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Abstract

The pure Skyrme-Faddeev-Niemi model (i.e., without quidlidanetic term)
with a potential is considered on the spacetffiex R. For one-vacuum potentials
two types of exact Hopf solitons are obtained. Dependindhervalue of the Hopf
index, we find compact or non-compact hopfions. The compatfidies saturate
a Bogomolny bound and lead to a fractional energy-chargadta £ ~ |Q|'/2,
whereas the non-compact solitons do not saturate the bouhdiee £ ~ |Q|. In
the case of potentials with two vacua compact shell-likefiloog are derived.
Some remarks on the influence of the potential on topologiakitions in the full
Skyrme-Faddeev-Niemi model or in (3+1) Minkowski spaceaise made.

1 Introduction

The Skyrme-Faddeev-Niemi (SFN) model [1]] [2] is a field thewith hopfions as
solitonic excitations. The model is given by the followingdrange density

L = —a(0,@)? + B[O, x 9, + \V (i), (1)

whereii = (n!,n? n3) is a unit iso-vector living in(3 + 1) dimensional Minkowski
space-time. Additionallyy, 3, A are positive constants. The second term, referred to

*adam@fpaxpl.usc.es
fjoaquin@fpaxpl.usc.es
twereszczynski@th.if.uj.edu.pl


http://arxiv.org/abs/0911.3673v2

as the Skyrme term (strictly speaking the Skyrme term istiitoS?) is obligatory
in the case of 3 space dimensions to avoid the Derrick argufoethe non-existence
of static, finite energy solutions. The requirement of thédimess of the energy for
static configurations leads to an asymptotic conditior~ 7y, as¥ — oo, where
flp iS @ constant vector. Thus, static configurations are Mdps {co} = S3 — §?
and therefore can be classified by the pertinent topologltalge, i.e., the Hopf index
Q € m3(S?) = Z. Moreover, as the pre-image of a fixgde S? is isomorphic taS!,
the position of the core of a soliton (pre-image of the ardgdgoint—,) forms a
closed, in general knotted, loop.

The physical interest of the SFN model is related to the faat it may be applied to
several important physical systems. In the context of coedé matter physics, it has
been used to describe possible knotted solitons for maftigonent superconductors
[3]. In field theory, its importance originates in the attémfo relate it to the low
energy (non-perturbative), pure gluonic sector of QCD[4]}, In this picture, relevant
particle excitations, i.e., glueballs are identified witfokted topological solitons. This
idea is in agreement with the standard picture of mesonsiendngarks are connected
by a very thin tube of the gauge field. Now, because of the fatglueballs do not
consist of quarks, such a flux-tube cannot end on sourcesrder to form a stable
object, the ends must be joined, leading to loop-like coméigons.

Although the SFN model (or some generalization thereof)hingovide the chance
for a very elegant description of the physics of gluebalsés proposal has its own
problems. First of all, one has to include a symmetry bregkiatential term[[5],
although the potential would not be required for stabilégsons. This is necessary in
order to avoid the existence of massless excitations,G@dstone bosons appearing
as an effect of the spontaneous global symmetry breakindeelah, the Lagrangian
without a potential possesses glol&l3) symmetry while the vacuum state is only
O(2) invariant. Thus, two generators are broken and two masbiessns emerge.
This feature of the SFN model has been recently discussed@nd modifications
have been proposed [5]./[6].

Secondly, due to a non-trivial topological as well as geeoitatstructure of solitons
one is left with numerical solutions only. The issue of obitag the global minimum
(and local minima) in a fixed topological sector is a highlynicated, only partially
solved problem (see e.d.1[7] for the case without potentiBlje interaction between
hopfions is, of course, even more difficult.

In spite of the huge difficulties, some analytical resultgehlaeen obtained. One has to
underline, however, that they have been found entirelyHerdotential-less case. Let
us mention the famous Vakulenko-Kapitansky energy-chémgeula, £ > ¢;|Q|*/4
[8], [9]. Similar upper boundsZ < ¢,|Q|*/* have also been reported [9]. Among
analytical approaches which have been applied to the SFNhhaake should mention
the generalized integrability [10] and the first integratimethod [[11], which were
especially helpful in constructing vortex [12] and non-dtygical solutions([13].
Another approach, which sheds some light on the propertiesufions and allows for
analytical calculations is the substitution of the flat Mimkski space-time b§? x R
[14], [15], where an infinite set of static and time dependmhitions where found.
The main aim of the present paper is to analytically invegéghe role of the potential
term in a simplified version of the SFN model, and to study #®ilting compact and
non-compact soliton solutions. The influence of the po&tgirm on qualitative and
guantitative properties of topological solitons has bestaldished in a version of the
SFN model in (2+1) dimensions, i.e., in the baby Skyrme m¢t&l, [17], [18]. Our
strategy will be two-fold: we perform the — 0 limit, that is, we neglect the quadratic



