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All entangled states are useful for channel discrimination
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We prove that every entangled state is useful as a resource for the problem of minimum-error
channel discrimination. More specifically, given a single copy of an arbitrary bipartite entangled
state, it holds that there is an instance of a quantum channel discrimination task for which this
state allows for a correct discrimination with strictly higher probability than every separable state.
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Despite its sometimes counter-intuitive properties, en-
tanglement has firmly been established as a fundamental
resource at the core of quantum information theory. Uni-
versal quantum computation is generally believed to be
impossible in its absence [1], and it plays a principal role
in quantum teleportation [2], superdense coding [3], and
the one-way model of quantum computation [4]. The
classification of entanglement with respect to its useful-
ness and properties as a resource is a major focus in the
theory of quantum information. For example, distillable
entanglement [5] may be processed by means of local op-
erations and classical communication into a nearly pure
form that is suitable for high fidelity quantum telepor-
tation, while bound entanglement cannot [6]. Other clas-
sifications of entangled states, such as those that allow
or do not allow superdense coding [7, 8], and those from
which private shared-randomness can be extracted [9],
have also been studied.

Although entanglement is known to be useful in several
quantum information-theoretic settings, there are very
few known results that establish the usefulness of every
entangled state, irrespective of the “quality” of its en-
tanglement and of the dimensionality of its underlying
systems. The only prior examples that we are aware of
involve a type of activation mechanism, where the use-
fulness of a given entangled state is based on its pairing
with another entangled state. For example, in [10] it was
proved that for any entangled state, there exist another
entangled state such that the fidelity of conclusive tele-
portation [11] of the latter is enhanced by the presence of
the former. A different property holding for all entangled
states that has a similar character was proved in [12].

In this Letter we demonstrate a new way in which ev-
ery entangled state is useful as a resource: for the task of
channel discrimination. In this task, two known discrete
physical processes (or channels) are fixed, and access to
one of them is made available—but it is not known which
one it is, and only a single application of the channel is
possible. The goal is to determine, with minimal proba-
bility of error, which of the two channels was given, as-
suming for simplicity that the two channels were equally
likely. The most general approach to solving an instance

of this problem is to prepare a (possibly entangled) bi-
partite probe/ancilla quantum state, to apply the given
channel to one part of this state—the probe—and finally
to measure the resulting bipartite state by a POVM with
two outcomes that correspond to predictions of which
channel was given.

It is well-known that probe-ancilla entanglement is
sometimes useful for channel discrimination. This phe-
nomenon seems to have been identified first by Ki-
taev [13], who introduced the diamond norm on super-
operators to deal with precisely this phenomenon in the
context of quantum error correction and fault-tolerance
[39]. Subsequent work [14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24] by several researchers further illuminated the
usefulness of entanglement in the problem of channel dis-
crimination and related tasks. In these works, the focus
has mainly been on identifying classes of channel pairs
for which some optimally chosen entangled state either
does or does not give an advantage over every possible
separable (or nonentangled) state.

In this Letter we reverse this question and suppose
that some arbitrary entangled state is given, and ask
whether the entanglement in this state is useful for chan-
nel discrimination. We prove that every bipartite entan-
gled state indeed does provide an advantage for this task:
there necessarily exists an instance of a channel discrim-
ination problem for which the entangled state allows for
a correct discrimination with strictly higher probability
than every possible separable state. This holds even for a
single copy of the entangled state, regardless of its dimen-
sionality or the quality or type of its entanglement (in-
cluding, for instance, bound entangled states), and does
not require the presence of an auxiliary state. This fact
is proved below after brief discussions of notation, termi-
nology, and background information on the problem of
channel discrimination.

Notation and terminology. For a given (finite dimen-
sional) Hilbert space X , the set of linear operators taking
the form A : X → X is denoted by L (X ). We will denote
by 1Z the identity operator on Z and by 1L(Z) the iden-
tity super-operator on L (Z). An operator ρ ∈ L (X ) is
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a density operator, and represents a state, if it is positive
semidefinite (ρ ≥ 0) and has unit trace (Tr(ρ) = 1). The
set of such density operators is denoted D (X ). A state
σ ∈ D (X ⊗ Z) of a bipartite system is said to be sepa-
rable if it takes the form σ = σsep =

∑

i pi σi
X ⊗ σi

Z for
density operators {σi

X} and {σi
Z} on the Hilbert spaces

X and Z, respectively, and {pi} a probability distribu-
tion, and otherwise is entangled. The set of all separable
states is denoted Sep(X : Z). The trace norm of an op-

erator A is defined as ‖A‖tr ≡ Tr
√

A†A [40]. The trace
distance between two states ρ0 and ρ1 is ‖ρ0 − ρ1‖tr.

