
ar
X

iv
:0

91
1.

17
08

v1
 [

cs
.A

I]
 9

 N
ov

 2
00

9

Different goals in multiscale simulations and

how to reach them

Pierrick Tranouez1 and Antoine Dutot2

1 MTG - UMR IDEES - Université de Rouen
IRED - 7 rue Thomas Becket
76821 Mont Saint Aignan Cedex - France
pierrick.tranouez@univ-rouen.fr

2 LITIS - Université du Havre
25 rue Philippe Lebon - BP 540
76058 Le Havre Cedex - France
antoine.dutot@univ-lehavre.fr

Summary. In this paper we sum up our works on multiscale programs, mainly
simulations. We first start with describing what multiscaling is about, how it helps
perceiving signal from a background noise in a flow of data for example, for a direct
perception by a user or for a further use by another program. We then give three
examples of multiscale techniques we used in the past, maintaining a summary,
using an environmental marker introducing an history in the data and finally using
a knowledge on the behavior of the different scales to really handle them at the same
time.

Key words: Multiscale, clustering, dynamic graphs, adaptation

1 Introduction: What this paper is about, and what it’s

not

Although we delved into different applications and application domains, the
computer science research goals of our team has remained centered on the
same subject for years. It can be expressed in different ways that we feel are,
if not exactly equivalent, at least closely connected. It can be defined as man-
aging multiple scales in a simulation. It also consists in handling emergent
structures in a simulation. It can often also be seen as dynamic heuristic clus-
tering of dynamic data3. This paper is about this theme, about why we think

3 We will of course later on describe in more details what we mean by all this.

http://arxiv.org/abs/0911.1708v1

2 Pierrick Tranouez and Antoine Dutot

it is of interest and what we’ve done so far in this direction. It is therefore akin
to a state of the art kind of article, except more centered on what we did. We
will allude to what others have done, but the focus of the article is presenting
our techniques and what we’re trying to do, like most articles do, and not
present an objective description of the whole field, as the different applica-
tions examples could make think : we’re sticking to the same computer science
principles overall. We’re taking one step back from our works to contemplate
them all, and not the three steps which would be necessary to encompass the
whole domain, as it would take us beyond the scope of this book.

2 Perception: filtering to make decisions

I look at a fluid flow simulation but all I’m interested in is where does the
turbulence happen, in a case where I couldn’t know before the simulation
[Tranouez 2005a]. I use a multi-participant communication system in a crisis
management piece of software and I would like to know what are the main in-
terests of each communicant based on what they are saying [Lesage 1999]. I use
an Individual-Based Model (IBM) of different fish species but I’m interested
in the evolution of the populations, not the individual fish [Prevost 2004]. I
use a traffic simulation with thousands of cars and a detailed town but what
I want to know is where the traffic jams are (coming soon).

In all those examples, I use a piece of software which produces huge
amounts of data but I’m interested in phenomena of a different scale than
the raw basic components. What we aim at is helping the user of the program
to reach what he is interested in, be this user a human (Clarification of the
representation) or another program (Automatic decision making). Although
we’re trying to stay general in this part, we focused on our past experience of
what we actually managed to do, as described in “Some techniques to make
these observations in a time scale comparable to the observed”, this is not
gratuitous philosophy.

2.1 Clarification of the representation

This first step of our work intends to extract the patterns on the carpet from
its threads [Tranouez 1984]. Furthermore, we want it to be done in “real (pro-
gram) time”, meaning not a posteriori once the program is ended by examining
its traces [Servat 1998], and sticking as close as possible to the under layer,
the one pumping out dynamic basic data. We don’t want the discovery of our
structures to be of a greater time scale than a step of the program it works
upon.

How to detect these structures? For each problem the structure must be
analyzed, to understand what makes it stand out for the observer. This im-
plies knowing the observer purpose, so as to characterize the structure. The

Different goals in multiscale simulations 3

answers are problem specific, nevertheless rules seem to appear.

In many situations, the structures are groups of more basic entities, which
then leads to try to fathom what makes it a group, what is its inside, its
outside, its frontier, and what makes them so.

Quite often in the situation we dealt with, the groups members share some
common characteristics. The problem in that case belongs to a subgenre of
clustering, where the data changes all the time and the clusters evolve with
them, they are not computed from scratch at each change.

The other structures we managed to isolate are groups of strongly com-
municating entities in object-oriented programs like multiagent simulations.
We then endeavored to manage these cliques.