part of the action, and we assume the space-fitne R. The first assumption is quite
acceptable as the obtained model still allows to circumtlemDerrick arguments. In
fact, as we comment in the summary, the solution of the mod#ie limita — 0
probably can be viewed as a zero order approximation to asliton of the full
theory. The limitaa — 0 has been previously investigated in the context of the baby
Skyrme model and the Skyrme-Faddeev-Niemi model (withatemtial term[[19] -

the so-called strong coupling limit). The second assumptidkes us rather far from
the standard SFN model but it is the price we have to pay if wetuwa perform all
calculations in an analytical way while preserving the togaal properties.

2 The pure Skyrme-Faddeev-Niemi model o1$? x R

2.1 Equations of motion

After the limit « — 0 we get the following pure SFN model
L = B0,7 x 8,7)* + \V(7), )

where for the moment we choose for the potential

V= %(17713). (3)
In 2+1 dimensional Minkowski space-time, i.e., in the bakyr&e model, this poten-
tial is known as the old baby Skyrme potential. It should bessted that the fact that
the model is solvable does not depend on a particular formeopbtential. However,
specific quantitative as well as qualitative propertieshef topological solutions are
strongly connected with the form of the potential.
Coordinates o8® x R are chosen such that the metric is

dz?

ds? = di* — R [ —=—
3 RO<4Z(1—Z>

+ (1= 2)ddi + Zd¢§> ; (4)

wherez € [0, 1] and the angleg:, ¢, € [0, 27|, Ry denotes the radius &F.
After the stereographic projection

we get
(u,u")? — u?u? |u|?
L=28 b 6
o T ©
whereu,, = 0,u, etc. The corresponding field equations read
KH 24 A U
by — —————— = 7
o0 () T S = O
and its complex conjugate. Here
VNt 52,14
KK# = 48 (u,@”)ut — usu ®)



Thus,

0uK* — Ju =0, ©)
where we used the following identity
Kta, = 0. (10)
In the subsequent analysis we assume the standard Ansatz
u = eilmidrtmea) £y (11)

wheremy,mo € Z. This ansatz exploits the base space symmetries of theytheor
which for static configurations is equal to the isometry gr&@D(4) of the base space
S3. This group has rank two, so it allows the separation of twguéar coordinates
efmd | = 1,2, see e.q.[[15] for details. We remark that, in addition, thisory has
infinitely many target space symmetries, namely an abelibgreoup of the group of
area-preserving diffeomorphisms on target space] sée T2@] profile functionf can

be derived from the equation

f'f? s e
~os [ ] + (i) + =0 42
where we introduced
Q=miz+mi(l—2) (13)
and R
N o 0
A= 555 (14)

In order to get a solution with nontrivial topological Hopfiarge one has to impose
boundary conditions which guarantee that the configurativers the whol&? target
space at least once

f(z=0)=00, f(z=1)=0. (15)
The equation foyf can be further simplified leading to
f'f 7\ _

1 (o[ E ] -3) o (o)

This expression is obeyed by the trivial, vacuum solutfor= 0 or by a nontrivial
configuration satisfying

f'f 3 f'f 3
0, [(1 n fQ)QQ =\ = i+ fQ)QQ = Az + z0). a7)
This formula may be also integrated giving finally
. zZ+ 29
1+f27 / m1z+m21—z)+c’ (18)

whereC and z; are real integration constants, whose values can be fownd the
assumed boundary conditions.
One can also easily calculate the energy density

325 4f2f/2 ( )\fQ

2 201
=R ey e )y 4o
and the total energy
2p3  rl
E= (QW)TRO/ dze. (20)
0



2.2 Compact hopfions

It follows from the results of [21][122]/ 23] that one shdutxpect the appearance of
compactons in the pure SFN model with the old baby Skyrmeniale As suggested
by its name, a compacton is a solution with a finite suppodgcheg the vacuum
value at a finite distancé [24]. Thus, compactons do not pssmeponential tails but
approach the vacuum in a power-like manner.

