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Abstract. Here we investigate specifically the transient of a synchronizing system,

considering synchronization as a relaxation phenomenon. The stepwise establishment

of synchronization is studied in the system of dynamically coupled maps introduced by

Ito & Kaneko (2001 Phys. Rev. Lett. 88 028701, 2003 Phys. Rev. E 67 046226), where

the plasticity of dynamical couplings might be relevant in the context of neuroscience.

We show the occurrence of logarithmically slow dynamics in the transient of a fully

deterministic dynamical system.

PACS numbers: 05.45.Xt, 89.75.-k

1. Introduction

The importance of transients in the dynamics of complex systems is manifold : for

example, the transient state can be more relevant than the equilibrium state if most or

more of the time is spent in the former. Also, relaxation dynamics can inform on the

underlying energy, fitness, or cost landscape of a system (Wales 2004), and thus help to

understand it better as a whole.

In this paper we are interested in studying synchronization, a dynamical property

of networks that is widely observed in fields such as optics, chemistry, biology and

ecology, for instance in the brain (Gray et al. 1989, Varela et al. 2001) or in fireflies.

Synchronization has been analysed for many physical systems (Pecora et al. 1997,

Pikovsky, Rosenblum & Kurths 2001). The onset of synchronization is of general

relevance. Similarity with relaxation, for example in spin glasses, or in superconductors,

can be used to study synchronization. Transients can be used to probe the properties

of synchronizing systems (Arenas et al. 2006). However, there has been little research

so far on synchronization as a relaxation phenomenon (Abramson 2000, Manrubia &

Mikhailov 2000). The aim of this paper is to systematically study the transient of a

synchronizing system.

A specific form of relaxation dynamics are glassy dynamics, when the transient is

extremely long (Jensen & Sibani 2007). Furthermore, in a number of systems with glassy

http://arxiv.org/abs/0911.1547v2


Logarithmically slow onset of synchronization 2

dynamics the special case of logarithmically slow dynamics has been observed. However,

so far all of these systems were stochastically driven. Here we show the occurrence of

logarithmically slow dynamics in the transient of a fully deterministic dynamical system.

In the first part of the paper we explain the model, a globally coupled map (GCM),

with adaptive coupling which is inspired by the plasticity of synapses. We then study

characteristics of its transients for a range of parameters. Finally we show that for some

parameters the transient is logarithmically slow and that it can be explained by a simple

model.

2. The Ito-Kaneko model of synchronization

The Ito-Kaneko model (Ito & Kaneko 2001, Ito & Kaneko 2003) is a globally coupled

map (GCM), a coupled simultaneous system of N logistic equations. The individual

maps or units xi are defined and coupled as follows :

xi
t+1 = (1 − c) f(xi

t) + c
N

∑

j=1

wij
t f(xj

t )

f(x) = ax (1 − x)

wij
t+1 =

[1 + δg(xi
t, x

j
t)]w

ij
t

∑N
j=1[1 + δg(xi

t, x
j
t )]w

ij
t

g(x, y) = 1 − 2 |x − y| ,

(1)

where a is the logistic equation parameter and c is the coupling parameter. The

coupling is further tuned by weights wij, which are dynamical variables as well. The

function g, scaled by a parameter δ, defines a Hebbian update of the connection weights,

by reinforcing the connections between similar units. This Hebbian plasticity of the

couplings is inspired by the synaptic plasticity which enables nervous systems to learn

(Antonov et al. 2003).

The system exhibits three different long-term behaviours which can be classified

into three phases, depending on the parameters. In the coherent phase C, all units

synchronize, forming one synchronized cluster containing all units. In the ordered phase

O, the set of units is partitioned into subsets or clusters Ck within which there is

synchronization or which contain single units not synchronized with any other unit.

In the following, in line with (Ito & Kaneko 2001, Ito & Kaneko 2003, Manrubia &

Mikhailov 2000), we will call the number of parts in this partition the cluster number.

Finally, in the disordered phase D, no synchronization at all is achieved, forming a

partition with a cluster number of value N . The phase diagram in figure 1(a) shows the

boundaries between predominant phases in a part of the parameter space.
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Figure 1. (a) Part of the phase diagram of the Ito-Kaneko model (b) Length of

transient t∞ (c) Time tw until the variation of weights falls below 0.1% (all averaged

over 25 realizations).

3. Synchronization transients

It has been found previously that in a static links version of the Ito-Kaneko model

its transient is exponential in the ordered regime O and that its length diverges

when the border O/D between the ordered and disordered regimes is approached

(Abramson 2000, Manrubia & Mikhailov 2000). Stretched exponential decay of

correlation functions has been found in a similar system (Katzav & Cugliandolo 2005).

