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All the optimal stabilizer codes of distance 3
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Abstract— Optimal quantum stabilizer codes of distance 3 are
A SUMMARY OF THE EXISTENCE OF OPTIMAL STABILIZER CODES

explicitly constructed for all lengths except for the follaving four

families of lengths 8f,, — {1,2} and fy.. o — {2,3} with f,, = [[n, k,3]] OF ALL LENGTHS. ALL THESE CODES SATURATE THE QUANTUM
‘V"Tfl and m > 2 being integer, for which our codes are of the HAMMING BOUND EXCEPT FOR7 FAMILIES OF LENGTHS WITH3 OF THEM
best parameters known and are only one logical qubit less tha (LABELED BY 1) BEING NEVERTHELESS OPTIMAL AND4 OF THEM
the quantum Hamming bound. The optimality of our codes is (LABELED BY u) HAVING THE BEST PARAMETERS KNOWN

ensured by saturating either the quantum Hamming bound or
a stronger bound for three families of lengths8f,, + {1,2} and
fm+2 — 1 with m > 1 derived from the linear programming

bound. For the lengths less than 128 three previously unknomw n n—k SH
codes|[[36, 29, 3]], [[37, 30, 3]] and [[81, 73, 3]] have been found. 55 4 4
6,8 5 5

Index Terms— quantum error correction, 1-error correcting 7.9.10 6 5
stabilizer codes, quantum Hamming bound, linear programmng »
bound, optimal codes 1N =n=<17,21 6 6

18,19, 20 7 6
|. INTRODUCTION 22 <mn < 35, %36, %37,40 7 7
[ u l !

Quantum error-correcting codes [2], [9], [13], [15] proeid 4‘28; 3i j;’l 8452 Z ;
us an active way of protecting our precious quantum data from ug; g3 18’4 0 g
guantum noises and play essential roles in various quantum ’ '
informational processes. Simply speaking, a QECC is just $0=n= 128 ) ?

' : ’ fmi1+1<n<8fm—-3(m>2) 2m+3 2m+3

a subspace that corrects certain type of errors. When the P8 fm) (m > 1) om+3 Om 43

subspace is specified by the joint +1 eigenspace of a group of 8fm — {u"lL “2}7(m > 9) m4d 2m+3

commuting multilocal Pauli operators, i.e., direct proguaf 8}” +{117 19} (m ;1) om 44 2m+3
local Pauli operators, the codes are called as stabilizées<o . ’ .

. . 8fm+3<n< finy2—4(m>2) 2m+4 2m+4

[3], [4], [5]. We consider only binary codes here. As usual P frra (m > 0) om4d 2mod

™ m -
we shall denote by[n, k,d]] a stabilizer code of length Ptz — {12, U3} (m > 2) om5 2mdtd

and distancel, i.e., correcting up tq%J-qubit errors, that U(fmsz — 1) (m > 1)
encodes: logical qubits. =
One fundamental task is to construct optimal codes, e.g.,
codes with largest possible with fixed n andd. In the case
of d = 2 all optimal stabilizer codes are known. In the simplesbr a stabilizer code[[n, k, 3]], is introduced initially for
nontrivial casel = 3, despite many efforts to construct optimathe non-degenerate codes, has been proved to be valid for
stabilizer codes, a systematic construction for all lesdths degenerate codes of distance 3 and 5 [5] and of a large enough
not been achieved yet. Known results include Gottesmanmmgth [1] via linear programming (LP) bound [4], [11].
optimal codes family [6] of lengtha™ with m > 3 which  The most comprehensive list of stabilizer codes of distance
has been generalized for even lengths [10] by using Steang's)p to 128 qubits is presented in the public code table
enlargement construction [16] with some codes being optim@aintained by Grass! [8] and the parameters of the optimal
and some are suboptimal, i.e., one logical qubit less than ibdes are summarized in the upper half of Table I, where
quantum Hamming bound. the optimal codes of length labeled bydo not saturate the
A code of distancel is degeneratéf there are harmless quantum Hamming bound and the Opt|ma| code of |ength
undetectable errors acting on less thlagubits, i.e., errors can , — ¢ (labeled bys3) is degenerate. Those optimal codes of
not be detected but do not affect the encoded quantum dafiee lengths labeled with are previously unknown and will
If all errors acting on less thatt qubits can be detected thepe constructed here.
codes arenon-degenerater pure For apure code of distance | this paper we shall construct explicitly the optimal
3 all errors happened on up to 2 qubits can be detected. Tghilizer codes of all lengths and a summary is given in
quantum Hamming bound, e.g., the lower half of Table I, in which the optimal codes of
n—k> sy = [logy(3n+1)] (1) lengths labeled by are already known. For simplicity we