An especially simple situation occurs for thg = +my = m case. Then, the equation
of motion for the profile function reduces to

g=—3, (21)

m

where )
=1-—. 22
g T (22)

Observe thay > 0 by the definition of the functiog. The pertinent boundary con-
ditions for compact hopfions arg0) = co and f(z = zr) = 0, wherezg < 1is
the radius of a compacton. In addition, as one wants to dehlavglobally defined
solution, the compact hopfion must be glued with the trivedwum configuration at
zgr, .., f'(z = zg) = 0. In terms of the functiog we havey(0) =1, g(z = zgr) =0
andg.(z = zr) = 0. Thus, the compacton solution is

2
=V/A
1-—=¥= <
9(2) = ( m sk (23)
0 Z > ZR-
We remark that the energy density in terms of the functiomay be expressed like
1288 (1 5 ¢
€= Rl <4g +Ag) (24)

which makes it obvious that the vacuum configuratioee 0 minimizes the energy
functional. The size of the compact soliton is

m
ZR = —F—.

VA
As thez coordinate is restricted to the intenjal 1], we get a limit for the topological
charge for possible compact solitons. Namely

ARZ
V1283°
In other words, one can derive a compact hopfion solutionigeaithat its topological
charge does not exceed a maximal valyg,.. = | A], which is fixed once\, 3, R, are

given.
Further, the energy density onshell is

e=2\g (26)

m< VA= (25)

and the total energy

m =\ 2
v z\/x m 1 32\/§ﬁ2
E= (2W)2ARgA * dz < - m ) = (27T)2)\R3x§ = T\/ AﬂmRo

(27)



Taking into account the expression for the Hopf index

Q=mimg = m?2.

we get

32\/§7T2 1
3 V ABRO |Q|2a |Q| < |Qmax|- (28)
For a generic situation, when? # m3, we find the exact solutions

25\ m2 m27m2
g(z)=1+ﬁ[Z—<ZR+FQW)1D<1+Z%)]- (29)

my —mj 2

E=

1 2

In this case, the size of the compactanis given by a solution of the non-algebraic
equation

2 2 2 2 2
m3 m2 —m3 m?2 —m3
— ——=—|In(1 = =0. 30
R <ZR+m%—m§>n< +2R 2 )+ 2\ (30)

2.3 Non-compact hopfions

Let us again consider the profile function equationifor = +m, (21) but with non-
compacton boundary conditions. Namegjy)) = 1, g(z = 1) = 0, i.e., the solutions
nontrivially cover the whol&? base space. The pertinent solution reads

g9(z) = %zQ - <1 + L) z+ 1. (31)

However, this solution makes sense only if the image ©f not negative. This is the
case if

%§1:m2\/§ (32)
™m

and we found a lower limit for the Hopf charge. Thus, such nompact hopfions
occur if their topological charge is larger than a minimaideQ.,,., = [A].
The corresponding energy is

B (27r)2 , 326 )\R% 2 1 Ré)\
B=="A | Hrlel (1 - 1286|Q|> - (1 3 1286|Q|) R
for |Q| > |Qmin|.

Finally we are able to write down a formula for the total enefigr a soliton solution
with a topological charg®

2 1 ARE
227 /AR, |Q|} QI < |2 |

2 4 2 4 4
Sy | %101 (1- mt) + (1 dber)| 101> 130
(34)
where the first line describes the compact hopfions and thendeane the standard
non-compact solitons.

Remark 1. The pure Skyrme-Faddeev-Niemi model with potenfihl (3) mamapped,
after the dimension reduction, on the signum-Gordon maaigl [



Indeed, if we rewrite the energy functional using our Ansaith m; = +ms, and
take into account the definition of the functignthen we get the energy for the real
signum-Gordon model

2 2p3 1 2 2
E:(”)RO/dz(gﬁTgiJrAg). (35)
2 0 RO

The signum-Gordon model is well-known to support compatitgms, so this map
is one simple way to understand their existence. The samed®h two-dimensional
Euclidean base space, explaining the existence of compsgictthe model of Ref[ [22]
(to our knowledge, compactons in a relativistic field thelvaye been first discussed in
that reference).