Channels are particular elements of the set of linear
super-operators T (X ,Y) ≡ {Φ|Φ : L (X ) → L (Y)} that
map operators on a Hilbert space X into operators on
a (possibly different) Hilbert space Y. A super-operator
Φ ∈ T (X ,Y) is said to be:

• Hermiticity-preserving if Φ[X ]† = Φ[X†], ∀X ∈
L (X );

• trace-preserving if Tr(Φ[X ]) = Tr(X), ∀X ∈ L (X );

• trace-annihilating if Tr(Φ[X ]) = 0, ∀X ∈ L (X );

• positive if Φ[X ] ≥ 0 for every positive semidefinite
operator L (X ) ∋ X ≥ 0;

• completely positive if Φ ⊗ 1L(Cn) is positive for all n;

• a channel if it is both completely positive and trace-
preserving;

• an entanglement-breaking channel if it is a channel
that destroys all entanglement:

(

Φ ⊗ 1L(Z)

)

[ρXZ ] ∈
Sep(Y : Z) for all states ρXZ .

A channel describes any physical process which preserves
probability, i.e., that happens with certainty.

The Choi-Jamio lkowski representation [25, 26] of a
super-operator Φ ∈ T (X ,Y) is given by

J(Φ) =
∑

1≤i,j≤dX

Φ[|i〉〈j|] ⊗ |i〉〈j| ∈ L (Y ⊗ X ) ,

where dX and {|1〉, . . . , |dX 〉} are the dimension and a
fixed orthonormal basis of X , respectively. The mapping
J : T (X ,Y) → L (Y ⊗ X ) is a linear bijection, which im-
plies that for every operator A ∈ L (Y ⊗ X ) there exists a
unique super-operator Φ ∈ T (X ,Y) such that J(Φ) = A.
It holds that a super-operator Φ ∈ T (X ,Y) is:

• Hermiticity-preserving if and only if J(Φ)† = J(Φ)
[27];

• trace-preserving if and only if TrY(J(Φ)) = 1X ;

• trace-annihilating if and only if TrY(J(Φ)) = 0;

• completely positive if and only if J(Φ) ≥ 0 [25, 26];

• an entanglement-breaking channel if and only if it is
a channel and J(Φ)/dX ∈ Sep(Y ⊗ X ) [28].

State and channel discrimination. The task of channel
discrimination is naturally related to the well-studied
task of discriminating states [29]. Suppose we are given
one of two known states ρ0, ρ1 ∈ D(X ), each with equal
a priori probability, and our goal is to guess which one it
is with minimal error probability. A guessing procedure
for this task may be described by a two-outcome POVM
{M0, M1} ⊂ L (X ), M0, M1 ≥ 0, M0 +M1 = 1X . The er-
ror probability for such a measurement can be expressed
as pE = 1/2(1 − 1/2 Tr[(M0 − M1)(ρ0 − ρ1)]). It may
be nonzero for every possible measurement, but by opti-
mizing the measurement one reaches the minimum error
probability pmin

E = 1/2(1 − 1/2‖ρ0 − ρ1‖tr) [41].
Now, suppose we want to discriminate two channels

Φ0, Φ1 ∈ T (X ,Y) with minimal error probability, as dis-
cussed above. By “probing” whichever channel was given
with a state ρ ∈ D (X ), we transform the problem into
one of discriminating between the states Φ0[ρ] and Φ1[ρ].
Thus, the relevant quantity becomes ‖Φ0[ρ] − Φ1[ρ]‖tr,
and the minimal error will be achieved by choosing an
optimal input state that minimizes this quantity. In
this way we are led to consider the trace distance [42]
of two channels ‖Φ0 − Φ1‖tr ≡ maxρ ‖Φ0[ρ] − Φ1[ρ]‖tr.
By the convexity of the trace norm, this maximum will
be achieved for some pure input state.

