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Multiplicative processes and multifractals have earned increased popularity in applica-
tions ranging from hydrodynamic turbulence to computer network traffic, from image
processing to economics. We analyse the multifractality of the recently proposed point
process models generating the signals exhibiting 1/fβ noise. The models may be used
for modeling and analysis of stochastic processes in different systems. We show that
the multiplicative point process models generate multifractal signals, in contrast to the
formally constructed signals with 1/fβ noise and signals consisting of sum of the uncor-
related components with a wide-range distribution of the relaxation times.

1. Introduction

Multifractal models are used to account for scale invariance properties of various

objects in different domains ranging from the energy dissipation in turbulent flows1

to financial data2. Healthy human heartbeat intervals exhibit multifractal proper-

ties rather than being fractal for a life-threatening condition, known as congestive

heart failure3. Cerebral blood flow in healthy humans is also multifractal4.

Scaling behavior has become a welcome careful description of complexity in

many fields including natural phenomena, human heart rhythm in biology, spatial

repartition of faults in geology, as well as human activities such as traffic in computer

networks and financial markets. The multifractal formalism has received much

attention as one of the most popular frameworks to describe and analyse signals

and processes that exhibit scaling properties, covering and connecting both the local

scaling and the global one in terms of sample moments.

The purpose of this paper is to analyse the multifractality of signals exhibiting

1/fβ noise generated by different techniques and, especially, of the point processes

with 1/fβ power spectral density5,6.

First of all, however, we will analyse the multifractality of the signal constructed

by the inverse fast Fourier transform7. Using this method we can generate signals

with any desirable slope β of the power spectral density S(f) ∼ 1/fβ.

We calculate a generalized qth order height-height correlation function (GHCF)
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Fq(t) defined as8

Fq(t) = 〈|I(t′ + t) − I(t′)|q〉1/q, (1)

where the angular brackets denote the time average. The GHCF Fq(t) characterizes

the correlation properties of the signal I(t), and for a multiaffine signal a power-law

behavior like

Fq(t) ∼ tHq (2)

is expected. Here Hq is the generalized qth order Hurst exponent. If Hq is inde-

pendent on q, a single scaling exponent Hq is involved and the signal I(t) is said to

be monofractal8. If Hq depends on q, the signal is considered to be multifractal.
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Figure 1. a) Power spectral density and b) the generalized Hurst exponents Hq versus 1/q in the
scaling regime 1 < t < 1000 for the slopes β = 1 (open circles) and β = 2 (open squires). The
signal of 106 points was generated and averaged over 10 realizations. c) and d) show GHCF Fq(t)
versus time t for the same parameters β = 1 and β = 2, respectively.

In figure 1 a) we present a power spectral densities with the different slopes β

and in figure 1 b) we show the Hurst exponents, calculated from GHCF using linear

regression dependence on 1/q of the signals formally constructed by the inverse

Fourier transform. In figure 1 c) and d) corresponding GHCF Fq(t) versus time t

are shown. We see that Hurst exponent Hq does not depend on q, which indicates

that the signal is monofractal.
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2. Stochastic multiplicative point process

In many cases the intensity of some signals or currents can be represented by a

sequence of random (however, as a rule, mutually correlated) pulses or elementary

events Ak(t − tk),

I(t) =
∑

k

Ak(t − tk). (3)

Here the function Ak(φ) represents the shape of the k pulse making an influence

on the signal I(t) in the region of the transit time tk. We will be interested in

the processes with the power-law distribution of the power spectral density at low

frequencies. It is easy to show that the shapes of the pulses mainly influence the

high frequency, f & 1/∆tp, with ∆tp being the characteristic pulse length, power

spectral density, while fluctuations of the pulse amplitudes result, as a rule, in the

white or the Lorentzian but not 1/f noise9. Therefore, we restrict our analysis to

noise due to correlations between the transit times tk. In such approach we can

replace the function Ak(t − tk) by the Dirac delta function and then express the

signal as

I(t) = ā
∑

k

δ(t − tk), (4)

with ā being an average contribution to the signal of one pulse. This model5 also

corresponds to the flow of identical objects: electrons, photons, cars, and so on, and

is called the point process model. Point processes arise in different fields, such as

physics, economics, cosmology, ecology, neurology, seismology, traffic flow, signaling

and telecom networks, and the Internet (see e.g., papers9,10 and references herein).