Remark 2. Compact hopfions saturate the BPS bound, whereas non-cohgpdions
do not saturate it.

This follows immediately from the last expression and thet that all solitons are
solutions of a first order ordinary differential equatiorariely,

2
or)2R3 ! 328m2 326m2
o Gt ”)2 0/ dz < ET gz+\/Xgl/2) —2, gi" g:VAg"/?
0 0 0

(36)

2 2R3 328\ 2 9(zr)
B> o [ [ gy g1 @)
0 9(0)

E> 32\2%2 VABRo(9(0)*? = g(zr)*/?) = 32\2%2 VABRo,  (38)

asg(0) = 1 andg(zg) = 0. The inequality is saturated if the first term in EQ.(36)
vanishes i.e.,

Then,

and

32m?
Ry
which is exactly the first order equation obeyed by the comipagfions. On the other
hand, the non-compact solitons satisfy

92 = Ay, (39)

325m?
Rj

9: =g +C, (40)

where(C' is a non-zero constant

2.4 More general potentials

The generalization to the models with the potentials

vo=a(za-m0) (41)



wheres € (0, 2) leads to similar compact solutions. Namely,

< 325
(1_%) 2 < 2n (42)

0 Z ZR-

9(z) =

Now, the size of the compacton is

- LS 43
o Z\/K(Q—S) 43)

and the limit for the maximal allowed topological chargetfiem; = +mo case) is
m < \/K(Q —3). (44)

For a bigger value of the Hopf index one gets a non-compadidmpThe energy-
charge relation remains (up to a multiplicative constanthanged.
In the limit whens = 2, i.e.,

Vo= A <§<1n3>>2, (45)

we get only non-compact hopfions

g(z) = cosh <2Z\/§> — coth <ﬁ) sinh <22\/K) . (46)

m m m

The total energy is found to be

S

2 3 2vVA
g - 20 AR | coth 2V + m (47)
2 4V A m sinh? (ﬂ)
Asymptotically, for large topological chargg = +m? we get
(2m)? 5 (1288 1 AR}
E= A — . 48
2 Mo SRl B52aq) (48)

Finally, let us comment that far > 2 there are no finite energy compact hopfions, at
least as long as the Ansatz is assumed. Indeed, the Bogomglation forg in this

case is _
o 4N

gz - gs

m2
and the power-like approach to the vacugm (z — zg)* leads to

2

C2—5

which is negative fors > 2. There may, however, exist non-compact hopfions. In

the cases = 4, for instance (the so-called holomorphic potential in théySkyrme
model), the resulting first order equation fpis

(67

4\
2 4 4
g, = W(g + 90)

8



the general solution of which is given by the eliptic intdgra

/g_g(Z) __dg fl\/i(z — %)
g Im|

—o (9" +g5)"?

(we chose the negative sign of the root becapisea decreasing function af, and we
have to impose the boundary conditions

gz=1)=0 =z=1

andg(z = 0) = 1 which leads to

1

d 2 sz

| ot = VA
o (9" +9%) Im|

The last condition can always be fulfilled because the |.bexomes arbitrarily large

for sufficiently small values oy and vice versa.

2.5 Double vacuum potential

Another popular potential often considered in the contéxhe baby skyrmions, and
referred to as the new baby Skyrme potential, is given bydheviing expression

V=1-(n*>2% (49)

In contrast to the cases considered before, this poterd&mtwio vacua at® = +1.
After taking into account the Ansatz and the definition of filmection g, the equation
of motion reads

%az(ng) — 34(1—29), (50)

leading, form; = +ms, to the general solution
1 4 —
9(x) = 5 <1 — VT1+4Csin (M» , (51)
m

whereC, 2, are constants.
Here, we start with the non-compact solitons. Then, assyithie relevant boundary
conditions we find
1 sin 22 ( — 1
Q(Z):i 1*M : (52)
sin QWA

This configuration describes a single solitog i§ a monotonous function from 1 to O.
This implies that the sine has to be a single-valued funaiiothe intervak € [0, 1],
ie.,
PR ) (53)
m v
Exactly as before, the non-compact solutions do not satinat corresponding Bogo-
molny bound.



