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Semiclassical description of quantum perturbations
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The effect of a perturbation over a quantum system is described by the local density of states
(LDOS), a distribution of the overlaps square between the unperturbed and perturbed eigenstates.
Its witdh measures the spread of an unperturbed state in the perturbed basis and it is related
to fundamental problems such as the sensitivity of quantum evolutions or dissipation when the
perturbation varies with time. We derive a semiclassical expression for the width of the LDOS, σsc,
for generic chaotic systems. We show that σsc is very accurate to describe the width of the LDOS
of paradigmatic systems of quantum chaos as the cat maps and the Stadium billiard.
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The action of a perturbation on eigenenergies and
eigenfunction of a quantum system has been a subject of
paramount importance since the beginning of quantum
theory. Its understanding is in the heart of fundamen-
tal problems of quantum mechanics as dissipation, phase
transition or irreversibility. The usual perturbation the-
ory is a good starting point that describe successfully this
effect when the perturbation is small. However, approx-
imated theories usually fail for strong perturbations and
highly demanding computational methods are needed to
compute quantities that describe characteristics of the
perturbed system.

The local density of states (LDOS) or the strenght

function is a widely studied magnitude to characterize the
effect of perturbations on quantum systems [1, 2, 3, 4].
It is a distribution of the overlaps square between the
unperturbed and perturbed eigenstates. Furthermore,
LDOS has been extensively computed for different sys-
tems and perturbations. Let consider a system that
is described by a parameter dependent Hamiltonian
H(x) with eigenenergies Ej(x) and eigenstates φj(x), the
LDOS for an eigenstate i at x = x0 (that we call unper-
turbed) is defined as,

ρi(E, δx) =
∑

j

|〈φj(x)|φi(x0)〉|
2δ(E − ∆Eij), (1)

where δx = x − x0 and ∆Eij = Ej(x) − Ei(x0). To
avoid a dependence on the particular characteristics of
the unperturbed state it frequently refers to an average
taken over a set of unperturbed states in a considered
energy region.

The LDOS is related with important measures of ir-
reversibility and sensitivity to perturbations in quantum
systems as the survival probability and the Loschmidt
echo (LE) [6, 7, 8]. In fact, the LDOS is the Fourier tran-
form of the survival probability [9] and its width gives the
decay rate of the LE for a small enough strength of the
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perturbation [10, 11]. These relations are exploited in
this letter to derive a semiclassical expression of the wit-
dth σsc of the LDOS of chaotic systems. We test the
ability of σsc to describe quantitatively the witdth of the
LDOS in cat maps and the Bunimovich stadium billiard.
We show that σsc works very well in both systems. Al-
though σsc is derived for local perturbation we show that
it also works for global perturbations. This unexpected
behavior is explain using very reasonable assumptions.

We start with an average of Eq. 1 of M unperturbed
states,

ρ̄(E, δx) =
1

M

∑

i

ρi(E, δx). (2)

The Fourier tranform of the previous equation gives,

F [ρ̄(E, δx)] =
1

M

∑

i

〈φi(x0)|e
iH(x)t/~e−iEi(x0)t/~|φi(x0)〉,

(3)
where the sum run over the so-called survival probability
which is the amplitude fidelity of an eigenstate.

Let us evaluate the previous sum semiclassically.
Vańıcek has proposed a semiclassical approximation of
the amplitude fidelity, called dephasing representation

[13], by assuming a classically small perturbation in such
a way that the shadowing theorem [12] is valid. Using
such an approximation, Eq. 3 resulting in,

F [ρ̄(E, δx)] ≈

∫

dqdpW exp[−i∆St(q, p)/~], (4)

where ∆St(q, p) is the action difference evaluated along
the unperturbed orbit starting at (q, p) that evolves
a time t. Moreover, W = (1/M)

∑

i Wi(q, p), being
Wi(q, p) the Wigner function of φi(x). In chaotic sys-
tems, W takes an uniform value.

In the case of a local perturbations, the right hand of
Eq. 4 has been evaluated on a Poincaré surface of section
by Goussev et. al [14] resulting,

F [ρ̄(E, δx)] = e−γ|t| (5)
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where,

γ ≡ α(1 − (〈ei∆S(q,p)/~〉)). (6)

The average is evaluated in the region of the surface of
section where the local perturbation acts. For numerical
comparation we will consider that,

〈e−i∆Sδx(q,p)/~]〉 ≡
1

α

∫ p2

p1

∫ q2

q1

e−i∆Sδx(q0,p0)/~dqdp, (7)

where p1, p2, q1 and q2 stands for the limits of the per-
turbed portion in the surface of section of area α . Fi-
nally, the Fourier tranform of the exponentially decaying
F [ρ̄(E, δx)] is the Lorentzian function,

L(β, x) =
β

π(x2 + β2)
(8)

with β = ℜ[γ]. Then, the semiclassical approximation of
the width of the LDOS results,

σsc ≡ tan(
7

20
π)ℜ[γ] ≈ 1.963ℜ[γ] (9)

where the fraction 7/20 is related with our definition of
the width of a lorentzian probability distribution.

