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Magnetic Moment Coupling to Circularly Polarized Photons
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Exact stationary solutions of the wave equation are obtained to describe the interaction between
magnetic moment of elementary particle and circularly polarized photons. The obtained solutions
substantially modify the conventional model of field-matter interaction. It follows from them that
magnetic moment couples to photons, and this coupling leads to bound particle-photon states with
different energies for different orientations of magnetic moment. As a consequence, the interaction
splits particle states differing by directions of total angular momentum. Stationary spin splitting,
induced by photons, and concomitant effects can be observed for particles exposed to a laser-
generated circularly polarized electromagnetic wave.
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The interaction between magnetic moment of elemen-
tary particle and electromagnetic field is one of funda-
mental interactions in the nature. The quantum theory
to describe one was elaborated at the dawn of quantum
mechanics and has taken place in textbooks (e.g., [1, 2]).
However, this theory deals with electromagnetic field in
the framework of classical electrodynamics. A theory,
capable of describing the interaction for quantized elec-
tromagnetic field, was unknown up to the present. This
gap in the fundamental area of quantum physics arises
from formidable mathematical obstacles to find solutions
of the wave equation in the case of intensive quantized
field. A small parameter, that would help to find the
solution as a series expansion, is absent in the problem.
As a consequence, the standard quantum-electrodynamic
methodology, based on the perturbation theory, is not ap-
plicable here. Therefore there is no other way to work
out the problem but solve this equation accurately. Un-
fortunately, a regular method to solve the wave equation
is unknown, and success in seeking exact solutions for
special cases depends on the Fortune. That is the reason
why the problem was not elaborated before now. The
author of the Letter was lucky to find exact stationary
solutions of the wave equation describing the interaction
between magnetic moment of particle and intensive quan-
tized circularly polarized electromagnetic field. Since the
obtained solutions substantially modify the conventional
model of particle-field interaction, they are of broad in-
terest to the physics community.

First of all, let us consider the interaction between
a monochromatic circularly polarized electromagnetic
wave and an electrically neutral particle with a mag-
netic moment µ and the spin-1/2 (for example, neutron).
The interaction Hamiltonian, written in the conventional
form, is given by Ĥint = −µ̂H, where µ̂ = µσ̂ is operator
of the magnetic moment, σ̂ is the Pauli matrix operator,
and H is classical magnetic field of the wave [1]. Con-
sidering the problem within the standard quantum-field
approach [2], the field, H, should be replaced with the

field operator, Ĥ. Assuming the wave to be clockwise-

polarized, this operator can be written as

Ĥ = iH̃0

[
ez ×

(
e+âe

ik0z − e−â
†e−ik0z

)]
, (1)

where H̃0 =
√

2π~ω0/V , ω0 is frequency of the wave, V

is volume, e± = (ex ± iey)/
√

2 are polarization vectors,
ex,y,z are unit vectors directed along the x, y, z-axes, k0 =
ω0/c is wave vector assumed to be directed along the z-
axis, â and â† are operators of destruction and creation
of photons in the wave, respectively [2]. The replacement
leads to the Hamiltonian of the particle-photon system

Ĥ =
p̂2

2m
+ ~ω0â

†â−
√

2µH̃0

(
σ̂+âe

ik0z + σ̂−â
†e−ik0z

)
,

(2)
where the first term on the right-hand side describes ki-
netic energy of the particle, the second term corresponds
to field energy, the third term is the interaction Hamilto-
nian, Ĥint, rewritten in quantum-field form, p̂ is momen-
tum operator of the particle, m is mass of the particle,
and σ̂± = (σ̂x ± iσ̂y)/2 are step-up and step-down oper-
ators for the z-projection of the particle spin, S.