For a sufficiently small value of the topological charge wéaaba one-parameter fam-
ily of compact hopfions

1 0<z< 2
g(z) = % 1 —sin ﬂnﬂ(z —z20)| w<z<zp , (54)
0 Z 2 2R

where the boundary conditions have been specified(as) = 1,¢(zgr) = 0 and
g'(zr) = ¢’(zr) = 0. The initial and end point of the compacton are

3
7r_m~, ZR:Zo-i-ﬂ (55)
8vV/A

Zr =20+ =
SV
andz is a free parameter restricted to

™m 1_ 37rm]
sV 8V
We remark that in this case the energy density in terms ofuhetiong may be ex-
pressed like

2o € [— (56)

1288 (1 ,4 «
= - Ag(l — 57
£ R3(4g+g( g)) (57)
which makes it obvious again that both vacuum configuratioas0, 1 minimize the

energy functional.

As we see, compact solutions in the model with the new babyr&ypotential are
shell-like objects. In fact, there is a striking qualitatirkesemblance between the baby
skyrmions and the compact hopfions in the pure Skyrme-Faeldaami model with
potentials [(B),[(49). Namely, it has been observed that tiebaby skyrmions are
rather standard solitons with or without rotational symmypethereas the new baby
skyrmions possess a ring-like structurel[18]. Here, in tieemf the new baby poten-
tial, we get a higher dimensional generalization of ringatures, i.e., shells.

The energy-charge relation again takes the form of the squaot dependence for
compactons,

3
E = -Rov/1285) [QI'/2, (58)

where we used the fact that the compact solutions satura@afgomolny bound.

2.6 Free model case

To have a better understanding of the role of the potentialdebriefly consider the
case without potential, i.e)\ = 0. In this case one can easily find the hopfians [15]

’mz—m2
In (1 + z#)

m27m2
In (1 + == 2)

9(z) =1- (59)

for m? # m3 and
g(z)=1-=z (60)

10



for m; = +mo. As we see, all solitons are of the non-compact type, whifflerdi
profoundly from the previous situation.
The energy-charge formula reads

(2m)?8 _ mi—mj

E= (61)

4Ry Inmq —Inmeo

2 _ 2
or forms = m3

(27m)%3

R Ql- (62)
Again, the difference is quite big as we re-derived the stathtinear dependence.
Remark: There exists a significant difference between models whéste lthe quartic,
pure Skyrme term as the only kinetic term (containing deirea) on the one hand, and
models which have a standard quadratic kinetic term (eithaddition to or instead
of the quartic Skyrme term), on the other hand. Models witluadgatic kinetic term
have the typical vortex type behaviour

FE =

U ~ rmeimd)
near the zeros af. Herer is a generic radial variable, is a generic angular variable
wrapping around the zero, andis the winding number. In other words, configurations
with higher winding about a zero of are higher powers of the basicwith winding
number one, where both the modulus and the phase partapé taken to a higher
power. This behaviour is, in fact, required by the finitenekthe LaplacianAu at
r = 0. Models with only a quartic pure Skyrme kinetic term (bottihnand without
potential), however, show the behaviour

u ~ re™m?

i.e., only the phase is taken to a higher power for higher imigd For our concrete
model on base spa&®, and for the simpler case:; = my = m, we haveu ~
27 1/2¢im(911¢2) nearz = 0 (both with and without a potential term), but with the
help of the symmetries — (1/u) andu — 4 this may be brought easily to the form

U ~ \/E@im(¢1+¢2),

as above. As said, the Laplacian acting on this field is sargatz = 0, so the
field has a conical singularity at this point. One may wondbkether this singularity
shows up in the field equation and requires the introducti@endelta-like source term.
The answer to this question is no. Thanks to the specific fdrtheoquartic kinetic
term, the second derivatives in the field equation show upah & combination that
the singularity cancels and the field equation is well-defiaethe zero of:. As this
behaviour is generic and only depends on the Skyrme term arteoexistence of
topological solutions (and not on the base space) we shawthé simplest case with
base spacR? (i.e., the model of Gisiger and Paranjape), wheesnd¢ are just polar
coordinates in this space. A compact soliton centered atheudrigin behaves like
u ~ re'™? near the origin, and has the singular Laplacian

Au = (1 —m?)r—te ™9,

On the other hand, the field equatiéh (9) is finite at 0, because the vectdt behaves
like
— mQéT — imé¢ —imd _ ~ ~
’C:Sﬂwe ¢ :KT€T+’C¢€¢

11



(hereé, andé, are the unit vectors along the corresponding coordinaesl)its diver-
gence (which enters into the field equation) is

320r
1+r2)3°

and a potential singulafl/r) contribution cancels between the first and the second
term. As said, this behaviour is completely generic for ni@edth the Skyrme term

as the only kinetic term. These fields, therefore, solve #id quations also at the
singular points; = 0 and are, consequently, true solutions of the correspondirig-
tional problem.