have denotedf,, = £~ (m > 1), i.e,,
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been worked out analytically for three special families of
lengths (labeled by) or iii) have the best known parameters

and are only 1 logical qubit less than the quantum Hamming
bound (of lengths labeled by).

After the introduction of some notations and known results
essential to our construction in Sec.ll, we shall preseat th
general construction for the optimal code of a lengtk 38
in Sec.lll and then work out the LP bound for 3 families of
lengths in Sec.lV to ensure the optimality of some families
of our codes. In Sec. V we construct explicitly all the pure
optimal codes of lengthe < 37 case by case, which are
essential for our general construction.

TABLE Il
SOME EXAMPLES FROM CODES FAMILY[8 - m].

2% [2°] 2] 5] 2°] [2°] [27]
1(2°%) X(29) Y(2°)  I(2%) X(2°) Y/(2°) Z(2°)
1(2%) Y(2°) 2(2°) 1(2°) Y(2°) 2(2%) X(2°)

[8-3] = 124, 17, 3]] [8-4] = [[32, 25, 3]]

2% 2°] 2% [2°] [2%] 127
1(2°) Z2(2°) Y(2°) X(2°) Y(2°) X(2%)
X(2°) v(2%) 1(2°%) Z(2°) X(2°) Y(2%)
Z(23) X(23) Z(23) X(23) 1(23) Y(23)

[8 - 6] = [[48, 40, 3]]

II. NOTATIONS AND KNOWN RESULTS

Our construction is based on two families pure code

and Gottesman’s stabilizer pasting [7] to build new codéX servablesX(8m)_ and Z(8m). Here we ’shall prowde_ a
from old pure codes. As usual we denote KyY, Z three ifferent construction based on Gottesman’s codes family.

Pauli operators and by the identity operator. Furthermore We divide 8 qubits into m blocks of 8-qubit. First 5
we denoteX (n) = X, X,...X, with X; being the Pauli stabilizer of the code ar@3]®™ whose first two generators
operator X acting nontrivially on thei-th qubit only and aréX(8m)andZ(8m). Inthe case ofn = 3,4 the codes are
similar expressions fo¥ (n), Z(n), andI(n). For simplicity defined in Table Il. In the case ofi > 5 so thatl,, > 3,
we shall denote byn, s] the stabilizer of purestabilizer code the remainingl,, generators of the stabilizer are obtained
([n, n—s, 3]] while simply by[n] the stabilizer amptimal pure from Gottesman’s codé2'~] by at first removing the first

code of lengthn, e.g.,[5] stands for the perfect codis, 1,3]] WO generators and then removing arbitrafy: — m qubits
whose stabilizer reads and finally replacing each single-qubit Pauli operatarsy’,

and Z in the remaining stabilizers with corresponding 8-qubit

XXXX I operatorsX (23), Y (23), and Z(2?) respectively. In Table II
Z Z Z z I ’ (3) We also present an example in the caserof- 6.

XYy z1I X Obviously all I, + 5 generators defined above are com-
Y Z X1 Z

muting with each other. Because of the first 5 generators of

where a juxtaposition of some Pauli operators in the same ré)¢ stabilizer any 2-errors in the same 8-qubit block can be

means their direct product. detected. For any 2 errors in two different 8-qubit blocks, t
Codes family [2] (m > 3). The first codes family is last,,, generators together with the first 2 generators defines

Gottesman’s family of optimal codeg2™,2™ — m — 2,3] @ subcod_e of_ Gottesman’s cofié~] and therefore detects all
with m > 3 that saturate the quantum Hamming bound €rrors in different blocks. Thus all 2-error can bg detacte
[6]. By construction, these codes are non-degenerate and & that we have constructed a pure l-error-correcting céde o
observablesX (2™) = X ... Xom and Z(2™) = Zy ... Zom length8m.

