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Abstract

The pure Skyrme-Faddeev-Niemi model (i.e., without quadratic kinetic term)
with a potential is considered on the spacetimeS

3×R. For one-vacuum potentials
two types of exact Hopf solitons are obtained. Depending on the value of the Hopf
index, we find compact or non-compact hopfions. The compact hopfions saturate
a Bogomolny bound and lead to a fractional energy-charge formulaE ∼ |Q|1/2,
whereas the non-compact solitons do not saturate the bound and giveE ∼ |Q|. In
the case of potentials with two vacua compact shell-like hopfions are derived.
Some remarks on the influence of the potential on topologicalsolutions in the full
Skyrme-Faddeev-Niemi model or in (3+1) Minkowski space arealso made.

1 Introduction

The Skyrme-Faddeev-Niemi (SFN) model [1], [2] is a field theory with hopfions as
solitonic excitations. The model is given by the following Lagrange density

L = −α(∂µ~n)2 + β[∂µ~n × ∂ν~n]2 + λV (~n), (1)

where~n = (n1, n2, n3) is a unit iso-vector living in(3 + 1) dimensional Minkowski
space-time. Additionally,α, β, λ are positive constants. The second term, referred to
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as the Skyrme term (strictly speaking the Skyrme term restricted toS
2) is obligatory

in the case of 3 space dimensions to avoid the Derrick argument for the non-existence
of static, finite energy solutions. The requirement of the finiteness of the energy for
static configurations leads to an asymptotic condition~n → ~n0, as~x → ∞, where
~n0 is a constant vector. Thus, static configurations are mapsR

3 ∪ {∞} ∼= S
3 → S

2

and therefore can be classified by the pertinent topologicalcharge, i.e., the Hopf index
Q ∈ π3(S

2) ∼= Z. Moreover, as the pre-image of a fixed~n ∈ S
2 is isomorphic toS1,

the position of the core of a soliton (pre-image of the antipodal point−~n0) forms a
closed, in general knotted, loop.
The physical interest of the SFN model is related to the fact that it may be applied to
several important physical systems. In the context of condensed matter physics, it has
been used to describe possible knotted solitons for multi-component superconductors
[3]. In field theory, its importance originates in the attempts to relate it to the low
energy (non-perturbative), pure gluonic sector of QCD [1],[4]. In this picture, relevant
particle excitations, i.e., glueballs are identified with knotted topological solitons. This
idea is in agreement with the standard picture of mesons, where quarks are connected
by a very thin tube of the gauge field. Now, because of the fact that glueballs do not
consist of quarks, such a flux-tube cannot end on sources. In order to form a stable
object, the ends must be joined, leading to loop-like configurations.
Although the SFN model (or some generalization thereof) might provide the chance
for a very elegant description of the physics of glueballs, this proposal has its own
problems. First of all, one has to include a symmetry breaking potential term [5],
although the potential would not be required for stability reasons. This is necessary in
order to avoid the existence of massless excitations, i.e.,Goldstone bosons appearing
as an effect of the spontaneous global symmetry breaking. Indeed, the Lagrangian
without a potential possesses globalO(3) symmetry while the vacuum state is only
O(2) invariant. Thus, two generators are broken and two masslessbosons emerge.
This feature of the SFN model has been recently discussed andsome modifications
have been proposed [5], [6].
Secondly, due to a non-trivial topological as well as geometrical structure of solitons
one is left with numerical solutions only. The issue of obtaining the global minimum
(and local minima) in a fixed topological sector is a highly complicated, only partially
solved problem (see e.g. [7] for the case without potential). The interaction between
hopfions is, of course, even more difficult.
In spite of the huge difficulties, some analytical results have been obtained. One has to
underline, however, that they have been found entirely for the potential-less case. Let
us mention the famous Vakulenko-Kapitansky energy-chargeformula,E ≥ c1|Q|3/4

[8], [9]. Similar upper boundsE ≤ c2|Q|3/4 have also been reported [9]. Among
analytical approaches which have been applied to the SFN model, one should mention
the generalized integrability [10] and the first integration method [11], which were
especially helpful in constructing vortex [12] and non-topological solutions [13].
Another approach, which sheds some light on the properties of hopfions and allows for
analytical calculations is the substitution of the flat Minkowski space-time byS3 × R

