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In this letter we derive an expression for the force acting on a small (still macroscopic) particle in the field 
of the quantized electromagnetic radiation in any arbitrary quantum state. This result unifies in one simple 
formula all known expressions for the forces (i.e. van der Waals or frictional) acting on a small particle. 
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1. Introduction 
 
    Growing successes in nanotechnologies and possibility of non-contact control of 
nanoparticles by optical tweezers [1], [2], or by usage of effects of quantum friction [3] 
stimulate investigations of the force acting on a polarizable nanoparticle in the external 
electromagnetic field for the states of the field out of equilibrium. Inclusion in 
consideration of nonequilibrium states is stipulated by the possibility of tuning the 
interaction in both strength and sign [4], [5]. 
     The problem of the mechanical force acting on a small, neutral particle, or on an atom 
with the electromagnetic field in equilibrium is well understood [6]. Meanwhile the same 
problem for the nonequilibrium states of the field is solved only in a special case when 
usage of the fluctuation-dissipation theorem provides an opportunity in "construction" of 
a "hot" half space [4], [5]. 
     In this letter we derive an expression for the force acting on a small (still macroscopic) 
particle (which we'll call nanoparticle) in the field of the quantized electromagnetic 
radiation in any arbitrary quantum state. This result provides an opportunity to unify in 
one expression for the force the all known results related to the problem. As the simplest 
consequence of the generalization we recover expressions for particle-wall interaction 
force and expression for the frictional force acting on a moving particle through the 
blackbody radiation. 
 
 
2. Expression for the force 
 
    Compared with the case of atom-field interaction problem the case of macroscopic 
nanoparticle permits a very important approximation, i.e., in this case for moderate 
intensities we can ignore dynamics of the particle under influence of the external 
electromagnetic field and suppose that the particle stays in its initial state (local 



thermodynamic equilibrium) during all the time of interaction with the external field. 
Besides, in case of nanoparticles the characteristic size of the particle is much smaller 
than the wavelength of radiation (for thermal fields relevant wavelengths are of the order 
2πc/T ), so we can solve the problem in Rayleigh regime, [7] i.e., we may ignore the 
change of external field in the volume of the particle and suppose that the particle 
behaves as a single electric dipole. 
     In electric - dipole approximation the force of radiation on a neutral particle located at 
the point Arr is given by [8] 
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Taking interactionV̂ of electromagnetic field with dipole in the form ( )ArEdV rrr ˆˆˆ −=  we can 

evaluate ( ) ( )tEtd ,rˆˆ rrr
in (1) using Keldysh technique [9]: 
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Then, in the first order of interaction V̂  we find 
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( )τλσ ,;,ˆ
ArtrD rr  is the photon propagator 
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 in Dzyaloshinskii gauge ( 0=ϕ ) and   

( ) ( ) ( )σλλσ ττα jiCij dtdTit ˆˆˆ, =  

is the particle propagator in the interaction picture. 
    After Keldysh transformation [9], [10] 
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in (2) we come to the expression 
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which for stationary states of  electromagnetic field, i.e., when 
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reduces to a time independent quantity and then for the force (1) we find 
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Further on we'll suppose that the particle stays in a local thermodynamic equilibrium at 
temperature T  during the interaction with electromagnetic field, therefore the Keldysh 
function of the particle is given by: 
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     Expression (3) (with (4)) for the force acting on a small particle in the external 
electromagnetic field in any arbitrary quantum state is the main result of this paper. This 
expression also contains all the previous results related to the problem.   
 
3. Casimir-Polder interaction with the wall 
 
    For instance, in the case of the global equilibrium 
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Expressions (3-4) result in the force acting on the particle in equilibrium [11]: 

( ) ( ) ( )[ ]
Arr

A
RR

TA rrDTr
ec

drF
rr

rrrrr

=

+∞

∞−
−∫ ∇

−
= ,;ˆˆIm

1
1
/2

2

ωωα
π

ωω
ω                               (6) 

Using analytical properties of retarded functions RR D̂,α̂ , in integrand we can simplify 
expression (6) representing it as a sum over imaginary frequencies. Really, replacing 
integration over real frequencies ω by integration in complex upper half plane and then 
using residue theorem we come to the Matsubara representation of the force in 
equilibrium [12]: 
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                                                            ( )ck ss /ζ=  
As a simple application of this expression let us consider interaction force of the particle 
with a dielectric half space 0<z .Insertion of the expression for temperature Green 
function ( )As rriD rr,;ˆ ζ  [13] we find for unique nonzero z component of the force (7) in this 
case 
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Where ( ) 2222
0 , ⊥⊥ +=+= kkiwkkw sss ζε and ⊥⊥= kkn /

rr .For the isotropic particle 
αδα ijij =  expressions (8), (9) are coincident with well-known result [14] 
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4. Frictional force in free space 
 
    As an application of our result (3) to the case of frictional forces let us consider the 
simplest problem: frictional force acting on the moving particle through the blackbody 
radiation [15]. In the case of free electromagnetic field retarded (advanced) function 
depends of difference of coordinates [16] and  
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In the reference system of the particle moving uniformly with velocity vr  relative to the 
black body radiation photon distribution function depends also on photon momentum k

r
 

and is given by 
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and for the Keldysh function we may take expression 
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In this case we get for (3): 
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For isotropic polarization αδα ijij =  
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and for the force acting on the particle (in the frame of particle) we find [17], [18] 
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    As we see, expression (3) for the force acting on a nanoparticle in external 
electromagnetic field in arbitrary quantum state describes in equal foot also Van der 
Waals interactions of the particle with surroundings and frictional forces acting on the 
moving particle. 
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