are generators of the stabilizer. For simplicity we dengte b We shall abuse the notation slightly to denote all the codes
[2] a set ofm + 2 generators of the stabilizer of Gottesman’6f this family by [8 - m] though some of them are not optimal.
code with the first two generators beidg(2™) and Z(2™).  In fact whenf, 1 +1 < m < 2?"*! and % <m < 2%

An explicit construction of the remaining. generators with » > 1 the code[8 - m] is optimal sincel,,, +5 = sy in
are given by the check matrii,,|A,, H,,] where H,, = these cases. Otherwise the code is suboptimal lj.e+ 5 =
[co,c1, ..., com_1] With the (k 4+ 1)-th columnc, being the sp + 1.
binary vector representing integér (k = 0,1,...,2™ — 1) Stabilizer pasting (Gottesman [7]): Given two non-
and 4,, is any invertible and fixed point free. x m matrix, degenerate stabilizer codés,,s;] = (S1,52,...,95s,) and
i.e., Ams # 0 and A,,s # s for all s € F". As an example [n,,s,] = (T1,Ts,...,Ts,) of distance 3, if two observables
the unique codé2®] has a stabilizer generated by X(ng) and Z(ny) belong to [ng,s2], say, S = X(nsa)
and S; = Z(ng), then the stabilizer defined in Table Il
defines a non-degenerate stabilizer cdde + ni,s] with
s = max{sa, 51 + 2}, denoted agno, s2| > [n1, s1].

As the first example of stabilizer pasting we can obtain an
optimal code[13] = [[13,7,3]] by pasting the optimal code
[23] of lengthn, = 8 and s, = 5 stabilizers with the perfect

Codes family [8-m] (m > 3). The second family of codescode[5], i.e,, n; = 5 ands; = 4. The resulting code is of
are of parameterg8m, 8m — l,,, — 5, 3]] with ,, = [log, m] lengthni +ny = 13 with s; +2 =6 > s = 5 stabilizers.
that are constructed in Ref.[10]. One crucial property a6 th If there is a third pure codpus, s3] with X (ns) and Z(ns)
family is that they are stabilized by the ak and all Z belonging to its stabilizer then the stabilizer pastinguhssin

XXXXXXXX
72722222272
IZIZYXY X . ()
I ZXYIT1ZXY
IYZXZXIY




TABLE Il TABLE IV
THE STABILIZER FOR THE CODE OBTAINED FROM PASTING THE STABILIZERS OF THE PURE OPTIMAL CODE$[n,n — s, 3]] FOR
n < 37 AND n # 6. ALL THE 2-ERRORDETECTING BLOCKS SUCH AS
(28, 7]2 ARE CONSTRUCTED INSEC. V EXPLICITLY.

X(n2) I(n1) X(n2) I(n1)
Z(n2) I(n1) Z(n2) I(n1)
S3 Ty S3 i
Sy i Sy T n s Stabilizer n s Stabilizer
, . 10 6 Table VII 54 [4,4]1 > (1)1
: : or : : 11 6 [10,6]1 > [1]1 76 [6,6]1>[1]1
Ssy  Tsy—2 Ssi+2 Ty 12 6 [10,6]2 > [2,4]2 85 [29]
I(n2) Tsy—1 Ssy+3 I(n1) 13 6 [10,6]2 > [3,4]2 96 [6,6]20[3,4]2
: : : : 14 6 [10,6]1 > [4,4]1 18 7 [10] > [29)
' ' ' ‘ 15 6 [10] > [5] 197 [18,7)1 > [11
_fna)  Te _ Sep  I(m) 16 6 [27] 20 7 [18,7]2 > [2,4]2
17 6 Eq.[9) (Ref.[4]) 21 6 [24 > [7]
30 7 [28,720[2,4]2 22 7 (18,71 > [4,4]1
317 [28,720[3,4]2 23 7 (18,721 [5,5]2
a pure code 327 [29] 247 [8-3]
33 7 (28,721 [5,5]2 25 7 [18,71 > [7,5]1
[n1 + na + ns, s| = [ns, s3] > [na, s2] > [n1, 1] (5) 347 [26,720[7,5]1>[1]1 267 [18,7]2 > [7,5]1 > [1]1
35 7 [28,71 (7,51 27 7 (18,71 > 23] > [11
with s = max{ss,ss + 2,51 + 4}, which can be further 36 7 128,72 > (7.5 > {1s 28 7 20,72 & [7,5]1 & [1]x
37 7 [32] > [5] 207 [8-3]>[5]

pasted with another code and so on. As the second example
the perfect cod[fm, fm — 2m,3]] with f,, = A5 and
m > 3 can be constructed by pasting Gottesman’s c¢fés