The power spectrum of the point process signal is described completely by the

set of the interevent intervals τk = tk+1 − tk. Moreover, the low frequency noise is

defined by the statistical properties of the signal at a large-time-scale, i.e., by the

fluctuations of the time difference

∆(k; q) ≡ tk+q − tk =

k+q−1
∑

i=k

τi (5)

at large q, determined by the slow dynamics of the average interpulse time

τ̃k(q) = ∆(k; q)/q between the occurrence of pulses k and k + q. Quite generally

the dependence of the average interevent time τ̃k may be described by the general

Langevin equation. The Langevin equation may be written down in the actual time

t or, equivalently, in the space of the occurrence numbers k with the drift coefficient

h(τ̃k) and a multiplicative noise g(τ̃k)ξ(k),

dτ̃k

dk
= h(τ̃k) + g(τ̃k)ξ(k). (6)

Here we interpret k as a continuous variable while the white Gaussian noise ξ(k)

satisfies the standard condition

〈ξ(k)ξ(k′)〉 = δ(k − k′) (7)
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with the brackets 〈. . .〉 denoting the averaging over the realizations of the process.

We understand the equation (6) in Itô interpretation.

Transition from the occurrence numbers k to the actual time t in Eq. (6) may

be fulfilled using the relation dt = τ̃kdk11.

The particular sequence of the interevent times τk may be superimposed by

some additional noise or stochasticity, e.g., τk may be determined by the Poisson

distribution

P (τk) =
1

τ̃k
e−τk/τ̃k (8)

with the slowly, according to Eq. (6), changeable average interevent time τ̃k. Such

additional stochasticity do not influence the long-range statistical properties and

the low frequency spectra of the process. Therefore, further we will restrict the

analysis to the processes generated by Eq. (6) and will identify τk with τ̃k.

2.1. Power spectral density

The point process is entirely defined by the occurrence times tk. The power spectral

density of the point process (4) may be expressed as

S(f) = lim
T→∞

〈

2

T

∣

∣

∣

∣

∣

∣

tf
∫

ti

I(t)e−i2πftdt

∣

∣

∣

∣

∣

∣

2
〉

= lim
T→∞

〈

2ā2

T

∑

k

kmax−k
∑

q=kmin−k

ei2πf∆(k;q)

〉

,

(9)

where ti and tf are initial and final observation times, T = tf − ti ≫ ω−1 is the

whole observation time and ω = 2πf . Here kmin and kmax are minimal and maximal

values of index k in the interval of observation T and the brackets 〈. . .〉 denote the

averaging over realizations of the process.

For the interpulse intervals described by the Langevin equation (6) we use a

perturbative solution in the vicinity of τk. After replacing the averaging over k by

the averaging over the distribution Pk(τk) of the interpulse times τk, we have the

power spectrum6

S(f) = 2Ī2 τ̄√
πf

∞
∫

0

Pk(τk)Re[e−i(x−π
4
) erfc

√
−ix]

√
x

τk
dτk, (10)

where Ī and τ̄ are the averages of the signal and the interpulse times, respectively,

and x = πfτ2
k/h(τk).

The replacement of the averaging over k and over realizations of the process by

the averaging over the distribution of the interpulse times τk, Pk (τk), is possible

when the process is ergodic. Ergodicity is usually a common feature of the stationary

process described by the general Langevin equation.

According to Eq. (10) the small interpulse times and the clustering of the pulses

make the greatest contribution to 1/fβ noise. The power-law spectral density is

very often related with the power-law behavior of other characteristics of the signal,
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such as autocorrelation function, probability densities and other statistics, and with

the fractality of the signals, in general12. Therefore, we investigate the power-law

dependences of the drift coefficient and of the distribution density on the time τk

in some interval of the small interpulse times, i.e.,

h(τk) = γτδ
k , Pk(τk) = Cτα

k , τmin ≤ τk ≤ τmax, (11)

where the coefficient γ represents the rate of the signal’s nonlinear relaxation and

C has to be defined from the normalization.