[14], [15], where an infinite set of static and time dependentsolutions where found.
The main aim of the present paper is to analytically investigate the role of the potential
term in a simplified version of the SFN model, and to study the resulting compact and
non-compact soliton solutions. The influence of the potential term on qualitative and
quantitative properties of topological solitons has been established in a version of the
SFN model in (2+1) dimensions, i.e., in the baby Skyrme model[16], [17], [18]. Our
strategy will be two-fold: we perform theα → 0 limit, that is, we neglect the quadratic
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part of the action, and we assume the space-timeS
3 × R. The first assumption is quite

acceptable as the obtained model still allows to circumventthe Derrick arguments. In
fact, as we comment in the summary, the solution of the model in the limit α → 0
probably can be viewed as a zero order approximation to a truesoliton of the full
theory. The limitα → 0 has been previously investigated in the context of the baby
Skyrme model and the Skyrme-Faddeev-Niemi model (without potential term [19] -
the so-called strong coupling limit). The second assumption takes us rather far from
the standard SFN model but it is the price we have to pay if we want to perform all
calculations in an analytical way while preserving the topological properties.

2 The pure Skyrme-Faddeev-Niemi model onS3 × R

2.1 Equations of motion

After the limit α → 0 we get the following pure SFN model

L = β[∂µ~n × ∂ν~n]2 + λV (~n), (2)

where for the moment we choose for the potential

V =
1

2
(1 − n3). (3)

In 2+1 dimensional Minkowski space-time, i.e., in the baby Skyrme model, this poten-
tial is known as the old baby Skyrme potential. It should be stressed that the fact that
the model is solvable does not depend on a particular form of the potential. However,
specific quantitative as well as qualitative properties of the topological solutions are
strongly connected with the form of the potential.
Coordinates onS3 × R are chosen such that the metric is

ds2 = dt2 − R2
0

(

dz2

4z(1 − z)
+ (1 − z)dφ2

1 + zdφ2
2

)

, (4)

wherez ∈ [0, 1] and the anglesφ1, φ2 ∈ [0, 2π], R0 denotes the radius ofS3.
After the stereographic projection

~n =
1

1 + |u|2
(

u + ū,−i(u − ū), 1 − |u|2
)

. (5)

we get

L = 8β
(uµūµ)2 − u2

µū2
ν

(1 + |u|2)4 + λ
|u|2

1 + |u|2 (6)

whereuµ ≡ ∂µu, etc. The corresponding field equations read

∂µ

( Kµ

(1 + |u|2)2
)

+
2ū

(1 + |u|2)3Kµ∂µu − λ

4

ū

(1 + |u|2)2 = 0 (7)

and its complex conjugate. Here

Kµ = 4β
(uν ūν)ūµ − ū2

νuµ

(1 + |u|2)2 . (8)
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Thus,

∂µKµ − λ

4
ū = 0, (9)

where we used the following identity

Kµūµ = 0. (10)

In the subsequent analysis we assume the standard Ansatz

u = ei(m1φ1+m2φ2)f(z), (11)

wherem1, m2 ∈ Z. This ansatz exploits the base space symmetries of the theory,
which for static configurations is equal to the isometry group SO(4) of the base space
S

3. This group has rank two, so it allows the separation of two angular coordinates
eimlφl , l = 1, 2, see e.g. [15] for details. We remark that, in addition, thistheory has
infinitely many target space symmetries, namely an abelian subgroup of the group of
area-preserving diffeomorphisms on target space, see [20]. The profile functionf can
be derived from the equation

− ∂z

[

f ′f2

(1 + f2)2
Ω

]

+

(

ff ′2

(1 + f2)2
Ω

)

+ λ̃f = 0, (12)

where we introduced
Ω = m2

1z + m2
2(1 − z) (13)

and

λ̃ =
λR4

0

128β
. (14)

In order to get a solution with nontrivial topological Hopf charge one has to impose
boundary conditions which guarantee that the configurationcovers the wholeS2 target
space at least once

f(z = 0) = ∞, f(z = 1) = 0. (15)

The equation forf can be further simplified leading to

f

(

∂z

[

f ′f

(1 + f2)2
Ω

]

− λ̃

)

= 0. (16)