(l1=2,3,...,m) with the pure perfect 5-qubit code [7], [4], degenerate, whose stabilizer reads

[fm] = 220" D] > 22" > > 24 > 5], (6) TIXIZY ZYXXZYIIXXY
11 ZX1ZIYYYXXZYY XX
As the last example the optimal stabilizer code of lertgyfh, IXIIXZXZYYYIYXZIY
(m > 2) can be constructed by pasting Gottesmanscodes | 7z 1 Z Z I Y XY X ZY ZXZ ZX . (9)
2241 (1=1,3,...,m) [4] XIITZYIIXZZYXYZIYX
Z 1T IXYYYIYIYXIXXZY
[8fm] = [22m+1] > [22m71] >...> [23]. (7) [17] = [[17, 11, 3]]
These lengths are labeled pyin Table I. Obviously pure optimal codes of lengths 16 and 32 exist. We

shall postpone the explicit constructions of the pure ogtim
codes of remaining lengths to Sec. V where the pasting of
[1l. GENERAL CONSTRUCTION stabilizers is generalized to the pasting of noncommutetg s
of generators. In fact all the pure optimal codes of lengths
Our main tool is the pasting of codes to produce new codgs< n < 37 with n # 6 are summarized in Table IV. It
from old ones and only pure codes can be used in the pastiRgworthy of noting that there is another previously unknown
Since the optimal stabilizer code far= 6 is degenerate the optimal stabilizer codés6] = [[36, 29, 3]], whose stabilizer is
optimality does not ensure the pureness. Although from tegplicitly given in Table VI. [ |
upper half of Table | we know the optimal codes exist for Lemma 1 ensures that there exist — 4] and[37 — j3] for
n < 37, we have to check case by case that pure optim@k 5 < 7, i.e, optimal pure codes of those lengths exist and
codes also exist, which are essential to our construction. have 6 and 7 generators respectively. For 38 we have the
following general construction:

Lemma 1 Non-degenerate optimal 1-error correcting codes

of lengths10 < n < 17 and 30 < n < 37 exist. Theorem 2 For a given Iengthnmz 38ifa)8f, —2<n<
fm+2 — 4 (recalling that f,,, = 25-1) for somem > 2 then
Proof: By a direct application of the stabilizer pasting"® denotefr iz —4—n=8a+fwitha >0and0 < f < 7.

to two optimal codes we obtain a previously unknown pur he stabilizer

optimal code[[37, 30, 3]] whose stabilizer reads 8- (2271 —a)]> 221> 222> . .> [25] 1> [17— 3] (10)

[37] = [2°] > [5]. (8) defines a non-degenerate cdfte n—2m—4, 3]]. Whenm = 2
the stabilizer is generated bjg - (8 — )] > [17 — G]. b) If

Also it is not difficult to check that the optimal stabilizerf,,;» —3 <n <8f,,41 — 3 for somem > 2 then we denote
code[[17,11, 3]] found in Ref.[4] by a random search is non8f,,.1 —3 —n =8a+ S witha > 0and0 < 3 < 7. The



stabilizer than that specified by the quantum Hamming bound. However
Co2m om1 o1 . B it can be proved via linear programming bound that the codes
[8-(2 a)]e[2 Je[2 Jo. .2 >[37-5] (11) constructed via Theorem 2 are optimal in these cases.O0
defines a non-degenerate cd@ie n—2m—>5, 3]]. Whenm = 2
the stabilizer is generated H$ - (16 — )] > [37 — f]. IV. THE LINEAR PROGRAMMING BOUND

Proof: At first from Lemma 1 and the constructions N this section we shall work out analytically the LP bound
of two codes families[8 - k] and [2*] it is clear that all for three families of lengths. For a stabilizer cofle, k, d|]

the stabilizer codes involved in EG{10) or Eql(11) are not{l€ denoteP as its projector ands’ = 2 ands = n — k. The

degenerate. Secondly by construction two families of cod¥gight distributionsd; [14], [11] are defined by

8-k] and[2*] are stabilized by al and allZ Pauli operators. 1 2 .