In both cases, the detected structures are emphasized in the graphical rep-
resentation of the program. This clarification lets the user of the simulation
understand what happens in its midst. Because modeling, and therefore un-
derstanding, is clarifying and simplifying in a chosen direction a multi-sided
problem or phenomenon, our change of representation participates to the un-
derstanding of the operator. It is therefore also a necessary part of automating
the whole understanding, aiming for instance at computing an artificial deci-
sion making.

2.2 Automatic decision making

Just like the human user makes something of the emerging phenomena the
course of the program made evident, other programs can use the detected
organizations.

For example in the crisis management communication program, the de-
tected favorite subject of interest of each of the communicant will be used as
a filter for future incoming communications, favoring the ones on connected
subjects. Other examples are developed below, but the point is once the struc-
tures are detected and clearly identified, the program can use models it may
have of them to compute its future trajectory. It must be emphasized that at
this point the structures can themselves combine into groups and structures
of yet another scale, recursively. We’re touching there an important compo-
nent of complex system [Simon 1996]. We may hope the applications of this
principle to be numerous, such as robotics, where perceiving structures in vast
amounts of data relatively to a goal, and then being able to act upon these
accordingly is a necessity.

We’re now going to develop these notions in examples coming from our
past works.

4 Pierrick Tranouez and Antoine Dutot

3 Some techniques to make these observations in a time

scale comparable to the observed

The examples of handling dynamic organization we chose are taken from two
main applications, one of a simulation of a fluid flow, the other of the simula-
tion of a huge cluster of computed processes, distributed over a dynamic net-
work of computing resources, such as computers. The methods titled “Main-
taining a summary of a simulation” and “Reification: behavioral methods”
are theories from the hydromechanics simulation, while “Traces of the past
help understand the present” refers to the computing resources management
simulation. We will first describe these two applications, so that an eventual
misunderstanding of what they are does not hinder later the clarity of our
real purpose, the analysis of multiscale handling methods.

In a part of a more general estuarine ecosystem simulation, we developed
a simulation of a fluid flow. This flow uses a particle model [Leonard 1980],
and is described in details in [Tranouez 2005a] or [Tranouez 2005b]. The basic
idea is that each particle is a vorticity carrier, each interacting with all the
others following Biot-Savart laws. As fluid flows tend to organize themselves
in vortices, from all spatial scales from a tens of angstrom to the Atlantic
Ocean, this is these vortices we tried to handle as the multiscale characteris-
tic of our simulation. The two methods we used are described below.

The other application, described in depth in [Dutot 2005], is a step toward
automatic distribution of computing over computing resources in difficult con-
ditions, as:

• The resources we want to use can each appear and disappear, increase or
decrease in number.

• The computing distributed is composed of different object-oriented enti-
ties, each probably a thread or a process, like in a multiagent system for
example (the system was originally imagined for the ecosystem simula-
tion alluded to above, and the entities would have been fish, plants, fluid
vortices etc., each acting, moving . . .)

Furthermore, we want the distribution to follow two guidelines:

• As much of the resources as possible must be used,
• Communications between the resources must be kept as low as possible,

as it should be wished for example if the resources are computers and the
communications therefore happen over a network, bandwidth limited if
compared to the internal of a computer.

This the ultimate goal of this application, but the step we’re interested
in today consists in a simulation of our communicating processes, and of a
program which, at the same time the simulated entities act and communicate,

Different goals in multiscale simulations 5

Fig. 1. Studies of water passing obstacles and falling by Leonardo Da Vinci, c. 1508-
9. In Codex Leicester.

advises how they should be regrouped and to which computing resource they
should be allocated, so as to satisfy the two guidelines above.

3.1 Maintaining a summary of a simulation

The first method we would like to describe here relates to the fluid flow sim-
ulation. The hydrodynamic model we use is based on an important number
of interacting particles. Each of these influences all the others, which makes
n

2 interactions, where n is the number of particles used. This makes a great
number of computations. Luckily, the intensity of the influence is inversely pro-
portional to the square of the distance separating two particles. We therefore
use an approximation called Fast Multipoles Method (FMM), which consists
in covering the simulation space with grids, of a density proportional to the
density of particles (see Figure 2-a). The computation of the influence of its
colleagues over a given particle is then done exactly for the ones close enough,
and averaged on the grid for those further. All this is absolutely monoscale.