To describe the particle-photon system, let us use the
notation |Sz, N〉 which indicates that the particle is in
quantum state with the spin projection Sz = +1/2 or
Sz = −1/2 and the wave is in quantum state with the
photon occupation number N . Then the exact stationary
solutions of the wave equation with the Hamiltonian (2),
ψ+1/2,N0

and ψ−1/2,N0
, can be written as

|ψ±1/2,N0
〉 =

eikr

√
V

[√
Ω± + ω±

2 Ω±

| ± 1/2, N0〉

± e∓ik0z

√
Ω± − ω±

2 Ω±

| ∓ 1/2, N0 ± 1〉
]
e−iε±1/2,N0

t/~, (3)

where N0 is photon occupation number of the unper-
turbed wave, k is wave vector of the particle, r is radius-
vector of the particle, energies of the particle-photon sys-
tem, ε+1/2,N0

and ε−1/2,N0
, are given by

ε±1/2,N0
=

~
2k2

2m
+N0~ω0 ±

~ω±

2
∓ ~Ω±

2
, (4)
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frequencies Ω+ and Ω− are

Ω± =

√
8(N0 + 1/2 ± 1/2)(µH̃0/~)2 + ω2

± ,

and ω± = ω0(1 − ~kz/mc ± ~k0/2mc) . The subscript
indexes in Eqs. (3)–(4) indicate genesis of the bound
particle-photon states, i.e. the state |ψ±1/2,N0

〉 turns into
the state | ± 1/2, N0〉 when the particle-photon interac-
tion vanishes (µ = 0). The solutions (3)–(4) can be eas-
ily verified by direct substitution into the wave equation
i~∂ψ±1/2,N0

/∂t = Ĥψ±1/2,N0
with the Hamiltonian (2),

keeping in mind the trivial relations [1, 2]

σ̂± | ∓ 1/2, N〉 = | ± 1/2, N〉 , σ̂± | ± 1/2, N〉 = 0 ,

â† | ± 1/2, N〉 =
√
N + 1 | ± 1/2, N + 1〉 ,

â | ± 1/2, N〉 =
√
N | ± 1/2, N − 1〉 .

The first term on the right-hand side of Eq. (4) is energy
of noninteracting particle, the second term is energy of
noninteracting photons, and other terms arise from the
particle-photon interaction. This implies that the ground
energy, ε+1/2,N0

, is less than an energy of the noninter-
acting particle-photon system. Therefore the considered
interaction results in stable particle coupling to photons.
It follows from the equality

〈ψ±1/2,N0
|σ̂|ψ±1/2,N0

〉 = ±ω±ez/Ω± (5)

that the states ψ+1/2,N0
and ψ−1/2,N0

correspond to mu-
tually opposite orientations of averaged particle spin.
Thus the difference in energy of these states, ∆ε =
ε−1/2,N0

− ε+1/2,N0
, should be interpreted as spin split-

ting induced by photons. Let us emphasize that the
Hamiltonian (2) holds true only for the wave intensive
enough. If the photon occupation number of the unper-
turbed wave, N0, is small, intensities of the particle in-
teraction with photons from the wave and with vacuum
states of other photons are comparable. Therefore for
small occupation numbers of clockwise-polarized photons
in the wave, the Hamiltonian (2) should be supplemented
with terms describing the interaction between magnetic
moment and vacuum states of counterclockwise-polarized
photons with the same wave vector k0. With these terms
accounted, the photon-induced spin spitting ∆ε vanishes
for N0 = 0, as expected. In what follows we shall be to
assume the wave to be intensive (N0 ≫ 1) and the parti-
cle to be nonrelativistic (ω± ≈ ω0). Then the frequencies
Ω± in Eqs. (3)–(4) can be replaced with the frequency

Ω =
√

(2µH0/~)2 + ω2
0 , (6)

where H0 =
√

2N0H̃0 is classical amplitude of magnetic
field of the wave. Thus the circularly polarized electro-
magnetic wave leads to the stationary spin splitting

∆ε =
√

(2µH0)2 + (~ω0)2 − ~ω0 , (7)

which cannot be described by the conventional model
of particle-field interaction [1, 2], based on the classical
electrodynamics. It follows from the aforesaid that this
splitting should be considered as novel quantum-field ef-
fect arising from the dressing of particle by circularly
polarized photons. For neutrons exposed to the wave
generated by a modern petawatt laser, the splitting (7)
may approach the electron-Volt level.