,[As ('11 resmEIt 1he stabilizer pasting can be applied from right t Ai = K2 Z T(PE)" (1=01,...,n). (13)

left so that Eq[(Z0) and E@.(11) define pure stabilizer cades Jwl=i

distance 3. where the summation is over all errors supported guabits.
Now we evaluate the parameters of the codes. It is edsys obvious thatA; > 0, Ag = 1, and}_; A; = 2° so that

to see from the definition ofv and 3 and identity f,,.» = {A4:/2°}!, can be regarded as a probability distribution. For

22m+2 4 92m 4 4 2% 4 5 that the length of the resulting an arbitrary functionf(x) we denote its average by

codes are exactly. Recalling that the cod€s - k] and [2¥] d

havel, = [logk| +5 andk + 2 stabilizers respectively while (f(z)) = L Z f(i)A;. (14)

the codeg17— 3] and[37— /3] have at most 6 and 7 stabilizers 28 =

respectively. Since: > 0 we have[log(2?"~*—a)] < 2m—a

fora — 0, 1, the stabilizers in EQ.{10) and EG{11) have-+4 In the following we shall formulate a subset of the linear-pro

and2m 4 5 generators respectively gramming bound for 1-error correcting codg, which serve our
Let us look at some examples. 1I;f: 38 thenm — 2 o purpose perfectly. For a complete set of linear programming
that 38 < n < 81 and the condition of case a is satisfiedt.)ou.nd see Ref.[4], [12]' . .
- = Linear Programming bound (Restricted set) If there exists

In this case81 — 38 =5 x 8 + 3 so thata = 5 and 3 = 3 o . .
and the construction EGILO), .8 - 3] > [14], gives rise to a a stabilizer codén, k, 3]] then the following conditions hold

stabilizer codd[38, 30, 3]], which is not optimal but the besttrue
code constructed so far. The situation is similar for leagth A = (3n — 4x), (15)
n = 39,82,83. If n =281 we have 1 )
Az = =((4x —3n+1)" —3n — 1), (16)
[81] = 2] > [17], (12) ? N
an optimal codg[81, 73, 3]] obviously missing from the public Z Ag; > 2571, a7)
code table. Ifn = 371 thenm = 3 and 340 < n < 677 with i=0

the condition of case b satisfied. In this c&#3& — 371 = 8 x Conditions Eq[(@5) and E@.(L6) come from the error-
38 +2 so thata = 38 and 3 = 2 and by construction EQ.(L1) correction conditions and condition EG17) comes from the

we have[371] = [8-26]t>[27] > [35] which is an optimal code fact that the even-supported subset of a stabilizer is adralf
[[371, 360, 3]] that saturates the quantum Hamming bound. the whole stabilizer.

Remarks For any givenn > 38 we have either construction

a or construction b. Generally: Theorem 3 If there exists a stabilizer codén, k, 3], degen-
i) In the case of8fn, +3 < n < fii2 —4 0 finy2 +  erate or non-degenerate, for a lengthequals f,,o — 1 or

1 <n < 8fmi1 — 3 (unlabeled lengths in Table 1) we haveg¢ 1 1 or 8f,, + 2 with f,, = 4””371 andm = 1,2,...,

m = [*4-1]| and Theorem 2 gives rise to an optimal codghen,, — k > s5 + 1, while the quantum Hamming bound
because the quantum Hamming bound is saturated, i.e.,f§§ the 1-error-correcting stabilizer codes of lengthreads
stabilizer hass;; generators. n—k>sy=[logy(3n+1)].