This expression is obeyed by the trivial, vacuum solutionf = 0 or by a nontrivial
configuration satisfying

∂z

[

f ′f

(1 + f2)2
Ω

]

= λ̃ ⇒ f ′f

(1 + f2)2
Ω = λ̃(z + z0). (17)

This formula may be also integrated giving finally

1

1 + f2
= − λ̃

2

∫

dz
z + z0

m2
1z + m2

2(1 − z)
+ C, (18)

whereC andz0 are real integration constants, whose values can be found from the
assumed boundary conditions.
One can also easily calculate the energy density

ε =
32β

R4
0

4f2f ′2

(1 + f2)4
(

m2
1z + m2

2(1 − z)
)

+
λf2

1 + f2
(19)

and the total energy

E =
(2π)2R3

0

2

∫ 1

0

dzε. (20)
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2.2 Compact hopfions

It follows from the results of [21], [22], [23] that one should expect the appearance of
compactons in the pure SFN model with the old baby Skyrme potential. As suggested
by its name, a compacton is a solution with a finite support, reaching the vacuum
value at a finite distance [24]. Thus, compactons do not possess exponential tails but
approach the vacuum in a power-like manner.
An especially simple situation occurs for them1 = ±m2 ≡ m case. Then, the equation
of motion for the profile function reduces to

∂2
zg =

2λ̃

m2
, (21)

where

g = 1 − 1

1 + f2
. (22)

Observe thatg ≥ 0 by the definition of the functiong. The pertinent boundary con-
ditions for compact hopfions aref(0) = ∞ andf(z = zR) = 0, wherezR ≤ 1 is
the radius of a compacton. In addition, as one wants to deal with a globally defined
solution, the compact hopfion must be glued with the trivial vacuum configuration at
zR, i.e.,f ′(z = zR) = 0. In terms of the functiong we haveg(0) = 1, g(z = zR) = 0
andgz(z = zR) = 0. Thus, the compacton solution is

g(z) =







(

1 − z
√

λ̃
m

)2

z ≤ zR

0 z ≥ zR.

(23)

We remark that the energy density in terms of the functiong may be expressed like

ε =
128β

R4
0

(

1

4
g′2 + λ̃g

)

(24)

which makes it obvious that the vacuum configurationg ≡ 0 minimizes the energy
functional. The size of the compact soliton is

zR =
m
√

λ̃
.

As thez coordinate is restricted to the interval[0, 1], we get a limit for the topological
charge for possible compact solitons. Namely

m ≤
√

λ̃ =
λR2

0√
128β

. (25)

In other words, one can derive a compact hopfion solution provided that its topological
charge does not exceed a maximal valueQmax = ⌊λ̃⌋, which is fixed onceλ, β, R0 are
given.
Further, the energy density onshell is

ε = 2λg (26)

and the total energy

E = (2π)2λR3
0

∫ m√
λ̃

0

dz

(

1 − z
√

λ̃

m

)2

= (2π)2λR3
0

m
√

λ̃

1

3
=

32
√

2π2

3

√

λβmR0.

(27)
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Taking into account the expression for the Hopf index

Q = m1m2 = m2.

we get

E =
32

√
2π2

3

√

λβR0 |Q| 12 , |Q| ≤ |Qmax|. (28)

For a generic situation, whenm2
1 6= m2

2, we find the exact solutions

g(z) = 1 +
2λ̃

m2
1 − m2

2

[

z −
(

zR +
m2

2

m2
1 − m2

2

)

ln

(

1 + z
m2

1 − m2
2

m2
2

)]

. (29)

In this case, the size of the compactonzR is given by a solution of the non-algebraic
equation

zR −
(

zR +
m2

2

m2
1 − m2

2

)

ln

(

1 + zR
m2

1 − m2
2

m2
2

)

+
m2

1 − m2
2

2λ̃
= 0. (30)

2.3 Non-compact hopfions

Let us again consider the profile function equation form1 = ±m2 (21) but with non-
compacton boundary conditions. Namely,g(0) = 1, g(z = 1) = 0, i.e., the solutions
nontrivially cover the wholeS3 base space. The pertinent solution reads

g(z) =
λ̃

m2
z2 −

(

1 +
λ̃

m2

)

z + 1. (31)