—imae

- 1 1
V- -K=-0.(rk;) + ;8¢IC¢ =

r

3 Compact strings in Minkowski space

In the (3+1) dimensional standard Minkowski space-time veeret able to find ana-
lytic soliton solutions with finite energy, because the syetmeas of the model do not
allow for a symmetry reduction to an ordinary differentiguation in this case. We
may, however, derive static and time-dependent solutiatisaxcompact string geom-
etry with the string oriented, e.g. along théirection. These strings have finite energy
per unit length in the direction. Further, the pertinent topological charge &hind-
ing numberQ = n. In this sectionz, y, z) refer to the standard cartesian coordinates
in flat Euclidean space. Further, we use the old baby Skyrrtenfial of Section 2.1.
The Ansatz we use reads

u = f(,r)eind)ei((_ut-f-kz)7 (63)

wherew, k are real parameters? = 22 4 4%, ¢ = arctan(y/z), andn fixes the
topological content of the configuration. It gives the fallng equation for the profile

function f
1 f'f 3
—0p [r———=Q| — A\ | =0, 64
1 (o ] =) -0 ©
where\ = \/3243 and
2
Q=k -+ = (65)
T
The simplest solutions may be obtainedddr= k2. Then, after introducing
r? 1
;ng, and g—lfm (66)
we get )
2\
9z = —5- (67)
n
The compact solution reads
2
(1 - TQL\%) r < ‘/Z_lﬁQ
g(r) = " A (68)
0 r> ‘/f ~2.
X
The total energy (per unit length indirection) is
' 85 _ _

12



+ % [2ugtio(VuVa) — ud(Va)? — a3 (Vu)?] + A

or after inserting our Ansatz

ge ] 325f2f/2 2 )\fQ
E27T/0 TdT(m <Z—2+w2+k2)+1+f2) (71)

Jul?

L fuf?

, (70)

and finally

E— 2?” [12\/E|Q| n 32&;2} . (72)

A more complicated case is fof = k2 — w? > 0. Then,Q = §2 + 7—2 and the
equation fory is 3
Oy (gm(n2 + 2(5230)) —22=0. (73)

The compacton solution (with the compacton boundary cand) is
2

g(z)lJr% [:17(5—(52+:ER)111 <1+Qf;“’>}, (74)

wherexy, is given by

2

A n 20%z R
1+5_2|:$R_(W+$R)ln(1+ n2 ):|:O (75)

4 Conclusions

It has been the main purpose of the present paper to demtenatd explicitly con-
struct compact soliton solutions of the pure Skyrme—Fadedd=mi model (with only