i) In the case ofn = 8f,, or n = fi,42 With m > 2
(lengths labeled by in Table 1) the construction of Theorem Proof: Suppose thatr = f,, 42 — 1 with m > 1 it is
2 gives rise to a suboptimal code that is one logical qubg lesbvious that%" = 4™*1 — 1 is an integer and therefore the

than the optimal code given in E.(6) or Eq.(7). following function
i) In the case ofn = 8f,, — {1,2} orn = fi42 — {2,3} 3n 3n
with m > 2 (lengths labeled by in Table 1) Theorem 2 h(z) = 16 (x - —> <x -1~ Z) (18)

gives rise to a so-far optimal code because in these cases its
stabilizer hassy + 1 generators and there is no better codié nonnegative for all integers. Specificaliyx) > 0 for » =
known so far. However there may exist better codes with ofiel, 2, ..., n. Furthermore we have
more logical qubit.

iv) In the case of = 8f,, + {1,2} or n = f,,12 — 1 with hO) = 3n(3n+4), (19)
m > 2 (lengths labeled by in Table 1) Theorem 2 gives rise h(1) = 3n(@Bn—4)>203n+4) (n=3), (20)
also to a code witls ; +1 stabilizers, i.e., one logical qubitless  h(2) = (Bn—-4)3n—8)>2(3n+4) (n > 3). (21)



In this case the quantum Hamming bound reags= 2m -+ Now we suppose. = 8 f,, + 2 with m > 1 and in this case
4 (since3n+4 = 22" +4) and we shall prove—k > sg+1if  sg = 2m + 3. Since% is an integer the function defined
there exists a stabilizer codg, &, 3]], which means Eq$.(15- as follows

[I7) must hold. As a result we have _
) o) = 16 (x_3n+2) (I_3n 2> (31)
(h(z)) = 3n+24; +2A,. (22)

is nonnegative for integet. It is obvious thatg(0) > (3n +
2)(3n—4) andg(i) > 2(3n+2) fori = 1,2 as long as > 5.

tL I th ists a stabili k, 3] then E 7 t
5O MO+ 00 21y T e Sablzercod. ] e ST s

Thus it follows from

2°(h(x))

(31 + 4)(3n + 24, + 245)
(3n 4+ 4)(h(z)) (23)

that2® > 3n + 4, i.e.,n — k > sy. We shall now prove that Thus
the equality can never happen. If the equality were true, i.e 2°(g(x))
2% = 3n+4, then all the inequalities in E@.(R3) would become
equalities which means thal; = 0 excepti = 0,1,(+1 where
I = 3n/4 sincel,l + 1 are the only zeros ofi(z). From
conditions1 + A; + Ajy1 = 3n+4 and3n — 44,11, = 0,
which comes from Ed.(15), we can solvk,; = 3n/4 and
A; = 9n/4 + 3. Noticing thatl = 4™+ — 1 is odd it follows
from inequality Eq[(TI7) that + 3n/4 > (3n +4)/2 which is
impossible. Thu®® > 3n +4, i.e,n —k > sg + 1. ) ) )
The cases: = 8, + {1,2} have been proved in [17] here In this section we shall prove Lemma 1 by constructing

we shall reproduce them for completeness. At first we suppd&licitly all the optimal non-degenerate codes with Iérsgt
n =8, + 1 with m > 1. In this casesy — 2m + 3 and we " < 37 exceptn = 6. Our main tool is a generalization of
introduce a nonnegaﬁve function as the pasting of stabilizer codes to a pasting of 2-error dietgc
blocks (2ed-block) defined as below.
1
f(z) =16 (:c - 3n4—|—

It is easy to check that as long as> 5

0 3n+1)>> (3n+5)(3n—17)+16, (25 "
70 (8n + )2 > (3n45)(3n = 7) +16,(29) Each non-degenerate stabilizer cddes| detect all 2-error
F) (3n = 3)" > 4(3n +5), (26) and so they define 2ed-blocks, s}, with all the generators
f2) = (Bn—-17)72>2(3n+5)+ 16. (27) being commuting. By shortening a pure code we generally ob-
If there exists a stabilizer codn, k, 3] then Eqs[(I5-17) tain 2ed-blocks with some noncommuting pairs of generators

Some examples of 2ed-blocks are presented in Table V.
must hold. As a result of EqE.(T5116) we have 2ed-blocks pasting Given two 2ed-blockgns, s2]., and

(f(z)) =3n+1+4A4; + 2A4,. (28) [n1,s1]e, that are generated byS: = X(ng),S =
Z(na),...,Ss,) and (T, T> ..., T, ) respectively, thers =
max{s1, so+2} generators as given in Table Ill is a 2-ed block

v

(g(x)) =3n—4+24A; +24,. (32)

9(0) + g(1) A1 + g(2) Az

(3n +2)(g(x))- (33)

The strict inequality sign is due to thg(0) term. Since
(g(x)) > 0 we have2® > 3n+2=2%, ie,n—k>sg+1.