However, this solution makes sense only if the image ofg is not negative. This is the
case if

λ̃

m2
≤ 1 ⇒ m ≥

√

λ̃ (32)

and we found a lower limit for the Hopf charge. Thus, such non-compact hopfions
occur if their topological charge is larger than a minimal chargeQmin = ⌈λ̃⌉.
The corresponding energy is

E =
(2π)2

2
λR3

0

[

32β

R4
0

|Q|
(

1 − λR4
0

128β|Q|

)2

+ λ

(

1 − 1

3

R4
0λ

128β|Q|

)

]

, (33)

for |Q| ≥ |Qmin|.
Finally we are able to write down a formula for the total energy for a soliton solution
with a topological chargeQ

E =















32
√

2π2

3

√
λβR0 |Q| 12 |Q| ≤ ⌊ λR4

0

128β ⌋

(2π)2

2 λR3
0

[

32β
R4

0

|Q|
(

1 − λR4

0

128β|Q|

)2

+ λ
(

1 − 1
3

R4

0
λ

128β|Q|

)

]

|Q| ≥ ⌈ λR4

0

128β ⌉,
(34)

where the first line describes the compact hopfions and the second one the standard
non-compact solitons.

Remark 1. The pure Skyrme-Faddeev-Niemi model with potential (3) canbe mapped,
after the dimension reduction, on the signum-Gordon model [21].
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Indeed, if we rewrite the energy functional using our Ansatzwith m1 = ±m2, and
take into account the definition of the functiong, then we get the energy for the real
signum-Gordon model

E =
(2π)2R3

0

2

∫ 1

0

dz

(

32βm2

R4
0

g2
z + λg

)

. (35)

The signum-Gordon model is well-known to support compact solutions, so this map
is one simple way to understand their existence. The same is true on two-dimensional
Euclidean base space, explaining the existence of compactons in the model of Ref. [22]
(to our knowledge, compactons in a relativistic field theoryhave been first discussed in
that reference).

Remark 2. Compact hopfions saturate the BPS bound, whereas non-compact hopfions
do not saturate it.
This follows immediately from the last expression and the fact that all solitons are
solutions of a first order ordinary differential equation. Namely,

E =
(2π)2R3

0

2

∫ 1

0

dz





(
√

32βm2

R4
0

gz +
√

λg1/2

)2

− 2

√

32βm2

R4
0

gz

√
λg1/2



 .

(36)
Then,

E ≥ −2
(2π)2R3

0

2

√

32βλm2

R4
0

∫ g(zR)

g(0)

dzgzg
1/2 (37)

and

E ≥ 32
√

2π2

3

√

λβR0(g(0)3/2 − g(zR)3/2) =
32

√
2π2

3

√

λβR0, (38)

asg(0) = 1 andg(zR) = 0. The inequality is saturated if the first term in Eq. (36)
vanishes i.e.,

32βm2

R4
0

g2
z = λg, (39)

which is exactly the first order equation obeyed by the compact hopfions. On the other
hand, the non-compact solitons satisfy

32βm2

R4
0

g2
z = λg + C, (40)

whereC is a non-zero constant

C =

(

1 − λ̃

m2

)2

.

2.4 More general potentials

The generalization to the models with the potentials

Vs = λ

(

1

2
(1 − n3)

)s

, (41)

7



wheres ∈ (0, 2) leads to similar compact solutions. Namely,

g(z) =







(

1 − z
√

λ̃(2−s)
m

)
2

2−s

z ≤ zR

0 ≥ zR.

(42)

Now, the size of the compacton is

zR =
m

z
√

λ̃(2 − s)
, (43)

and the limit for the maximal allowed topological charge (inthem1 = ±m2 case) is

m ≤
√

λ̃(2 − s). (44)

For a bigger value of the Hopf index one gets a non-compact hopfion. The energy-
charge relation remains (up to a multiplicative constant) unchanged.
In the limit whens = 2, i.e.,

V2 = λ

(

1

2
(1 − n3)

)2

, (45)

we get only non-compact hopfions

g(z) = cosh

(

2z
√

λ̃

m

)

− coth

(

2
√

λ̃

m

)

sinh

(

2z
√

λ̃

m

)

. (46)