As mentioned previously, however, the reduction from
channel to state discrimination just described may not
always be optimal, for it does not exploit the possibility
of feeding the channel with a subsystem of a larger cor-
related system, and then measuring the resulting output
joint system. More precisely, we may consider an input
state ρ ∈ D (X ⊗ Z), with Z the Hilbert space of an ar-
bitrary ancillary system, and compare the output states
(

Φi ⊗ 1L(Z)

)

[ρ], for i = 0, 1. Thus, the ultimate quan-
tity relevant in minimal-error channel discrimination is
actually the diamond norm [43]:

‖Φ0 − Φ1‖⋄ ≡ sup
n≥1

‖Φ0 ⊗ 1L(Cn) − Φ1 ⊗ 1L(Cn)‖tr.

By definition, it holds that ‖Φ0 − Φ1‖⋄ ≥ ‖Φ0 − Φ1‖tr,
and if it is the case that ‖Φ0 − Φ1‖⋄ > ‖Φ0 − Φ1‖tr,
then it is necessarily because of entanglement. Indeed,
the correlations of separable states never help in the
discrimination of channels, as for every separable state
σsep ∈ Sep(X ⊗ Z) we have:

∥

∥

(

Φ0 ⊗ 1L(Z)

)

[σsep] −
(

Φ1 ⊗ 1L(Z)

)

[σsep]
∥

∥

tr

≤
∑

i

pi‖(Φ0 − Φ1)[σi
X ] ⊗ σi

Z‖tr

=
∑

i

pi‖Φ0[σi
X ] − Φ1[σi

X ]‖tr ≤ ‖Φ0 − Φ1‖tr.

Proof of the main result. To establish our main result,
we will connect the characterization of entanglement in
terms of positive linear maps with its usefulness for chan-
nel discrimination.



3

We begin with a lemma that can be considered an im-
provement of Lemma 1 in [30]: the well-known charac-
terization of entanglement by positive maps proved in
[31] continues to hold if the extra constraint of trace-
preservation is placed on the positive maps. The im-
provement of the following lemma lies in a significantly
simpler proof and in a better bound on the output di-
mension of the positive maps.

Lemma 1. A state ρ ∈ D (X ⊗ Z) is entangled if and
only if there exists a positive, trace-preserving super-
operator ΦTP ∈ T (X ,Y) such that

(

ΦTP ⊗ 1L(Z)

)

[ρ] � 0. (1)

It suffices to take dimY ≤ dimZ + 1.

Proof. In [31] it was proved that a state ρ ∈ D (X ⊗ Z)
is entangled if and only if there exists a positive super-
operator Ω ∈ T (X ,Z) such that (Ω ⊗ 1L(Z))[ρ] � 0.
The main issue that must be addressed is that the super-
operator Ω may not, in general, be trace-preserving.

Let us define λ(Ω) ≡ maxρ Tr(Ω[ρ]), where the max-
imum is over all density operators ρ ∈ D (X ), and con-
sider the normalized map Ω̂ ≡ Ω/λ(Ω). By construction,
this super-operator satisfies Tr(X) ≥ Tr(Ω̂[X ]) for all
X ≥ 0, and so the map ΦTP ∈ T (X ,Z ⊕ C) defined as
ΦTP[X ] ≡ Ω̂[X ] + (Tr(X) − Tr(Ω̂[X ])) |0〉〈0|, where |0〉
is a normalized vector orthogonal to Z, is also positive
and satisfies (ΦTP ⊗ 1L(Z))[ρ] � 0. By taking Y = Z ⊕C
and noticing that ΦTP is trace-preserving, the proof is
complete.

It is helpful to note at this point that any positive and
trace-preserving super-operator ΦTP ∈ T (X ,Y) allows
one to define, for every state ρ ∈ D (X ⊗ Z), a general-
ized negativity [32, 33] parameter as [44]

NΦTP
(ρ) ≡ ‖

(

ΦTP ⊗ 1L(Z)

)

[ρ]‖tr − 1

2
=

∑

i:ri<0

|ri|,

where {ri} is the set of eigenvalues of
(

ΦTP ⊗ 1L(Z)

)

[ρ].