6 Pierrick Tranouez and Antoine Dutot

As the particles are vorticity carriers, it means that the more numerous
they are in a region of space, the more agitated the fluid they represent is.
We would therefore be interested in the structures built of close, dense par-
ticles, surrounded by sparser ones. A side effect of the grids of the FMM, is
that they help us do just that. It is not that this clustering is much easier on
the grids, it’s above all that they are an order of magnitude less numerous,
and organized in a tree, which makes the group detection much faster than if
the algorithm was ran on the particles themselves. Furthermore, the step by
step management of the grids is not only cheap (it changes the constant of
the complexity of the particles movement method but not the order) but also
needed for the FMM.

We therefore detect structures on

• Dynamic data (the particles characteristics)
• With little computing added to the simulation,

which is what we aimed at.

The principle here is that through the grids we maintain a summary of
the simulation, upon which we can then run static data algorithm, all this at
a cheap computing price.

3.2 Traces of the past help understand the present

The second method relates to the detection of communication clusters inside
a distributed application. The applications we are interested in are composed
of a large number of object-oriented entities that execute in parallel, appear,
evolve and, sometimes, disappear. Aside some very regular applications, often
entities tend to communicate more with some than with others. For example
in a simulation of an aquatic ecosystem, entities representing a species of fish
may stay together, interacting with one another, but flee predators. Indeed
organizations appear groups of entities form. Such simulations are a good ex-
ample of applications we intend to handle, where the number of entities is
often too large to compute a result in an acceptable time on one unique com-
puter.

To distribute these applications it would be interesting to both have ap-
proximately the same number of entities on each computing resource to bal-
ance the load, but also to avoid as much as possible to use the network, that
costs significantly more in terms of latency than the internals of a computer.
Our goal is therefore to balance the load and minimize network communica-
tions. Sadly, these criteria are conflicting, and we must find a tradeoff.

Our method consists in the use of an ant metaphor. Applications we use
are easily seen as a graph, which is a set of connected entities. We can map

Different goals in multiscale simulations 7

a - Each color corresponds to a detected aggregate

b - Each color corresponds to a computing ressource

Fig. 2. Detection of emergent structures in two applications with distinct methods

8 Pierrick Tranouez and Antoine Dutot

entities to vertices of the graph, and communications between these entities
to the edges of the graph. This graph will follow the evolution of the sim-
ulation. When an entity appear, a vertex will appear in the graph, when a
communication will be established between two entities, an edge will appear
between the two corresponding vertices. We will use such a graph to repre-
sent the application, and will try to find clusters of highly communicating
entities in this graph by coloring it, assigning a color to each cluster. This
will allow to identify clusters as a whole and use this information to assign
not entities, but at another scale, clusters to computing resources (Figure 2-b).

For this, we use numerical ants that crawl the graph as well as their
pheromones, olfactory messages they drop, to mark clusters of entities. We
use several distinct colonies of ants, each of a distinct color, that drop colored
pheromones. Each color corresponds to one of the computing resources at our
disposal. Ants drop colored pheromones on edges of the graph when they cross
them. We mark a vertex as being of the color of the dominant pheromone on
each of its incident edges. The color indicates the computing resource where
the entity should run.

To ensure our ants color groups of highly communicating entities of the
same color to minimize communications, we use the collaboration between
ants: ants are attracted by pheromones of their own color, and attracted by
highly communicating edges. To ensure the load is balanced, that is to ensure
that the whole graph is not colored only in one color if ten colors are avail-
able, we use competition, ants are repulsed by the pheromones of other colors.

Pheromones in nature being olfactory molecules, they tend to evaporate.
Ants must maintain them so they do not disappear. Consequently, only the
interesting areas, zones where ants are attracted, are covered by pheromones
and maintained. When a zone becomes less interesting, ants leave it and
pheromone disappear. When an area becomes of a great interest, ants col-
onize it by laying down pheromones that attract more ants, and the process
self-amplifies.

We respect the metaphor here since it brings us the very interesting prop-
erty of handling the dynamics. Indeed, our application continuously changes,
the graph that represents it follows this, and we want our method to be able to
discover new highly communicating clusters, while abandoning vertices that
are no more part of a cluster. As ants continuously crawl through the graph,
they maintain the pheromone color on the highly communicating clusters. If
entities and communications of the simulation appear or disappear, ants can
quickly adapt to the changes. Colored pheromones on parts where a cluster
disappeared evaporate and ants colonize new clusters in a dynamic way. In-
deed, the application never changes completely all the time; it modifies itself
smoothly. Ants lay down “traces” of pheromones and do not recompute the

Different goals in multiscale simulations 9

color of each vertex at each time, they reuse the already dropped pheromone
therefore continuously giving a distribution advice at a small computing price,
and adapting to the reconfigurations of the underlying application.