We stress that this semiclassical approximation σsc was
derived in the limit of α → 0. However, we will see that
by using a very razonable assumtions it can be extended
to arbitrary values of α. Let us consider the following

basis sets: {φ
(0)
i } be the set of unperturbed eigenfunc-

tions, {φ
(1)
i } be the set resulting after applying a pertur-

bation α1, and {φ
(2)
i } be the set resulting after applying

the perturbation α2 to the previous system (the one with
the perturbation α1). Assuming that α1 and α2 are small
perturbations over disjoined regions of phase space, we
conclude their LDOS as been uncorrelated. Therefore,
the LDOS connecting the first and third basis sets is ob-
tained by the convolution of the other two ones. The
resulting LDOS is also a Lorentzian function taken into
account that they are Lorentzian functions,

∫

L(β1, y)L(β2, x − y)dy = L(β1 + β2, x), (10)

with β1 = ℜ[γ1] being the parameter resulting from the
first perturbation (idem for β2). By noticing that γ is
proportional to α we arrive to the conclusion that eq.
(9) works for global perturbations too.

Let us now show the power of the semiclassical ap-
proximation σsc to describe the width of the LDOS. We
consider first the cat map, a canonical example in clas-
sical and quantum chaos studies. Cat maps are linear
automorphisms of the torus that exhibit hard chaos. In
particular, we use the cat map perturbed with a non-
linear shear in momentum,

q′ = 2q + p
p′ = 3q + 2p + ǫ(q)

(mod 1),
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FIG. 1: Width σ of LDOS as a function of the scaled per-
turbation strength χ ≡ k

2π~
= kN for a local perturbation.

Solid symbols corresponds to the quantum case and the solid
line corresponds to the semiclassical calculation σsc. The size
of the Hilbert space N = 800. In all the cases q0 = 0.01.
In panel (a) the shear in momentum is applied in a region of
width w = 0.2 (circles) and w = 0.4 (squares). In panel (b)
w = 0.7. Inset: Schematic figure showing the local pertur-
bation that was used. The scaled shear [2πǫ(q)/k] (k is the
strength of the perturbation) is plotted as a function of the q
coordinate. q1 and q0 indicates the limits of the interval that
was perturbed and w its width.

where ǫ(q) = k
2π (cos(2πq) − cos(4πq)), being k the

strength of the perturbation. We note that k < 0.11 for
the perturbation strength to satisfy the Anosov theorem
[15].

We start testing σsc in case of local perturbations. For
these reason, we have applied the already introduced
shear in momentum to a window of coordinates of the
phase space [16]. The perturbation is applied from q0 to
q1 with width w = q1 − q0 [see inset of Fig. 1]. Note
that α = w which is needed for the semiclassical σsc [Eq.
6 and Eq. 9]. Also, to compute σsc, the action differ-
ence between perturbed and unperturbed orbits for one
iteration of the map is required. It is given by

∆kS(q) = −

∫

ǫ(q)dq =
k

4π2
[sin(2πq) −

1

2
sin(4πq)].

(11)
Moreover, we have to take into account that the spectra
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FIG. 2: Width σ of LDOS as a function of the scaled per-
turbation strength χ for global perturbations. Solid line is
for the quantum case and the dashed line corresponds to σsc.
The size of the Hilbert space is N = 800. In the main plot,
the perturbation is the sameshear in momentum as Fig. 1
and in the inset the perturbation is a shear in momentum
and position (see text for details).

of the cat map is periodic because of a compact phase
space. This periodicity change the form of the LDOS
because the probability that leaves from one border will
return to the other. Therefore the semiclassical width of
the LDOS for the cat map results in

σp
sc ≈ σsc[1 + 0.24σsc − (

σsc

π
)2], (12)

where the last term is due to the periodization of the
Lorentzian distribution, and the linear term has been
included because the leaving probability also affect the
mean value position, producing an increase of the width.
The value of 0.24 included in the equation has been ob-
tained by a fitting procedure.

In Fig.1 we show the width σ of the LDOS and its semi-
classical approximation for three different values of the
window in positions where the perturbation is applied.
In panel (a) of Fig. 1 we have used w = 0.2 and w = 0.4,
and in panel (b) w = 0.7 . To compute the width of
the LDOS σ the quantum propagator was obtained from
Ref. [15]. We see that the semiclassical approximation
σsc works very well for all widths w of the perturbed
region.