Of course,
(

ΦTP ⊗ 1L(Z)

)

[σsep] ≥ 0 and NΦTP
(σsep) =

0, for every separable state σsep ∈ Sep(X : Z), while
NΦTP

(ρ) > 0 if ρ is entangled and detected as in (1).
Next we will prove a lemma that relates a Hermiticity-

preserving, trace-annihilating super-operator—an appar-
ently abstract object—to the existence of two channels.

Lemma 2. Let ΦTA ∈ T (X ,Y) be a Hermiticity preserv-
ing, trace-annihilating super-operator. Then there exist
channels Ψ0, Ψ1 ∈ T (X ,Y) and a scalar cΦTA

> 0 such
that cΦTA

ΦTA = Ψ0 − Ψ1.

Proof. Given that ΦTA is Hermiticity-preserving and
trace-annihilating, it holds that its Choi-Jamio lkowski
representation J(ΦTA) is Hermitian and satisfies
TrY J(ΦTA) = 0. Let J(ΦTA) = P0 − P1 be a Jordan

decomposition of J(ΦTA) (meaning that P0, P1 ≥ 0 and
Tr(P0P1) = 0), and note that TrY P0 = TrY P1 =: Q ≥ 0.
Take cΦTA

= 1/‖Q‖, so that cΦTA
Q ≤ 1X . Next, consider

any positive operator ξ ∈ L(Y⊗X ) such that TrY ξYX =1L(X ) − cΦTA
Q [45], and let Ψ0, Ψ1 ∈ T (X ,Y) be the

unique super-operators for which J(Ψi) = cΦTA
Pi + ξ for

i = 0, 1. We have J(Ψi) ≥ 0 and TrY(J(Ψi)) = cΦQ +1X − cΨTA
Q = 1X , therefore Ψ0, Ψ1 are channels. More-

over, J(Ψ0) − J(Ψ1) = cΦTA
(P0 − P1) = cΦTA

J(ΦTA),
therefore Ψ0 − Ψ1 = cΦTA

ΦTA.

We are now ready for the proof of the main theo-
rem, which will rely on the careful definition of a trace-
annihilating map—starting from a trace-preserving map
as in Lemma 1—and on the application of Lemma 2.

Theorem 1. A state ρ ∈ D (X ⊗ Z) is entangled if and
only if there exist channels Ψ0, Ψ1 ∈ T (X ,Y) such that

∥

∥

(

Ψ0 ⊗ 1L(Z)

)

[ρ] −
(

Ψ1 ⊗ 1L(Z)

)

[ρ]
∥

∥

tr
> ‖Ψ0 − Ψ1‖tr.

It suffices to take dimY ≤ dimZ + 2.

Proof. We have already argued that if ρ allows, for some
choice of channels Ψ0, Ψ1, a discrimination better than
the one corresponding to ‖Ψ0 − Ψ1‖tr, then ρ must be
entangled. On the other hand, if ρ is entangled, then by
Lemma 1 there exists a positive, trace-preserving super-
operator ΦTP ∈ T (X ,W) such that NΦTP

(ρ) > 0. Let
us define a new map ΦTA ∈ T (X ,W ⊕ C) as ΦTA[X ] ≡
ΦTP[X ] − Tr(X)|0〉〈0|, where |0〉 is a normalized vector
orthogonal to W . By construction, ΦTA is Hermiticity-
preserving and trace-annihilating. By Lemma 2, there
exists a scalar cΦTA

such that cΦTA
ΦTA = Ψ0 − Ψ1 for

two channels Ψ0, Ψ1 ∈ T (X ,W ⊕ C).
Now, for a generic state τ ∈ D (X ⊗ Z), one finds

‖
(

(Ψ0 − Ψ1) ⊗ 1L(Z)

)

[τ ]‖tr

= cΦTA
‖(ΦTA ⊗ 1L(Z))[τ ]‖tr

= cΦTA
‖(ΦTP ⊗ 1L(Z))[τ ] − |0〉〈0| ⊗ TrX (τ)‖tr

= cΦTA
(1 + ‖(ΦTP ⊗ 1L(Z))[τ ]‖tr)

= 2cΦTA
(1 + NΦTP

(τ)).