The total energy is found to be

E =
(2π)2

2
λR3

0

m

4
√

λ̃









coth
2
√

λ̃

m
+

2
√

λ̃
m

sinh2

(

2
√

λ̃
m

)









. (47)

Asymptotically, for large topological chargeQ = ±m2 we get

E =
(2π)2

2
λR3

0

(

128β

λR4
0

|Q| + 1

45

λR4
0

32β|Q|

)

. (48)

Finally, let us comment that fors > 2 there are no finite energy compact hopfions, at
least as long as the Ansatz is assumed. Indeed, the Bogomolnyequation forg in this
case is

g2
z =

4λ̃

m2
gs

and the power-like approach to the vacuumg ∼ (z − zR)α leads to

α =
2

2 − s

which is negative fors > 2. There may, however, exist non-compact hopfions. In
the cases = 4, for instance (the so-called holomorphic potential in the baby Skyrme
model), the resulting first order equation forg is

g2
z =

4λ̃

m2
(g4 + g4

0)
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the general solution of which is given by the eliptic integral

∫ g=g(z)

g=0

dg

(g4 + g4
0)

1/2
= − 2

|m|
√

λ̃(z − z0)

(we chose the negative sign of the root becauseg is a decreasing function ofz), and we
have to impose the boundary conditions

g(z = 1) = 0 ⇒ z0 = 1

andg(z = 0) = 1 which leads to

∫ 1

0

dg

(g4 + g4
0)

1/2
=

2

|m|
√

λ̃.

The last condition can always be fulfilled because the l.h.s.becomes arbitrarily large
for sufficiently small values ofg0 and vice versa.

2.5 Double vacuum potential

Another popular potential often considered in the context of the baby skyrmions, and
referred to as the new baby Skyrme potential, is given by the following expression

V = 1 − (n3)2. (49)

In contrast to the cases considered before, this potential has two vacua atn3 = ±1.
After taking into account the Ansatz and the definition of thefunctiong, the equation
of motion reads

1

2
∂z(Ωgz) = λ̃4(1 − 2g), (50)

leading, form1 = ±m2, to the general solution

g(z) =
1

2

(

1 −
√

1 + 4C sin

(

4
√

λ(z − z0)

m

))

, (51)

whereC, z0 are constants.
Here, we start with the non-compact solitons. Then, assuming the relevant boundary
conditions we find

g(z) =
1

2



1 − sin 4
√

λ
m (z − 1

2 )

sin 2
√

λ̃
m



 . (52)

This configuration describes a single soliton ifg is a monotonous function from 1 to 0.
This implies that the sine has to be a single-valued functionon the intervalz ∈ [0, 1],
i.e.,

4
√

λ̃

m
≤ π ⇒ |Q| ≥ 16λ̃

π2
. (53)

Exactly as before, the non-compact solutions do not saturate the corresponding Bogo-
molny bound.
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For a sufficiently small value of the topological charge we obtain a one-parameter fam-
ily of compact hopfions

g(z) =











1 0 ≤ z ≤ zr

1
2

[

1 − sin 4
√

λ
m (z − z0)

]

zr ≤ z ≤ zR

0 z ≥ zR

, (54)

where the boundary conditions have been specified asg(zr) = 1, g(zR) = 0 and
g′(zr) = g′(zR) = 0. The initial and end point of the compacton are

zr = z0 +
πm

8
√

λ̃
, zR = z0 +

3πm

8
√

λ̃
(55)

andz0 is a free parameter restricted to

z0 ∈ [− πm

8
√

λ̃
, 1 − 3πm

8
√

λ̃
]. (56)

We remark that in this case the energy density in terms of the functiong may be ex-
pressed like

ε =
128β

R4
0

(

1

4
g′2 + λ̃g(1 − g)

)

(57)

which makes it obvious again that both vacuum configurationsg = 0, 1 minimize the
energy functional.
As we see, compact solutions in the model with the new baby Skyrme potential are
shell-like objects. In fact, there is a striking qualitative resemblance between the baby
skyrmions and the compact hopfions in the pure Skyrme-Faddeev-Niemi model with
potentials (3), (49). Namely, it has been observed that the old baby skyrmions are
rather standard solitons with or without rotational symmetry, whereas the new baby
skyrmions possess a ring-like structure [18]. Here, in the case of the new baby poten-
tial, we get a higher dimensional generalization of ring structures, i.e., shells.
The energy-charge relation again takes the form of the square root dependence for
compactons,

E =
π3

2
R0

√

128βλ |Q|1/2, (58)

where we used the fact that the compact solutions saturate the Bogomolny bound.