We have now taken one step forward by perturbing the
cat map in all phase space which is a global perturbation.
In this case, α = 1, and the integral of Eq. 7 is done in
all phase space. In Fig. 2 we show how the semiclassical
σsc works to describe the width of the LDOS in the case
of global perturbations. In the main panel, the perturba-
tion is the same shear in momentum of Fig. 1 and in the
inset the cat map is perturbed with a shears in momen-
tum and positions. In the inset the shear in momentum
is the same as in the main panel and the shear in posi-
tion is ǭ(p) = − k

2π [13sin(6πp) + 1
2 cos(4πp)]. In this case
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FIG. 3: Width σ of LDOS as a function of the perturbation
strenght δx for the stadium billiard in the region of wave num-
ber k = 300 (solid circles). The semiclassical approximation
σsc using Eq. 11 is plotted wis solid line. Inset: Schematic
gure showing the curvilinear coordinate system on the bound-
ary of the stadium billiard. On the dashed line a deformation
of the billiard is shown

the action difference between perturbed and unperturbed
orbits for one iteration of the map results,

∆kS(q, p) =
k

4π2
[sin(2πq) −

1

2
sin(4πq)

+ cos(6πp) −
1

2
sin(4πp))]. (13)

We can clearly see that also in case of global pertur-
bations, σsc describes very well the witdth of the LDOS.
The small differences in values near the peaks at χ ≈ 20
and χ ≈ 50 are related to the maximum value, 7pi/20, of
a uniform distribution.

To further demonstrate the powerfull of the proposed
semiclassical approximation for computing the witdth of
the LDOS in a more realistic system, we consider the
desymmetrized Bunimovich stadium billiard with radius
r and straight line of lenght a [see inset of Fig 3]. This
system is fully chaotic and has great theoretical and ex-
perimental relevance [17, 18, 19]. The system is per-
turbed by a boundary deformation displayed in the inset
of Fig 3]. The area of the billiard is fixed to the value
1 + π/4, so the boundary only depends on the shape pa-
rameter l = a/r [20].

The changes of the boundary are parametrized by,

r(s, δx) = r0(s) + z(s, δx) n , (14)

with s a coordinate arround the unperturbed boundary
C, r0(s) the parametric equation of C, and n the outward
normal unit vector to C at r0(s). For the considered per-

turbation around l0 = 1, z(s, δx) ≈ δxz
′

(s)+δ2xz
′′

(s)/2,
with
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z′(s) =







− 1
2 A if s ≤ 1 ,

(1 − 1
2A ) sin(s − 1) − 1

2A if s > 1 .
(15)

and

z′′(s) =



























3
4 A2 if s ≤ 1 ,

1
A − 1 + (1 − 1

2A )2 sin2(s − 1)+

1
2 A2 − 1

A (1 − 3
4A ) sin(s − 1) if s > 1 .

(16)
We consider the usual Birkhoff coordinates to describe

the classical dynamics of the particle. The variable q = s
and p = sin(θ) with θ the impinging angle with n. To
compute σsc we need the action difference between the
unperturbed and perturbed orbit which results in billiard
systems [14],

∆δxS(s) = |p|∆L = ~kz(s, δx), (17)

where ∆L is the lenght difference between the unper-
turbed and perturbed orbits and p the momentum of
the particle. Using Eq. 7, 17 and the approximation of

z(s, δx) up to second order [Eq. 15 and 16], we compute
σsc. The result is shown in Fig. 3. The witdh σ com-
puted with the exact eigenstates is plotted with full cir-
cles and the semiclassical aproximation is plotted in full
line. The calculations shown if Fig. 3 were done in the
region around the wave number k = 300. The agreement
between the quantum and the semiclassical calculation is
excelent. The eigenstates of the billiard were computed
using the scaling method [21]. It is important to stress
out that whilst the computation of full quantum σ of Fig.
3 is very time consuming [t ≈ 7×107seg in an CPU Intel
Core 2 6400] our semiclassical calculation is a simple one
variable integral.

In summary, we have obtained a semiclassical approxi-
mation of the width of the LDOS of chaotic systems. We
have derived this formula based on the dephasing repre-

sentation of fidelity and similar ideas that was applied
in a recent study of the Loschmidt echo in locally per-
turbed systems [13, 14]. Our semiclassical expression was
tested in two of the most popular systems in chaotic stud-
ies: the cat map and the Bunimovich stadium billiard.
Moreover, we have shown that this formula works very
well for locally and globally perturbed systems.
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