[ |

VIV

V. SPECIAL CONSTRUCTIONS

2
) : (24) Definition 4 A 2-error detecting blockn, s]. is generated by
a set ofs multilocal Pauli operators acting on qubits withe
pairs being non-commuting that detects up to 2-qubit errors

As a result of EqL(DI7) we have

4fm 4fm [n1 412, s]e with |e; —ea| < e < e1 +es. FOr convenience we
1640 + 1645 + Y f(2i)Az > 16 Ay >8.2°, (29) shall denote byni, soe, & [n2, s1]e, the resulting 2ed-block.
1=2 1=0
where we have usefl(2i) > 16 since 2%t the unique zero TABLE V
of f(z), is an odd integer. Putting all these pieces together SOME EXAMPLES OF2-ERRORDETECTING BLOCKS
2°(f(x)) =) f(i)A; X I XXX XXXX
i=0 Z 1 ZZ7Z ZZZZ
4fm I' X XYZ XY ZI
> f0)+ f()AL+ f(2) A2+ ) f(2i) Ay 1z YZX Y ZXI
i=2 (2,4]2 [3,4]2 (4,4
> f(0)— 164 f(1)A; + (f(2) — 16)Ay + 8.2°
> (Bn+5)(3n—T+4A4; +2A4,) +8.2° >Z<)Z<)Z< )ZHZ()Z()ZHZ( )Z”Z”Z”Z”ZHZHZ{
= Bn+5){f(z) -8)+8.2% (30) Z17Z YXYXI ZIZYXYX
in which the strict inequality comes from th&0) term. As 32/ )Z< }; é )Z< )1( ); § 32/ )Z< }/( é )Z( )Ic gi
a result we have® > 3n + 5 = 2°#, taking into account of 3,52 .52 7,501

(f(z)) > 8. That is equivalent to saying — k > sy + 1.



TABLE VI

The 2ed-block given in Table Il detects up to 2-qubits THREE PARTITIONS OF THE OPTIMAL CODE2Y].

errors because firstly all the errors happening onthdlock
or no-block can be detected becauBa, s1]., and [na, s2]
are two pure codes of distance 3 and secondly two qubits
errors happening on different blocks can be detected by the
first two generatorsX (nq) ® I(nq1) and Z(ng) ® I(nq). If
two noncomuting generators are arranged in the same row

[24] = [[16, 10, 3]]

XXXXXXXXXX XXXXXX
Z Z Z Z Z Z Z ZZ Z ZZZZZZ

XY ZITIXYZ YXZZYX
the resulting generators will become commuting. As a result IYZXITIITIIYZX ZYXXZY
e can be zero wher; = ey and all noncommuting pairs ITIIXYZXZY XY ZXY Z
are carefully matched. In this case we obtain a pure 1-error- I'TT1I1YZXYXZ YZXY ZX
correcting stabilizer code, since all 2-qubit errors can be [10] = [[10,4, 3]] [[6,0,4]]

detected.

From the above arguments we see that although the 1-qubit
block, denoted asl]; = (X, Z), detects only single qubit
errors, it can be regarded as a 2ed-block because there is no
2-qubit errors on a single qubit block. For example we have
[2,4]2 = [1]1 > [1]:. As another example the perfect code
[[5,1,3]] in Eq.[3) can be regarded as the pasting of two 2ed-
blocks[4, 4] > [1]1. [10, 611 (6,61

A 2ed-block fails to define a code because there are
some pairs of noncommuting generators. By pasting two or
more 2ed-blocks these noncommuting generators may become
commuting and we thus obtain a 1-error correcting stalvilize
code. Our construction is therefore a kind of puncturing I IXYZXY Z XY ZXY Z
plus pasting. By puncturing some old stabilizer codes we IT1YZXYZX YZXY ZX
obtain some 2ed-blocks that generally contains some pirs o 10, 6] (6,62
noncommuting generators. By pasting with some other 2ed-
blocks and carefully matching their noncommuting pairs we
are able to produce some new stabilizer codes. To complete
the constructions given in Table IV we have only to construct
explicitly all the relevant 2ed-blocks.