2.6 Free model case

To have a better understanding of the role of the potential let us briefly consider the
case without potential, i.e.,λ = 0. In this case one can easily find the hopfions [15]

g(z) = 1 −
ln
(

1 + z
m2

1
−m2

2

m2

2

)

ln
(

1 +
m2

1
−m2

2

m2

2

) (59)

for m2
1 6= m2

2 and
g(z) = 1 − z (60)
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for m1 = ±m2. As we see, all solitons are of the non-compact type, which differs
profoundly from the previous situation.
The energy-charge formula reads

E =
(2π)2β

4R0

m2
1 − m2

2

lnm1 − lnm2
(61)

or for m2
1 = m2

2

E =
(2π)2β

2R0
|Q|. (62)

Again, the difference is quite big as we re-derived the standard linear dependence.
Remark: There exists a significant difference between models which have the quartic,
pure Skyrme term as the only kinetic term (containing derivatives) on the one hand, and
models which have a standard quadratic kinetic term (eitherin addition to or instead
of the quartic Skyrme term), on the other hand. Models with a quadratic kinetic term
have the typical vortex type behaviour

u ∼ rmeimφ

near the zeros ofu. Herer is a generic radial variable,φ is a generic angular variable
wrapping around the zero, andm is the winding number. In other words, configurations
with higher winding about a zero ofu are higher powers of the basicu with winding
number one, where both the modulus and the phase part ofu are taken to a higher
power. This behaviour is, in fact, required by the finitenessof the Laplacian∆u at
r = 0. Models with only a quartic pure Skyrme kinetic term (both with and without
potential), however, show the behaviour

u ∼ reimφ

i.e., only the phase is taken to a higher power for higher winding. For our concrete
model on base spaceS3, and for the simpler casem1 = m2 ≡ m, we haveu ∼
z−1/2eim(φ1+φ2) nearz = 0 (both with and without a potential term), but with the
help of the symmetriesu → (1/u) andu → ū this may be brought easily to the form

u ∼
√

zeim(φ1+φ2),

as above. As said, the Laplacian acting on this field is singular at z = 0, so the
field has a conical singularity at this point. One may wonder whether this singularity
shows up in the field equation and requires the introduction of a delta-like source term.
The answer to this question is no. Thanks to the specific form of the quartic kinetic
term, the second derivatives in the field equation show up in such a combination that
the singularity cancels and the field equation is well-defined at the zero ofu. As this
behaviour is generic and only depends on the Skyrme term and on the existence of
topological solutions (and not on the base space) we show it for the simplest case with
base spaceR2 (i.e., the model of Gisiger and Paranjape), wherer andφ are just polar
coordinates in this space. A compact soliton centered aboutthe origin behaves like
u ∼ reimφ near the origin, and has the singular Laplacian

∆u = (1 − m2)r−1e−mφ.

On the other hand, the field equation (9) is finite atr = 0, because the vector~K behaves
like

~K = 8β
m2êr − imêφ

(1 + r2)2
e−imφ ≡ Kr êr + Kφêφ

11



(hereêr andêφ are the unit vectors along the corresponding coordinates),and its diver-
gence (which enters into the field equation) is

∇ · ~K ≡ 1

r
∂r(rKr) +

1

r
∂φKφ =

32βr

(1 + r2)3
e−imφ

and a potential singular(1/r) contribution cancels between the first and the second
term. As said, this behaviour is completely generic for models with the Skyrme term
as the only kinetic term. These fields, therefore, solve the field equations also at the
singular pointsu = 0 and are, consequently, true solutions of the correspondingvaria-
tional problem.