For every separable state σsep ∈ Sep(X : Z) we obtain
‖((Ψ0 − Ψ1) ⊗ 1L(Z))[σ

sep]‖tr = 2cΦTA
, and therefore

‖Ψ0 − Ψ1‖tr = 2cΦTA
. Thus,

‖
(

(Ψ0 − Ψ1) ⊗ 1L(Z)

)

[ρ]‖tr − ‖Ψ0 − Ψ1‖tr

= 2cΦTA
NΦTP

(ρ) > 0.

According to Lemma 1 it is sufficient to have dimW ≤
dimZ + 1. Taking Y = W ⊕ C shows that it is sufficient
to have dimY ≤ dimZ +2, and completes the proof.

In regard to the type of channels that allow entangled
states to give improved discrimination, one has the fol-
lowing interesting corollary.
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Corollary 1. A state ρ ∈ D (X ⊗ Z) is entangled if
and only if there exist entanglement-breaking channels
Ψ0, Ψ1 ∈ T (X ,Y) such that

∥

∥

(

Ψ0 ⊗ 1L(Z)

)

[ρ] −
(

Ψ1 ⊗ 1L(Z)

)

[ρ]
∥

∥

tr
> ‖Ψ0 − Ψ1‖tr.

Proof. Generalizing the result of [21], we observe that if
an entangled state ρ ∈ D (X ⊗ Z) increases the distin-
guishability of two channels Ψ0, Ψ1 ∈ T (X ,Y), then it
also increases the distinguishability of two entanglement
breaking channels of the form Ξp

i = pΨi + (1 − p)Ω, for
i = 0, 1. Here p ∈ (0, 1] and Ω ∈ T (X ,Y) is the totally
depolarizing channel Ω[X ] = (Tr(X)/dY)1Y .

For sufficiently small p > 0, the channels Ξp
i are entan-

glement breaking, as their Choi-Jamio lkowski represen-
tations are separable by the existence of a ball contain-
ing only separable states around the maximally mixed
state [32]. It holds that

∥

∥

(

(Ξp
0 − Ξp

1) ⊗ 1L(Z)

)

[ρ]
∥

∥

tr
=

p‖
(

(Ψ0 − Ψ1) ⊗ 1L(Z)

)

[ρ]‖tr and ‖Ξp
0 − Ξp

1‖tr = p‖Ψ0 −
Ψ1‖tr, therefore the state ρ enhances the distinguishabil-
ity of channels Ξp

0, Ξp
1 for all choices of p > 0.

Example. The steps in the proof of Theorem 1 are con-
structive. In particular, while the value of the en-
hancement in distinguishability depends on the partic-
ular state, the channels that are better distinguished by
means of the states depend exclusively on the positive
map ΦTP. We further remark that, for any entangled
state, there exist tools to find a positive map that de-
tects the state as entangled [34]. Unfortunately, it is not
likely that this can efficiently be done [35, 36].

The most well-known example of a positive linear map
that detects entanglement is transposition T : L(X ) ∋
X 7→ XT ∈ L(X ) with respect to some fixed basis of
X [31, 37]. For transposition one finds cT = 2/(dX +
1), and channels Ψ0, Ψ1 ∈ T (X ,X ⊕ C), Ψ0 : X 7→

1
dX+1 ((Tr X)1X + XT ), Ψ1 : X 7→ 1

dX+1 ((Tr X)(1X +

2|0〉〈0|) − XT ), with |0〉 a normalized vector orthogonal
to X . Thus, for any state ρ ∈ D(X ⊗Z), we obtain ‖Ψ0⊗1L(Z)[ρ]−Ψ1 ⊗ 1L(Z)[ρ]‖tr −‖Ψ0 −Ψ1‖tr = 4

dX+1NT (ρ),
with NT (ρ) the standard negativity of ρ [32, 33].

Conclusions. We have proved that any entangled state
is useful to distinguish some pair of (entanglement-
breaking) channels strictly better than what is possi-
ble by means of a separable state in the minimum-error,
single-shot scenario. One may consider this result as a
physically meaningful interpretation of the characteriza-
tion of entangled states by means of positive but not
completely positive linear maps [31]. We expect that our
result will stimulate further investigations on the role of
entanglement in the discrimination of physical processes.
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