The problem solved above for the spin-1/2 can be gen-
eralized for a particle with arbitrary total angular mo-
mentum, J. In this case, the magnetic moment operator
can be written as µ̂ = (µ/J)Ĵ, where Ĵ is operator of
total angular momentum [1]. Substitution of this mag-
netic moment operator into the interaction Hamiltonian,
Ĥint, results in replacing the operators σ̂± with the op-
erators Ĵ± = (Ĵx ± iĴy)/2J in the complete Hamiltonian
of the particle-photon system (2). The regular proce-
dure to solve accurately the wave equation with the mod-
ified Hamiltonian (2) is as follows. The solutions, ψj,N0

,
should be sought in the form

|ψj,N0
〉 =

eikr

√
V

J∑

n=−J

C
(n)
j,N0

ei(n−j)k0z|n,N0 + j − n〉

× e−iεj,N0
t/~ , (8)

where the notation |Jz, N〉 indicates that the particle is in
quantum state with the total angular momentum projec-
tion Jz and the wave is in quantum state with the photon
occupation number N . Keeping in mind the relation [1]

〈Jz , N | Ĵ+ |Jz − 1, N〉 = 〈Jz − 1, N | Ĵ− |Jz, N〉
=

√
(J + Jz)(J − Jz + 1)/2J ,

substitution of the function (8) into the wave equation
with the modified Hamiltonian (2) results in the system
of 2J + 1 homogeneous algebraic equations

[
~

2k2

2m
+N0~ω0 + (j − n)~ωj−n − εj,N0

]
C

(n)
j,N0

− µH̃0√
2J

[√
(N0 + j − n)(J + n+ 1)(J − n)C

(n+1)
j,N0

+
√

(N0 + j − n+ 1)(J + n)(J − n+ 1)C
(n−1)
j,N0

]
= 0 ,

n = −J,−J + 1, ..., J − 1, J ,

where ωl = ω0(1−~kz/mc+ l~k0/2mc) . The well known
procedure of solving such an algebraic system leads to

2J + 1 sets of solutions,
{
εj,N0

, C
(n)
j,N0

}
, which define

2J+1 wave functions (8). The parameter j, undefined be-
fore, should be specified independently for each of the sets
in order to turn the bound particle-photon state |ψj,N0

〉
into the state |j,N0〉 when the particle-photon interaction
vanishes (i.e. for µ = 0). It appears that this parame-
ter is equal to different values −J,−J + 1, ..., J − 1, J for
different wave functions (8) and should be interpreted as
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the z-projection of total angular momentum of the non-
interacting particle. As expected, for particles with the
total angular momentum J = 1/2 the described proce-
dure leads to the solutions (3)–(4). Omitting relativisti-
cally small terms (ωl ≈ ω0) and keeping in mind that the
wave is intensive (N0 ≫ 2J), the energy of the particle-
photon system for arbitrary J can be written as

εj,N0
=

~
2k2

2m
+ (N0 + j)~ω0 − j

√
(µH0/J)2 + (~ω0)2 ,

j = −J,−J + 1, ..., J − 1, J . (9)

Thus the interaction leads to different energies for differ-
ent z-projections, j, of total angular momentum, J. It
should be noted that Eq. (9) is applicable also to atoms
which can formally be considered as electrically neutral
particles, if a wave field is much weaker than an intra-
atomic field. In this case the wave does not change sub-
stantially an intra-atomic structure, and µ can be inter-
preted as known effective magnetic moment of unper-
turbed atom. Then the total angular momentum, J, in-
cludes a nuclear spin, electron spins and orbital angular
momentums of electrons. As a result, the atom-photon
interaction splits atom energy levels totally. If the wave
is generated by an usual laser with the wavelength ∼ µm
and the intensity of radiation ∼ 108 W/cm2, the Eq. (9)
can be used to find the photon-induced spin splitting
of the ground 1S-state in a hydrogen atom. Neglecting
the small nuclear magnetic moment, the splitting is de-
scribed by Eq. (7), where µ is equal approximately to
the electron Bohr magneton. The calculation leads to
the splitting value ∆ε ∼ 10−4 eV that is tens times as
large as the usual hyperfine splitting of the 1S-state [1].
Naturally, besides the energy splitting in isolated atoms,
circularly polarized photons can also induce the energy
gap opening in molecules and different condensed-matter
structures, that will be analyzed elsewhere.