3 Compact strings in Minkowski space

In the (3+1) dimensional standard Minkowski space-time we are not able to find ana-
lytic soliton solutions with finite energy, because the symmetries of the model do not
allow for a symmetry reduction to an ordinary differential equation in this case. We
may, however, derive static and time-dependent solutions with a compact string geom-
etry with the string oriented, e.g. along thez direction. These strings have finite energy
per unit length in thez direction. Further, the pertinent topological charge is the wind-
ing numberQ = n. In this section(x, y, z) refer to the standard cartesian coordinates
in flat Euclidean space. Further, we use the old baby Skyrme potential of Section 2.1.
The Ansatz we use reads

u = f(r)einφei(ωt+kz), (63)

whereω, k are real parameters,r2 ≡ x2 + y2, φ = arctan(y/x), andn fixes the
topological content of the configuration. It gives the following equation for the profile
functionf

f

(

1

r
∂r

[

r
f ′f

(1 + f2)2
Ω

]

− λ̃

)

= 0, (64)

whereλ̃ = λ/32β and

Ω = k2 − ω2 +
n2

r2
. (65)

The simplest solutions may be obtained forω2 = k2. Then, after introducing

x =
r2

2
, and g = 1 − 1

1 + f2
(66)

we get

gxx =
2λ̃

n2
. (67)

The compact solution reads

g(r) =











(

1 − r2

√
λ̃

n
√

2

)2

r ≤
√

n 4
√

2
4
√

λ̃

0 r ≥
√

n 4
√

2
4
√

λ̃
.

(68)

The total energy (per unit length inz-direction) is

E =

∫

d2x
8β

(1 + |u|2)4 [(∇u∇ū)2 − (∇u)2(∇ū)2] (69)
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+
8β

(1 + |u|2)4 [2u0ū0(∇u∇ū) − u2
0(∇ū)2 − ū2

0(∇u)2] + λ
|u|2

1 + |u|2 , (70)

or after inserting our Ansatz

E = 2π

∫ ∞

0

rdr

(

32βf2f ′2

(1 + f2)4

(

n2

r2
+ ω2 + k2

)

+
λf2

1 + f2

)

(71)

and finally

E =
2π

3

[

12
√

λβ|Q| + 32βω2
]

. (72)

A more complicated case is forδ2 ≡ k2 − ω2 > 0. Then,Ω = δ2 + n2

r2 , and the
equation forg is

∂x

(

gx(n2 + 2δ2x)
)

− 2λ̃ = 0. (73)

The compacton solution (with the compacton boundary conditions) is

g(x) = 1 +
λ̃

δ2

[

x − (
n2

2δ2
+ xR) ln

(

1 +
2δ2x

n2

)]

, (74)

wherexR is given by

1 +
λ̃

δ2

[

xR − (
n2

2δ2
+ xR) ln

(

1 +
2δ2xR

n2

)]

= 0. (75)

4 Conclusions

It has been the main purpose of the present paper to demonstrate and explicitly con-
struct compact soliton solutions of the pure Skyrme–Faddeev–Niemi model (with only
a quartic kinetic term) with a potential. These compact solutions are natural general-
izations of the compact solutions of the purely quartic babySkyrme model which have
first been reported by Gisiger and Paranjape [22], and further investigated recently
[23]. As we wanted to present exact analytical solutions, wechose the base space
(spacetime)S3 ×R for finite energy solutions, because Minkowski spacetime does not
offer sufficient symmetries to reduce the field equations to ordinary differential equa-
tions. Only in the case of spinning string-like solutions with a finite energy per length
unit along the string the symmetry reduction in Minkowski space is possible (Section
3). For the case ofS3 × R spacetime, we found two rather different classes of finite
energy soliton solutions, namely compactons (which cover only a finite fraction of the
three-sphere) on the one hand, and non-compact solitons (which cover the full three-
sphere) on the other hand. Both classes of solutions are topological, but their energies
are quite different. The compacton energies behave likeEc ∼ R0|Q|1/2 (whereR0 is
the radius of the three-sphere, andQ is the topological charge), whereas the energies of
the non-compact solitons behave likeEs ∼ R3

0|Q|. Further, the compactons only exist
up to a certain maximum value of the topological charge, whereas the non-compact
solitons start to exist from this value onwards. The different behaviours of the energies
in the compact and non-compact case may be easily understoodfrom the observation
that the compactons obey a Bogomolny equation, whereas the non-compact solitons
obey a “Bogomolny equation up to a constant”. Indeed, if for an energy density of
the typeE = E4 + E0 (here the subindices refer to the power of first derivatives in
each term) a Bogomolny equation holds, then the energy density for solutions may be

13



expressed likeE ∼ (E4E0)
1/2. If we now take into account the scaling dimensions

E4 ∼ R−4
0 , E0 ∼ R0

0 and
∫

d3x ∼ R3
0, then the behaviourEc ∼ R0 easily follows.