In the following we study the transient in detail, and focus on the way events during

the transient are simulated and detected. The system (1) was simulated numerically,

each initial xi being randomly chosen in the interval [0, 1]. The initial wij are set to

1/(N − 1). A higher precision simulation method similar to Pikovsky et al. (Pikovsky,

Popovych & Maistrenko 2001) was used in order to avoid synchronization artifacts due

to limited numerical precision. Two units xi and xj were considered to be synchronized

if |xi − xj | < 10−270. Due to the resulting increased computation times we focused on

a part of the parameter space, shown in figure 1. During each run of a simulation,

the time steps tk at which two units synchronized were recorded. We term these tk
synchronization events. As the successive synchronization is analyzed in analogy to the

investigation of avalanches and quakes in (Anderson et al. 2004), where a set of events is

considered as one quake, here any synchronization events less than ∆t = 10 time steps

apart are considered together as a single synchronization event.

In figure 4(a) we show as an example the time evolution of the number of

synchronized clusters for a single simulation run. The number of clusters drops stepwise

from N = 100 during a long transient. We note Nsync(t) the number of synchronization
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Figure 2. (Top) Divergence of transient length as the border to the disordered

region is approached, with a = 3.9 . Shown are the time of the first synchronization

event t1 (solid black), of the 25th synchronization event t25 (dark gray), and of the

last synchronization event t∞ (light gray), and tw (dotted black when w converges

in all realizations, dash-dotted otherwise). (Bottom) Corresponding number of

synchronization clusters (averaged over 25 simulation runs).

events until time step t. If, after a synchronization event at time step tk, no further

synchronization events happened for a duration of 4tk, the simulation was stopped. We

define the synchronization transient as the time from the beginning of the simulation

until the last synchronization event.

The dependence of the transient on the parameters a and c is shown in figure 1(b)

and (c). The main feature is that the length of the transient, and also the time until

the connection weights wij stabilize, increases as the the overall coupling c decreases.

Figure 2 shows again in detail how the length of transient diverges as c diminishes, with

the parameter of the logistic function a = 3.9 constant. This makes intuitively sense

as the system changes from a regime with some synchronization (ordered) to a regime

with no synchronization at all (disordered). For the rest of this paper, a is fixed to 3.9 .

A theoretical value for the coupling cO/D at which the length of the transient

diverges can be analytically derived for a system in which the weights wij stabilize, see

(Ito & Kaneko 2001, Ito & Kaneko 2003). The divergence of the transient corresponds

to the border between the ordered and disordered regimes and can thus be calculated

by studying the stability of the ordered state, using the transversal Lyapunov exponent.

At the considered border the system only forms synchronization clusters of size up to
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Figure 3. Time dependence of Nsync(t∞)−Nsync(t) averaged over 25 simulation runs

(solid) with variance (dashed) and fitted exponential or stretched exponential of the

form exp(−t0.28) (dotted), c = 0.28, 0.22, 0.158 (from left to right).

2, i.e. only isolated pairs of synchronized units are formed. The transversal Lyapunov

exponent for a system in which the weights stabilize is then (Ito & Kaneko 2001, Ito &

Kaneko 2003):

Λ⊥ = ln |1 − 2c| + Λf , (2)

where Λf is the Lyapunov exponent of f(x), the logistic function. For a = 3.9 , the

Lyapunov exponent of the logistic function calculated by simulation is Λf ≈ 0.73 and we

obtain a theoretical value c ≈ 0.26 . In our system the weights wij do not stabilize, which

seems to enable synchronization at lower c values, as the border lies at cO/D ≈ 0.15 .

We studied the transient in a logarithmic timescale for c values close to and

far from cO/D. In figure 3 we plotted Nsync(t∞) − Nsync(t) against time in order to

detect exponential transients of the form Nsync(t∞) − Nsync(t) ∝ e−βt, as described in

(Abramson 2000, Manrubia & Mikhailov 2000). For c = 0.28 , shown in figure 3(a),

the transient is indeed exponential. However, as c decreases, the transient turns more

irregular, see figure 3(b) (c = 0.22). Eventually, for c = 0.158 , very close to cO/D,

the transient is extremely long and settles into the stretched exponential shape shown

in figure 3(c). Stretched exponential relaxation has been observed in related systems

(Katzav & Cugliandolo 2005). Also the evolution of the variance of the considered

quantity is different depending on whether c away and very close to the border. The
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difference in the shape of the transient and its variance indicates that a different process

is underlying the system at the border O/D. In the following we study further the

transient statistics at the border O/D.