To complete the analysis, let us consider the photon
coupling to an electrically charged particle with the spin-
1/2 (for example, electron). It is well known that interac-
tion between a circularly polarized electromagnetic wave
and a free charged particle leads to rotation of the par-
ticle [3]. This rotation causes the additional (spin-orbit)
interaction between magnetic moment of the particle and
electric field of the wave. As a consequence, we need to
modify the Hamiltonian (2) for this case. Firstly, the
Hamiltonian should be supplemented with a term de-
scribing the spin-orbit interaction. In the framework of
classical electrodynamics the term has the form [2]

Ĥso = −(µa + µB/2)σ̂[E× v̂/c], (10)

where µa is anomalous magnetic moment of the parti-
cle, µB = e~/2mc is Bohr magneton of the particle, e
is electric charge of the particle, v̂ = p̂/m is operator
of particle velocity, and E is electric field of the wave.
Secondly, the momentum operator p̂ should be replaced

with the operator p̂ − eA/c, where A is vector poten-
tial of the wave. Thirdly, the classical fields, A and E,
should be replaced with the field operators, Â and Ê,
respectively. Using the well known expressions for these
field operators [2], the modified Hamiltonian (2) can be
written as Ĥ = Ĥ′ + Ĥ′′, where

Ĥ′ = p̂2/2m−
√

2µH̃0

(
σ̂+âe

ik0z + σ̂−â
†e−ik0z

)
+ â†â

×
[
~ω0 +

(
eH̃2

0/mcω
2
0

) (
ec+ (2µa + µB)ω0σ̂z

)]
,

Ĥ′′ = −
(
H̃0/m

)
(e/ω0 + µa/c+ µB/2c)

×
(
p̂+âe

ik0z + p̂−â
†e−ik0z

)
,

and p̂± = (p̂x ± ip̂y)/
√

2. Exact solutions of the wave

equation with the Hamiltonian Ĥ′ can be found in the
form (8) with J = 1/2 by invoking the procedure de-
scribed above. As to the Hamiltonian Ĥ′′, it can be ac-
counted by using the standard perturbation theory [1]
which is applicable for states (8) with small wave vec-
tor components kx and ky. In this way we shall ob-
tain expressions for energy levels ε+1/2,N0

and ε−1/2,N0
.

As a result, the photon-induced spin splitting, ∆ε =
ε−1/2,N0

− ε+1/2,N0
, is given by

∆ε = 2

√

[µH0]2 −
[

~eH2
0

mc

] [
µa +

µB

2

]
+

[
~ω0

2

]2

− ~ω0

(11)
for p0/mc ≪ 1, where p0 = eH0/ω0 is momentum of
the rotating particle [3]. Since magnetic moment of the
particle is µ = µa + µB , the splitting (11) for charged
particles in vacuum has the form

∆ε =
√

(2µaH0)2 + (~ω0)2 − ~ω0 (12)

and depends only on anomalous part of magnetic mo-
ment, µa. Considering free electrons in condensed mat-
ter, their mass m in Eq. (11) should be interpreted as
effective electron mass, m∗

0, while the Bohr magneton
µB = e~/2m0c depends on electron mass in vacuum, m0.
In this case the sign of ∆ε depends onm∗

0. Neglecting the
small quantity µa for electrons, we obtain from Eq. (11)
that for m0 < m∗

0 the ground electron state in condensed
matter is ε+1/2,N0

, and for m0 > m∗
0 one is ε−1/2,N0

.
If the particle rotation induced by the wave is sup-

pressed, the interaction (10) does not influence on the
spin splitting. Then the interaction Hamiltonian can be
written in the same form, Ĥint = −µ̂Ĥ, as for uncharged
particles. As a result, in this case the expressions (7) and
(9), obtained before for electrically neutral particles, can
be used for charged particles as well. Such a suppres-
sion takes place for confined charged particles, including
electrons in atoms and nanostructures, as well as for free
electrons in condensed matter for ω0τ ≪ 1, where τ is
electron mean free time. For electrons the splitting (12)
is much less than the splitting (7) because of the ratio
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µa/µ ∼ 10−3. Therefore electron systems, where the ro-
tation is suppressed, are most suitable for observation of
the discussed effect.