Physically this means that the compacton solutions are localised near the north pole
of the three-sphere, and the localisation becomes more pronounced for larger radiiR0.
On the other hand, the energy density of the non-compact solitons remains essentially
delocalised and evenly distributed over the whole three-sphere. We remark that the be-
haviour of the compacton energiesEc ∼ R0|Q|1/2 poses an apparent paradox, because
it can be proven that already the quartic part of the energy alone can be bound from
below by|Q|, that is,E4 ≡

∫

d3xE4 ≥ αR−1
0 |Q|, whereα is an unspecified constant.

The proof was given in [25] forR0 = 1, but the generalization for arbitrary radius is
trivial using the scaling behaviour of the corresponding terms. The apparent paradox
is of course resolved by the observation that compactons exist only for not too large
values of|Q|, such that the lower bound is compatible with the energies ofthe explicit
solutions. Finally, if the potential has more than one vacuum, then compactons of the
shell type exist, such that the field takes two different vacuum values inside the inner
and outside the outer compact shell boundary. Except for their different shape, these
compact shells behave quite similarly to the compact balls in the one-vacuum case (e.g.
the relation between energy and topological charge or the linear growth of the energy
with the three-sphere radius is the same).
One interesting question clearly is whether analogous compacton solutions with finite
energy exist in Minkowski space. An exact calculation is probably not possible in this
case, but we think that we have found already some indirect evidence for the existence
of such solutions. The first argument is, of course, the fact that they exist in one di-
mension lower (in the baby Skyrme model). The second argument is related to the
behaviour of our solutions for large radiusR0. The compacton solutions are localized
and, therefore, their energies grow only moderately withR0 (linearly in R0). Further,
the allowed range of topological charges for compactons grows like the fourth power of
R0. These are clear indications that compacton solutions might also exist in Minkowski
space. Certainly this question requires some further investigation. If these compactons
in Minkowski space exist, then an interesting question is which energy-charge relation
will result. Will the energies grow likeEc ∼ |Q|1/2, like on the three-sphere, or will
they obey the three-quarter lawEc ∼ |Q|3/4, like for the full SFN model without po-
tential in Minkowski space? All we can say at the moment is that an upper bound for
the energy in flat space can be derived. The derivation is completely analogous to the
cases of the full SFN, Nicole or AFZ models (the choice of trial functions which ex-
plicitly saturate the bound), and also the result is the same, Ec ≤ α|Q|3/4, see [9]. The
attempt to derive a lower bound, analogous to the Vakulenku-Kapitanski bound for the
SFN model, meets the same obstacles as for the Nicole or AFZ models, see Appendix
C of the second reference in [9].
Assuming for the moment the existence of compactons in Minkowski space, another
interesting proposal is to use the compacton solutions of the pure quartic model (with
potential) as a lowest order approximation to soliton solutions of the full SFN model
and try to approximate the full solitons by a kind of generalized expansion. If such an
approximate solution is possible, it would have several advantages.
• The pure quartic model is much easier than the full theory. Inthe case of the baby
Skyrme model (both with old and new potentials) one gets evensolvable models (as
long as the rotational symmetry is assumed).
• The lowest order solution is already a non-perturbative configuration, i.e., a com-
pacton, which captures the topological properties of the full solution. Due to the com-
pact nature of the lowest order solution we have a kind of "localization" of the topo-
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logical properties in a finite volume.
• One can easily construct multi-compacton solutions which,if sufficiently separated,
do not interact. They form something which perhaps may be called a fake Bogomolny
sector as they are solutions of a first order equation (usually saturating a corresponding
energy-charge inequality) and may form multi-soliton noninteracting complexes.
Of course, it remains to be seen whether such an approximate solution is possible at
all. What can be said so far is that in the simpler case of a scalar field theory with a po-
tential which is smooth if a certain parameterµ is non-zero and approaches a V-shaped
potential in theµ → 0 limit, then the compacton is theµ → 0 limit of the non-compact
soliton, see [26].
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