4. Logarithmically slow transients

We are especially interested in the unusual dynamics at the border O/D. Also, this

border separates ordered from disordered behaviour and is interesting because of the

relevance of computation at the edge of chaos in neural nets (Natschläger et al. 2005).

The transient at the border is characterized by its extreme length.

Extremely long transients have also been observed in other many component

systems with glassy dynamics (Jensen & Sibani 2007). There, the time span needed

to reach a steady, time independent state is often far beyond experimentally accessible

time scales. For example, when melted alloys are cooled down they typically retain the

amorphous arrangement characteristic of the liquid high temperature phase while the

molecular mobility decreases many orders of magnitude, rendering it near impossible to

reach thermodynamic equilibrium. However, over short time scales the system properties

may appear to be time independent as in thermal equilibrium. Only when several orders

of magnitude of time scales are covered the slow change of macroscopic characteristic

properties with time can be resolved directly.

A superposition of 25 simulations runs for c = 0.158 close to cO/D covering the

whole very long transient up to t = 107 is shown in figure 4. Due to computational

complexity no value closer to cO/D was used. Interestingly, the transient is linear on a

logarithmic timescale for intermediate times. In the following we describe an approach

to modeling the transient.

A simple model would be to assume that the rate of synchronization events

is proportional to the rate at which any two units have close values by chance,

i.e. ’collide’. However, at low overall coupling c, units xi can only synchronize with

a single additional unit and form pairs. Thus units that are already paired up are not

available anymore to synchronize with other units. So simplifying further, if we note

the number of synchronization events Nsync(t), and the number of unsynchronized units

is approximately N − Nsync(t), we obtain:

dNsync(t)

dt
= k(N − Nsync(t))

2 (3)

and

Nsync(t) = N −
1

1
N

+ kt
. (4)

We further assume that only an effectual subset of the N units can actually synchronize

due to the low overall coupling c, so we replace N by an effectual, i.e. actually operating

number of units Neff in the above formula. The predicted Nsync(t) agrees well with the

simulated data for Neff = 24.5 and k = 6 · 10−7, see figure 4(b). However, it is not

possible to find a reasonable fit of the simulated Nsync(t) to (4) for higher values of c.
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Figure 4. Synchronization transient near the border O/D, with c = 0.158 . (a-insert)

Time dependence of the number of synchronization clusters for a single simulation run.

(b) Time dependence of the number of synchronization events for 25 simulation runs

(thin lines) and corresponding variance (dashed), a linear fit and a fit of the simple

model described by (4) (thick lines).

We also observed that Nsync(t) is linear on a logarithmic timescale for intermediate

times. This might be related to the log-time dependence that has been previously

obtained for non-homogeneous Poisson processes in logarithmic time (log-Poisson). The

hypothesized mechanism behind these processes is inspired by intermittency studies

of fluctuations in glassy systems, that have demonstrated that large intermittent

fluctuations are responsible for the deviations from equilibrium statistics (Buisson

et al. 2003). It was suggested that abrupt and irreversible moves from one metastable

configuration to another, so-called quakes, are a result of record sized fluctuations. The

assumption that the metastable attractors typically selected by the glassy dynamics

have marginally increasing stability means that a fluctuation bigger than any previously

occurred fluctuation, i.e. a record-sized fluctuation, can induce a quake (Sibani &

Dall 2003, Sibani & Littlewood 1993). Quakes lead to entrenchment into gradually

more stable configurations, and carry the average drift of the dynamics. The quakes

have a similar effect on a logarithmic time scale, which might be modeled by a Poisson

process in logarithmic time.

Log-Poisson processes have been observed in the NK model of evolution (Sibani
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& Pedersen 1999), charge-density waves (Sibani & Littlewood 1993), and further in

spin glasses, supercooled magnet relaxation, and the Tangled Nature evolution model

(Anderson et al. 2004). While in a Poisson process the probabilities for events tk are

characterized by (van Kampen 2007):

P [N(t + τ) − N(t) = k] =
e−λτ (λτ)k

k!
(5)

and

P [tk − tk−1 < x] = 1 − e−λx , (6)

in analogy, in a log-Poisson process we have (Sibani & Dall 2003):

P [N(t + τ) − N(t) = k] =
1

k!

(

t + τ

t

)−λ (

λ
t + τ

t

)k

(7)

P [ln(tk/tk−1) < x] = 1 − e−λx . (8)

In both cases, it is easy to show that the PDF of the number of events N(t) and

its variance are equal. Thus in figure 3 Nsync(t∞) − Nsync(t) and its variance should

be symmetric, which is observed indeed only up to some error on the border O/D

(figure 3(c)) while away from the border (figure 3(a) and (b)) Nsync(t∞) − Nsync(t) and

its variance seem unrelated.