Formally, the results described above are obtained
for nonrelativistic particles. To describe the relativis-
tic case, we have to start from the Hamiltonian, Ĥ =
~ω0â

†â+ĤD(p̂−eÂ/c), based on the Dirac Hamiltonian
ĤD(p̂) [2], that will be done elsewhere. Running ahead,
it should be noted that the relativistic analysis predicts
novel effects (for instance, the increasing of particle mass,
arising from the photon dress of particle), but leads to
the same above-described expressions in the limiting case
of small particle velocities, as expected.

Finalizing the Letter, let us duscuss possible observ-
able consequences of the particle-photon coupling de-
scribed by Eqs. (3)–(7). The first effect of the photon-
induced spin splitting (7) is magnetization of particles
exposed to the wave. It follows from Eq. (5) that the
particle, being in the ground state ε+1/2,N0

, is spin-
polarized along the z-axis. This implies that an equilib-
rium gas of particles, exposed to the circularly polarized
wave, will be spin-polarized along angular momentum
vector of photons. In the particular case of nondegen-
erate gas, the magnetization vector can be written as
M = (µnω0/Ω) tanh (∆ε/2T )ez, where T is tempera-
ture, and n is density of the gas.

The second effect is optical transitions with frequen-
cies different from the wave frequency, ω0. That ef-
fect arises from interaction between the bound particle-
photon states (3) and free photons of other kinds.
Nonzero magnetodipole moments for the transitions are
given by

|〈ψ±1/2,N0∓1|e∓µ̂|ψ±1/2,N0
〉| = |µ|

√
Ω2 − ω2

0√
2Ω

,

|〈ψ∓1/2,N0
|e∓µ̂|ψ±1/2,N0

〉| = |µ|Ω + ω0√
2Ω

,

|〈ψ∓1/2,N0±2|e±µ̂|ψ±1/2,N0
〉| = |µ|Ω − ω0√

2Ω
,

|〈ψ∓1/2,N0±1|ezµ̂|ψ±1/2,N0
〉| = |µ|

√
Ω2 − ω2

0

2Ω
. (13)

As a result, transitions between the states (3) with
nonzero matrix elements (13) can be accompanied by
magnetodipole emission and absorption of electromag-
netic radiation. It follows from the expressions (13) and
(4) that there are the three new transition frequencies,
Ω, Ω−ω0, Ω+ω0 . Allowed optical transitions with these
frequencies from the ground state ε+1/2,N0

are pictured
in Fig. 1. by arrows. It should be stressed that the
frequency (6) depends on the magnetic field amplitude,
H0, that leads to dependence of the transition frequen-
cies on a wave intensity. Besides transitions with the
above-mentioned new frequencies, there are optical tran-
sitions with the wave frequency, ω0. They are described
by the first of the matrix elements (13). These transitions

FIG. 1: Schematics of optical transitions between bound
particle-photon states.

change the photon occupation number of the wave by one
and should be interpreted as scattering of photons by the
particle. It should be reminded that optical transitions
are accompanied by momentum transfer to particles from
photons, that can change mechanical energy of particles
(the quantum recoil effect). As a consequence, the above-
mentioned frequencies describe the optical transitions ac-
curately when the quantum recoil can be neglected. This
takes place, particularly, for confined particles. Let us
stress that the bound particle-photon states, ψ±1/2,N ,
can be classified by the z-projection of angular momen-
tum of the particle-photon system, lz = N ± 1/2. As
expected, the nonzero matrix elements (13) correspond
to transitions between states (3) with projections lz dif-
ferent by −1, 0, 1.

It should be reminded that the electromagnetic wave
has been assumed to have the clockwise polarization. If
the wave is counterclockwise-polarized, the operators σ̂+

and σ̂− (Ĵ+ and Ĵ−) in the Hamiltonian (2) should be
permuted. In this case the expressions following from
the Hamiltonian retain their form but particle spin (or,
generally, total angular momentum of particle) changes
its direction to the opposite. As to other kinds of pho-
ton polarization, it can be shown that magnetic moment
couples to elliptically polarized photons weaker than to
circularly polarized ones, and in the limiting case of linear
polarization the coupling vanishes.

It follows from the aforesaid that the predicted par-
ticle coupling to photons is fundamental quantum effect
unexplored before. Certainly, the presented first analysis
does not exhaust the problem entirely but forms a basis
for further experimental and theoretical studies.
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