We consider the optimal codg®] as in Table VI whose

XXXXXXXX XXXXXX
Z Z Z Z Z Z Z Z Z ZZZZZ
YZY X ZZYX 11 1XYZ
ZXzZYXXZY I 11Y ZX
1 1 XY ZXY Z XY ZXZY
1 1 YZXY ZX Y ZXYXZ

~ o~~~ N X
~ o~ RN X

XXXXXXXX XXXXXX
Z Z Z Z Z Z Z Z Z ZZZZZ
YZ11I1XYZ YZXZXY
ZX111Y 72X ZXYXYZ

~ o~~~ N
~ o~ XN X

TABLE VI
FURTHER CONSTRUCTIONS OR2ED-BLOCKS.

stabilizer is defined by the check matfiR H5| As RHs5] with [5,5]2 [5, 5]z [5,5]2 [3, 5] (7,501 [5,5]2 [3, 52 [3, 5]
I(5) X(5) Y(5) Z(3) I(7) X(5) Y(3) Z(3)
11000 10000 I1(5) Y(5) Z(5) X(3) I(7) Y(5) Z(3) X(3)

11010 00001 [18,7]1 (18,72

As= 01000 |, R=] 01000 |. (34)

01101 00010 [7,5]2 [5,5]2 [5,5]2 [3,5]2 [7,5]2 [7,5]2 [7,5]2 [5,5]2
01100 L11oo (1) X() Y(6) 2(3) 1) X(7) Y(7) Z(5)
Obviously A5 is revertible and fixed-point free andl is in- M Y6) 26) XG) I Y@ 20 XE©)

[20, 7}2 [26, 7]2

vertible. By removing four coordinatgss, c1, c19, cas] from
this [25] we obtain the 2ed-blocks, 7], and by removing
the first four coordinategy, c1, ca, cs] we obtain A 2ed-block
[28, 7];. By 2ed-blocks pasting with 2ed-blocks in Table V we Vi
obtain the pure optimal codes of length& 31,33 and 35 in
addition to a previously unknown optimal code

. DISCUSSIONS

We prescribe a general construction of all the optimal
stabilizer codes of distance 3 for lengths> 38 by past-

[36] = [28, 7]2 > [7,5]1 > [1]1 (35) ing known codes and a special construction of the optimal
pur stabilizer codes of length < n < 37 case by case
whose stabilizer is explicitly given in Table VI. by employing a generalization of the stabilizer pasting to

From three partitions of2%] as shown in Table VIl we noncommuting set of stabilizers, i.e., 2ed-blocks pastiay
can obtain a pure optimal code0] as well as the unique three families of lengths we have worked out analytically th
optimal code|[6, 0,4]] of distance 4 and four different 2ed-linear programming bound, which is strictly stronger thhe t
blocks. By pasting with the perfect 5-qubit code we obtaiguantum Hamming bound and ensures the optimality of our
[15] = [10] > [5]. Also we obtain all the optimal pure codescodes for these lengths. Except= 6 all the optimal codes
of lengths from 11 to 14 as well as an optimal pyré = are pure.

[6,6]; > [1];. Finally the remaining 2ed-blocks appeared in Apparently the construction given by Theorem 2 is not
Table IV are given in Table VIII. unique. Firstly there are different constructions for tiptimal



TABLE VI
THE STABILIZER FOR THE OPTIMAL CODE[[36, 29, 3]].

code[2™] [4]. Secondly there are other constructions such as

8- (227 — )] > [8- (2278 — )] > . ..
> [8-(2° —ap-1)] > [17- 5] (36)

or

8- (22 — 1) > [8- (222 — )] > . ..

> (82" —am-1)] > 37 -5 (37)

whereq; + 3 < 22(m—i+1)=1 gr 92(m—i+1) respectively and

>

m—1
i=1 Qi

For different choices of «;} the resulting

codes may be inequivalent. One problem arises as to the
classification of all the optimal codes. Finally our apptoac
can be easily adapted to nonbinary codes.
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