Thus the process described by (4) seems to be an alternative way to obtain log-time

dependence in an intermediate time regime. We can further corroborate this finding by

studying the cumulative distribution of (tk − tk−1)/tk−1, see figure 5(b). For a static

Poisson process, this distribution would be a step function. Instead, it agrees well

with the theoretic distribution for a log-Poisson process, P ((tk − tk−1)/tk−1 < x) =

1 − (1 + x)−λ with λ = 3.5 . The support for the distribution at low (tk − tk−1)/tk−1

comes from the initial phase of the transient, where the initial conditions dominate,

which might explain the discrepancy between the theoretical and simulated distribution

there. Also, as shown in figure 5(a), the value of (tk − tk−1)/tk−1 stays within a relatively

small range over a range of orders of magnitude of tk, while it would quickly drop to zero

in a static Poisson process. In figure 5(c) we show the cumulative distribution of tk/tk−1.

This distribution also agrees well with the theoretical cumulative distribution (8) for a

log-Poisson process with λ = 3.5 and seems to corroborate that the synchronization

process in this model is an alternative way to obtain logarithmically slow relaxation

dynamics.

System size can be relevant to the shape of the transient of a system. A

superposition of the transients for different system sizes, normalized by the final number

of synchronization events, and for c = 0.158 close to cO/D and c = 0.18, is shown

in figure 6(a) and (b). Due to computational complexity, the sampling size is small,

especially for N = 200 . The simulations show that the system size dependence close to

cO/D seems to be a shifting of the transient to faster synchronization. The shifting is

close to what (4) suggests. Also, for c = 0.18 , further away from cO/D, the transients
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Figure 5. (a-insert) Distribution, (b) cumulative distribution of (tk − tk−1)/tk−1

for c = 0.158 (solid), and theoretic distribution for a log-Poisson process (dotted) (c)

Cumulative distribution of tk/tk−1 close to the border O/D with c = 0.2 (light gray),

0.16 (dark gray) and 0.158 (black), and fitted theoretic distribution for a log-Poisson

process (dashed).
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Figure 6. System size dependence of the transient. (a) Transients for c = 0.158 and

N = 25, 50, 100, and 200 (solid gray to black) and corresponding theoretical transients

using (4), Neff = 7, 14, 24.5, and 61 and k = 6 · 10−7 (dotted). (b) Transients for

c = 0.18 and N = 25, 50, and 100 (solid) and variance (dashed).
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are almost equivalent for different system sizes when normalized by the final number

of synchronization events. Thus also here the system synchronizes faster for bigger

system sizes. The faster synchronization for increasing system size can be rationalized

using the same idea that led to (4), as follows: since the values of the units xi are

constrained to the interval [0, 1] of the logistic map, increasing the system size increases

the number of units in [0, 1] and therefore increases the number of collisions, i.e. the

speed of synchronization.

5. Conclusion

In conclusion, we have studied synchronization as a relaxation phenomenon. The

transient of synchronization in a coupled map model was found to drastically depend

on the amount of overall coupling. For an overall coupling at the border to disorder, the

transient was found to be logarithmically slow at intermediate times. This behaviour

has been found in other systems exhibiting record statistics, where the dynamics is

termed log-Poisson and arises because record fluctuations become increasingly rare. In

the model of the present system the dynamics may arise by an alternative way : it

can be simply explained by (for intermediate times) it getting more and more difficult

to find a new synchronization partner and actually synchronize as the system ages.

Interestingly, this kind of dynamics has been found otherwise in noise-driven systems.

The coupled map model used in this paper has no noise term, however, it uses the

logistic map, which has been studied as a noise generator since Ulam & Neumann

(Ulam & von Neumann 1947). Thus the use of the logistic map might be an ingredient

for the appearance of logarithmically slow dynamics. In a similar system it was shown

that a coupled map lattice is equivalent to a system of stochastic PDE (Katzav &

Cugliandolo 2005).

One example for the relevance of the synchronization observed in GCM is neural

networks. The speed of synchronization in neural networks is important (Kopell &

Ermentrout 2004), as it presumably is related to the response time of the brain. Namely,

if we assume, along with Varela et al. (Varela et al. 2001), that the state of the brain is

given by its state of synchronization, then the time to swap from one synchronization

pattern to another seems to determine how fast the brain can react. Also, the behaviour

at the edge between partial synchronization and disorder is especially interesting because

of the relevance of computation at the edge of chaos (Natschläger et al. 2005).
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