζk)](Φk) = 0, [∂t − V (ζ = ζk)](Φk) = 0,
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and
Ψ1

k = (−ϕ
(k)∗
2 , ϕ

(k)∗
1 , 0)T , Ψ2

k = (−ϕ
(k)∗
3 , 0, ϕ

(k)∗
1 )T ,

which satisfy the orthogonal conditions Φ†
kΨ

l
k = 0.

With these seed solutions, we define

Tk =
ζ2 − ζ∗2k

ζ∗2k

+
ζ∗2k − ζ2

k

ζ∗2k

Nk(ζ)







ζϕ
(k)
1 [k − 1]∗ ζ∗kϕ

(k)
2 [k − 1]∗ ζ∗kϕ

(k)
3 [k − 1]∗

ζ∗i ϕ
(k)
1 [k − 1]∗ ζϕ

(k)
2 [k − 1]∗ ζϕ

(k)
3 [k − 1]∗

ζ∗i ϕ
(k)
1 [k − 1]∗ ζϕ

(k)
2 [k − 1]∗ ζϕ

(k)
3 [k − 1]∗






,

where

D[k] = ζk

∣

∣

∣ϕ
(k)
1 [k − 1]

∣

∣

∣

2
+ ζ∗k(

∣

∣

∣ϕ
(k)
2 [k − 1]

∣

∣

∣

2
+
∣

∣

∣ϕ
(k)
3 [k − 1]

∣

∣

∣

2
),

Nk(ζ) = diag

(

ζϕ
(k)
1 [k − 1]∗

ζiD[k]
,
ζϕ

(k)
2 [k − 1]∗

ζiD[k]∗
,
ζϕ

(k)
3 [k − 1]∗

ζiD[k]∗

)

,

and our notation is the following

Φj[k] =







ϕ
(j)
1 [k]

ϕ
(j)
2 [k]

ϕ
(j)
3 [k]






= TkTk−1...T1|ζ=ζj







ϕ
(j)
1

ϕ
(j)
2

ϕ
(j)
3






,

and Φj[0] = Φj.
The N -times iterated Darboux matrix is given by

T = TNTN−1 · · ·T1.

It is easy to see that, similar to the equation (23), the following relations hold

TkTk−1 · · ·T1|ζ=ζk
Φk = Tk|ζ=ζk

Φk[k − 1] = 0 (k = 1, 2, ..., N).

Furthermore, we recursively define

Ψl
k[0] = Ψl

k, Ψl
k[j − 1] = Tj−1Tj−2 · · · T1|ζ=ζ∗

k
Ψl

k,

then we have

Proposition 1 Φ†
k[k − 1]Ψl

k[k − 1] = 0.

Proof: We know Φ†
k[0]Ψ

l
k[0] = 0. Let us suppose Φ†

k[m]Ψl
k[m] = 0 (0 ≤ m < k−1). Then

thanks to Φk[m+ 1] = Tm+1|ζ=ζk
Φk[m] and Ψl

k[m+ 1] = Tm+1|ζ=ζ∗
k
Ψl

k[m], we have

Ψ†
k[m+ 1]Φl

k[m+ 1] = Ψ†
k[m]T †

m+1|ζ=ζk
Tm+1|ζ=ζ∗

k
Φl

k[m] = 0,

because of T †
m+1|ζ=ζk

Tm+1|ζ=ζ∗
k

= 1
|ζ4

m+1
|
(ζ∗2k − ζ∗2m+1)(ζ

∗2
k − ζ2

m+1). Therefore, the lemma

follows from the mathematical induction.
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Based on Proposition 1, we obtain

TkTk−1...T1|ζ=ζ∗
k
Ψl

k = Tk|ζ=ζ∗
k
Ψl

k[k − 1] = 0, (l = 1, 2).

Therefore, we have

T |ζ=ζk
Φk = 0, T |ζ=ζ∗

k
Ψ1

k = 0, T |ζ=ζ∗
k
Ψ2

k = 0, (26)

for k = 1, 2, ..., N . We also notice that our iterated Darboux matrix T is taking of the
form

T =

2N
∑

k=0

ζkTk =

N
∑

n=1











a2nζ
2n c

(2n−1)
1 ζ2n−1 c

(2n−1)
2 ζ2n−1

c
(2n−1)
3 ζ2n−1 b2nζ

2n c2nζ
2n

c
(2n−1)
4 ζ2n−1 d2nζ

2n e2nζ
2n











+ (−1)N .