3.3 Reification: behavioral methods

This last example of our multiscale handling methods was also developed on
the fluid flow simulation (Figure 3). Once more, we want to detect structures
in a dynamic flow of data, without getting rid of the dynamicity by doing a
full computation on each step of the simulation. The idea here is doing the full
computation only once in a good while, and only relatively to the unknown
parts of our simulation.

Fig. 3. Fluid flow around an obstacle. On the left, the initial state. On the right, a
part of the flow, some steps later (the ellipses are vortices)

We begin with detecting vortices on the basic particles once. Vortices will
be a rather elliptic set of close particles of the same rotation sense. We then
introduce a multiagent system of the vortices (Figure 3-right). We have in-
deed a general knowledge of the way vortices behave. We know they move like
a big particle in our Biot-Savard model, and we model its structural stabil-
ity through social interactions with the surrounding basic particles, the other
vortices and the obstacles, through which they can grow, shrink or die (be dis-
sipated into particles). The details on this can be found in [Tranouez 2005a].
Later on, we occasionally make a full-blown vortex detection, but only on the
remaining basic particles, as the already detected vortexes are managed by
the multiagent system.

In this case, we possess knowledge on the structures we want to detect,
and we use it to build actually the upper scale level of the simulation, which

10 Pierrick Tranouez and Antoine Dutot

at the same time lightens ulterior structures detection. We are definitely in
the category described in Automatic decision making.

4 Conclusion

Our research group works on complex systems and focuses on the computer
representation of their hierarchical/holarchical characteristics [Koestler 1978],
[Simon 1996], [Kay 2000]. We tried to illustrate that describing a problem at
different scales is a well-spread practice at least in the modeling and simulat-
ing community. We then presented some methods for handling the different
scales, with maintaining a summary, using an environmental marker introduc-
ing a history in the data and finally using knowledge on the behavior of the
different scales to handle them at the same time.

We now believe we start to have sound multiscale methods, and must
focus on the realism of the applications, to compare the sacrifice in details we
make when we model the upper levels rather than just heavily computing the
lower ones. We save time and lose precision, but what is this trade-off worth
precisely?

References

[Dutot 2005] Dutot, A. (2005) Distribution dynamique adaptative à l’aide de
mécanismes d’intelligence collective. PhD thesis, Le Havre University.

[Kay 2000] Kay, J. (2000) Ecosystems as Self-Organising Holarchic Open Systems :
narratives and the second law of thermodynamics. Jorgensen, S.E.; and F. Müller
(Eds.), Handbook of Ecosystems Theories and Management, Lewis Publishers.

[Koestler 1978] Koestler, A. (1978) Janus. A Summing Up. Vintage Books, New
York.

[Leonard 1980] Leonard, A. (1980) Vortex methods for flow simulation, Journal of
Computational Physics, vol. 37, 289-335.

[Lesage 1999] Lesage, F.; Cardon, A.; and P. Tranouez (1999) A multiagent based
prediction of the evolution of knowledge with multiple points of view, KAW’99.

[Prevost 2004] Prevost, G.; Tranouez, P.; Lerebourg, S.; Bertelle, C. and D. Olivier
(2004) Methodology for holarchic ecosystem model based on ontological tool. ESM
2004, 164-171.

[Servat 1998] Servat, D.; Perrier, E.; Treuil, J.-P.; and A. Drogoul (1998) When
Agents Emerge from Agents: Introducing Multi-scale Viewpoints in Multi-agent
Simulations. MABS 98, 183-198.

[Simon 1996] Simon, H. (1996) The Sciences of the Artificial (3rd Edition). MIT
Press.

[Tranouez 1984] Tranouez, Pierre (1984) Fascination et narration dans l’œuvre ro-
manesque de Barbey d’Aurevilly. Doctorat d’État.

Different goals in multiscale simulations 11

[Tranouez 2005a] Tranouez, P.; Bertelle, C; and D. Olivier (2006) Changing levels
of description in a fluid flow simulation in M.A. Aziz-Alaoui and C. Bertelle
(eds), “Emergent Properties in Natural and Artificial Dynamical Systems”, Un-
derstanding Complex Systems series, 87-99.

[Tranouez 2005b] Tranouez, P. (2005) Contribution à la modélisation et à la prise
en compte informatique de niveaux de descriptions multiples. Application aux
écosystèmes aquatiques (Penicillo haere, nam scalas aufero), PhD thesis, Le
Havre University.