a quartic kinetic term) with a potential. These compact thohs are natural general-
izations of the compact solutions of the purely quartic b&kyrme model which have
first been reported by Gisiger and Paranjepe [22], and fuithestigated recently
[23]. As we wanted to present exact analytical solutions,civese the base space
(spacetimep? x R for finite energy solutions, because Minkowski spacetimesduwt
offer sufficient symmetries to reduce the field equationsrthnary differential equa-
tions. Only in the case of spinning string-like solutionshna finite energy per length
unit along the string the symmetry reduction in Minkowskase is possible (Section
3). For the case df® x R spacetime, we found two rather different classes of finite
energy soliton solutions, namely compactons (which conér a finite fraction of the
three-sphere) on the one hand, and non-compact solitorisi(whver the full three-
sphere) on the other hand. Both classes of solutions aréotgipal, but their energies
are quite different. The compacton energies behavefike- R,|Q|'/? (whereR, is
the radius of the three-sphere, apds the topological charge), whereas the energies of
the non-compact solitons behave like ~ R3|Q|. Further, the compactons only exist
up to a certain maximum value of the topological charge, @agithe non-compact
solitons start to exist from this value onwards. The diffétgehaviours of the energies
in the compact and non-compact case may be easily understoondhe observation
that the compactons obey a Bogomolny equation, whereasatireompact solitons
obey a “Bogomolny equation up to a constant”. Indeed, if foreaergy density of
the type& = &, + & (here the subindices refer to the power of first derivatives i
each term) a Bogomolny equation holds, then the energy tydosisolutions may be
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expressed like& ~ (£,£)/2. If we now take into account the scaling dimensions
Es ~ Ry* & ~ Ry and [ d3x ~ R}, then the behaviouE, ~ R, easily follows.
Physically this means that the compacton solutions ardisechnear the north pole
of the three-sphere, and the localisation becomes mor@prmed for larger radiRy.
On the other hand, the energy density of the non-compadbssliremains essentially
delocalised and evenly distributed over the whole thrédeesp We remark that the be-
haviour of the compacton energigs ~ Ry|Q|'/? poses an apparent paradox, because
it can be proven that already the quartic part of the energgeatan be bound from
below by|Q|, thatis,Ey = [ d*z€, > aRy'|Q|, wherea is an unspecified constant.
The proof was given in [25] foRy, = 1, but the generalization for arbitrary radius is
trivial using the scaling behaviour of the correspondingit® The apparent paradox
is of course resolved by the observation that compactorss erly for not too large
values of|@Q|, such that the lower bound is compatible with the energieseéxplicit
solutions. Finally, if the potential has more than one vaeuinen compactons of the
shell type exist, such that the field takes two different vawwalues inside the inner
and outside the outer compact shell boundary. Except far diféerent shape, these
compact shells behave quite similarly to the compact balisé one-vacuum case (e.g.
the relation between energy and topological charge or tieatigrowth of the energy
with the three-sphere radius is the same).

One interesting question clearly is whether analogous eatop solutions with finite
energy exist in Minkowski space. An exact calculation isiatoly not possible in this
case, but we think that we have found already some indiredéaee for the existence
of such solutions. The first argument is, of course, the faat they exist in one di-
mension lower (in the baby Skyrme model). The second arguiseelated to the
behaviour of our solutions for large radily. The compacton solutions are localized
and, therefore, their energies grow only moderately \#igh(linearly in Ry). Further,
the allowed range of topological charges for compactonsgtie the fourth power of
Ry. These are clear indications that compacton solutionstraigh exist in Minkowski
space. Certainly this question requires some further tigegfon. If these compactons
in Minkowski space exist, then an interesting question igtvienergy-charge relation
will result. Will the energies grow liké’, ~ |Q|1/2, like on the three-sphere, or will
they obey the three-quarter lai&. ~ |Q|*/4, like for the full SFN model without po-
tential in Minkowski space? All we can say at the moment i$ #maupper bound for
the energy in flat space can be derived. The derivation is teigip analogous to the
cases of the full SFN, Nicole or AFZ models (the choice ofl fitimctions which ex-
plicitly saturate the bound), and also the result is the sdinec «|Q|*/4, see[[9]. The
attempt to derive a lower bound, analogous to the Vakuldt&pitanski bound for the
SFN model, meets the same obstacles as for the Nicole or AREIsicsee Appendix
C of the second reference in [9].

Assuming for the moment the existence of compactons in Mirskd space, another
interesting proposal is to use the compacton solutionseptire quartic model (with
potential) as a lowest order approximation to soliton sohg of the full SFN model
and try to approximate the full solitons by a kind of geneaedi expansion. If such an
approximate solution is possible, it would have severabathges.

e The pure quartic model is much easier than the full theorjthéncase of the baby
Skyrme model (both with old and new potentials) one gets eadvable models (as
long as the rotational symmetry is assumed).

e The lowest order solution is already a non-perturbativefiganation, i.e., a com-
pacton, which captures the topological properties of thlesbliution. Due to the com-
pact nature of the lowest order solution we have a kind ofdlization" of the topo-
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logical properties in a finite volume.

e One can easily construct multi-compacton solutions whfcyfficiently separated,
do not interact. They form something which perhaps may bedaalfake Bogomolny
sector as they are solutions of a first order equation (usually adihg a corresponding
energy-charge inequality) and may form multi-soliton maeracting complexes.

Of course, it remains to be seen whether such an approxiroktos is possible at
all. What can be said so far is that in the simpler case of @as@iald theory with a po-
tential which is smooth if a certain parameteis non-zero and approaches a V-shaped
potential in thex — 0 limit, then the compacton is the — 0 limit of the non-compact
soliton, see[26].
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