Above coefficients can be determinated in T by solving the linear algebraic systems (26).
The solution formulae are obtained from

q1[N ] = q1 +

(

H2

H1

)

x

, q2[N ] = q2 +

(

H3

H1

)

x

,

where

H1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ζ2N
1 ϕ

(1)
1 ζ2N−1

1 ϕ
(1)
2 ζ2N−1

1 ϕ
(1)
3 ... ζ2

1ϕ
(1)
1 ζ1ϕ

(1)
2 ζ1ϕ

(1)
3

−ζ2N∗
1 ϕ

(1)∗
2 ζ2N−1∗

1 ϕ
(1)∗
1 0 ... −ζ2∗

1 ϕ
(1)∗
2 ζ∗1ϕ

(1)∗
1 0

−ζ2N∗
1 ϕ

(1)∗
3 0 ζ2N−1∗

1 ϕ
(1)∗
1 ... −ζ2∗

1 ϕ
(1)∗
3 0 ζ∗1ϕ

(1)∗
1

... ... ... ... ... ... ...

ζ2N
N ϕ

(N)
1 ζ2N−1

N ϕ
(N)
2 ζ2N−1

N ϕ
(N)
3 ... ζ2

Nϕ
(N)
1 ζNϕ

(N)
2 ζNϕ

(N)
3

−ζ2N∗
N ϕ

(N)∗
2 ζ2N−1∗

n ϕ
(N)∗
1 0 ... −ζ2∗

N ϕ
(N)∗
2 ζ∗Nϕ

(N)∗
1 0

−ζ2N∗
N ϕ

(N)∗
3 0 ζ2N−1∗

n ϕ
(N)∗
1 ... −ζ2∗

N ϕ
(N)∗
3 0 ζ∗Nϕ

(N)∗
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and H2 and H3 are H1 with the 3N − 1th column and the 3Nth column replaced by L1

respectively. Where

L1 =
(

−ϕ
(1)
1 , ϕ

(1)∗
2 , ϕ

(1)∗
3 , ..., −ϕ

(N)
1 , ϕ

(N)∗
2 , ϕ

(N)∗
3 ,

)T

,

To demonstrate the usefulness our solution formulae, we calculate solutions for the two
component DNLS equation. Selecting

ζ1 = 1 +
1

3
i, ζ2 = 1 +

2

3
i,Φ1 = (e−2iζ2

1x−9iζ4
1 t, 0, eiζ

2
1x)T ,Φ2 = (e−2iζ2

2x−9iζ4
2 t, eiζ

2
2x, eiζ

2
2x)T ,

and substituting them into (4) we could have the solutions. Figure 1 and Figure 2 show
these solutions by plotting |q21 | and |q22 |. It is pointed out that while the second figure
exhibits standard two-soliton scattering, the first one demonstrates a fission process.
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Figure 1: |q21 |
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Figure 2: |q22 |

5 Conclusion

Above we found a Darboux transformation for the two component DNLS equation and
obtained a closed formula for its solutions. We remark that our Darboux transformation
can be easily generalized to multi component case. In fact, the Darboux matrix in this
case is

T =
ζ2 − ζ∗21

ζ∗21

+
ζ∗21 − ζ2

1

ζ∗21

N(ζ)













ζϕ∗
1 ζ∗1ϕ

∗
2 ζ∗1ϕ

∗
3 ... ζ∗1ϕ

∗
n

ζ∗1ϕ
∗
1 ζϕ∗

2 ζϕ∗
3 ... ζϕ∗

n

ζ∗1ϕ
∗
1 ζϕ∗

2 ζϕ∗
3 ... ζϕ∗

n

... ... ... ... ...

ζ∗1ϕ
∗
1 ζϕ∗

2 ζϕ∗
3 ... ζϕ∗

n













,

where

N(ζ) = diag(
ζϕ1

ζ1D
,
ζϕ2

ζ1D∗
, · · · ,

ζϕn

ζ1D∗
),

with
D = ζ1|ϕ

2
1| + ζ∗1 |ϕ

2
2| + ...+ ζ∗1 |ϕ

2
n|.

and solution formulae may be derived.
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