The simplest and the well-known process generating the power-law probability

distribution function for τk is a multiplicative stochastic process with g(τk) = στµ
k

and δ = 2µ − 1, written as6,13

τk+1 = τk + γτ2µ−1
k + στµ

k εk. (12)

Here γ represents the nonlinear relaxation of the signal, while τk fluctuates due to

the perturbation by normally distributed uncorrelated random variables εk with a

zero expectation and unit variance and σ is a standard deviation of the white noise.

Eq. (12) is the difference (discrete) version of the differential equation (6). On

the other hand, it is the generalization of the simple autoregressive model of 1/f

noise5 (see also Eq. (15)) and represents quite general evolution of the interevent

time with the nonlinear drift h(τk) = γτ2µ−1
k and the multiplicative noise στµ

k εk,

resulting in the 1/fβ noise and power-law distribution (11) of the interevent time

τk with the exponent α = 2γ/σ2 − 2µ. Indeed, the power spectrum for the process

(12), when γ/(πτ2−δ
max) ≪ f ≪ γ/(πτ2−δ

min ), is6

S(f) =
(2 + α)(β − 1)ā2Γ(β − 1/2)√
πα(τ2+α

max − τ2+α
min ) sin(πβ/2)

(γ

π

)β−1 1

fβ
, (13)

where

α =
2γ

σ2
− 2µ, β = 1 +

α

3 − 2µ
,

1

2
< β < 2. (14)

For µ = 1 we have a completely multiplicative point process when the stochastic

change of the interpulse time is proportional to itself. Another case of interest

concerns µ = 1/2, then we have the Brownian motion of the interevent time with

the linear relaxation of the signal I ≃ ā/τ .

Figure 2 represents the spectral densities (9) with different slopes β of the signals

generated numerically according to Eqs. (4) and (12) for different parameters of the

model. We see that the simple iterative equation (12) with the multiplicative noise

produces the signals with the power spectral density of different slopes, depending

on the parameters of the model. The agreement of the numerical results with the

approximate theory is quite good.
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Figure 2. Power spectral density (9) vs frequency of the signal generated by Eqs. (4) and (12)

with the parameters a) µ = 0.5, σ = 0.02 and different relaxations of the signal γ = 0.0001 (open
circles), 0.0002 (open squares) and 0.0003 (open triangles); and b) µ = 1, σ = 0.1 and γ = 0.008
(open circles), 0.01 (open squares) and 0.012 (open triangles). We restrict the diffusion of the
interevent time in the interval τmin = 10−6, τmax = 1 with the reflective boundary condition at
τmin and transition to the white noise, τk+1 = τmax + σεk , for τk > τmax and 100 realizations
with 106 tk points each were used. The solid lines represent the analytical results according to
Eq. (13).

2.2. Multifractal point processes

The multifractal formalism has received much attention recently as one of the most

popular frameworks to describe and analyse signals and processes that exhibit the

scaling properties.

Fractality of the point process can be investigated by transition from the point

process to the stochastic signal I(t), using the rectangular constant area pulses,

instead of the Dirac delta functions. The stochastic signal will have the same fractal

properties as the origin point process.
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Figure 3. a) Generalized height-height correlation function Fq(t) versus time t for the signal (4)
and (12) with µ = 0.5, τ̄ = 1, σ = 0.02, γ = 0.0002, and q = 0.5, 1, 1.5, . . . , 5 from bottom to
top. b) The generalized Hurst exponents Hq versus 1/q in the scaling regime 1 < t < 1000 for
the τ̄ = 1 and µ = 0.5, σ = 0.02, γ = 0.0002 (open circles); µ = 0.5, σ = 0.02, γ = 0.0003 (open
squares); µ = 1, σ = 0.1, γ = 0.008 (open triangles).
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In figure 3 a) we present the GHCF as a function of the time interval t, and in

figure 3 b) we show the Hurst exponents calculated from GHCF using the linear

regression dependence on 1/q for different parameters µ, σ, and γ. We observe

the clear multifractal behavior since the slopes of the log-log plot of GHCF are

depending on q.

Another interesting case is a sequence of transit times with random increments

of the time intervals between pulses, τk = τk−1 + σεk. It is natural to restrict in

some way the infinite Brownian increase or decrease of the interpulse times τk, e.g.,

by the introduction of the relaxation to the average interpulse time τ̄ rate γ. So,

we have an additive point process

τk = τk−1 − γ(τk−1 − τ̄ ) + σεk. (15)

This model generates the process with 1/f noise5, and may be useful for modeling

and analysing different systems (see references in paper6). Introduction of the

reflective boundary condition at τmin > 0 avoids the formation of clusters and leads

to 1/f2 noise.
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Figure 4. a) Power spectral density and b) the generalized Hurst exponents of the additive point
process (15) with the reflecting boundary condition at τmin = 0.1 in the scaling regime 1 <
t < 1000. The signal of 106 points was generated with the parameters τ̄ = 1, σ = 0.001, and
γ = 0.000001.

In figure 4 a) we present a power spectral density of the additive point process

(15) with the reflecting boundary condition and in figure 4 b) we show the gener-

alized Hurst exponents. We observe the multifractal behavior of the additive point

process.

2.3. Monofractality of the white and the Gaussian noises

It is well-known9 that the point processes with the interevent time τk distributed

according to Poisson distribution

P (τk) =
1

τ̄
e−τk/τ̄ (16)
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Figure 5. a) Generalized height-height correlation function Fq(t) versus time t, and b) the gen-

eralized Hurst exponents Hq versus 1/q of the point process with interevent time τk distributed
according to Poisson distribution (16) in the scaling regime 1 < t < 1000. The signal of 106 points
with the parameter τ̄ = 1 has been generated.

generate the white noise, S(f) = const.

In figure 5 a) we present the GHCF as a function of the time interval t and in

figure 5 b) we show the Hurst exponents for the white noise. The Hurst exponents

of the white noise are equal to zero. This demonstrates the absence of the scaling

and that there is no correlation in time.

Noise with the power-law spectral density 1/f is often modeled as the sum of

the Lorentzian spectra with the appropriate weights of a wide range distribution of

the relaxation times τrel. The signal may be expressed as a sum of N uncorrelated

components,

I(t) =

N
∑

l=1

Il(t) =

γmax
∫

γmin

I(t, γ)g(γ)dγ, (17)

where g(γ) is the distribution of the relaxation rates γ = 1/τrel, and every compo-

nent Il satisfies the stochastic differential equation

İl = −γl(Il − Īl) + σlξl(t). (18)

Here Īl is the average value of the signal component Il, ξl(t) is the δ-correlated white

noise, 〈ξl(t)ξl′ (t
′)〉 = δl,l′δ(t− t′), and σl is the intensity (standard deviation) of the

white noise. The steady-state solution of the stationary Fokker-Planck equation

corresponding to Eq. (18) for each component Il and the resulting signal (17) yields

the Gaussian distribution densities, however, the power spectrum may be of the

power-law form when σ2(γ)g(γ) is constant or a power-law function6.

In figure 6 a) we present a power spectral density of the sum of the signals with

a wide range distribution of the relaxation times τrel and in figure 6 b) we show the

Hurst exponents, calculated from GHCF using linear regression dependence on 1/q.

In the figures we observe 1/f behavior of the signal noise and clearly see that Hurst

exponent Hq does not depend on q, which shows that the signal (17) is monofractal.
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Figure 6. a) Power spectral density and b) the generalized Hurst exponents Hq versus 1/q in the

scaling regime 1 < t < 1000. The signal of 106 points was generated from 10 components with the
parameters Ī = 20, σ2(γ)g(γ) = 10, and uniform distribution of lg γ with γ values in the interval
10−4

− 1.

3. Conclusions

The multiplicative (12) and additive (15) stochastic point processes may generate

time series exhibiting the power spectral density S(f) ∼ 1/fβ and show clear multi-

fractal behavior, however, the formally constructed by the inverse Fourier transform

signal, Poisson white noise (16) and Gaussian, Eqs. (17) and (18), signal with the

power spectral density S(f) ∼ 1/f are monofractal.

Therefore, the proposed5 and generalized6 point process models of 1/fβ noise

may be used for modeling of stochastic multifractal processes in different systems.
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