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The classical product state capacity of a noisy quantum channel with memory is investigated.
A forgetful noise-memory channel is constructed by Markov switching between two depolarizing
channels which introduces non-Markovian noise correlations between successive channel uses. The
computation of the capacity is reduced to an entropy computation for a function of a Markov
process. A reformulation in terms of algebraic measures then enables its calculation. The effects
of the hidden-Markovian memory on the capacity are explored. An increase in noise-correlations is
found to increase the capacity.
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I. INTRODUCTION

Quantum mechanics brings strange and wonderful fea-
tures to the field of information theory. It introduces
new information resources such as qubits with the power
of superposition but also teasing restrictions such as the
no-cloning theorem. We are interested in the possibil-
ity of the boosted transmission of classical information
through a quantum channel with memory and no prior
entanglement.

Great strides have been made in understanding the
capacity of quantum channels. For example, the cele-
brated Holevo-Schumacher-Westmoreland (HSW) theo-
rem [1] gives an expression for the classical capacity of a
noisy memoryless quantum channel with product state
inputs. The memoryless channel restriction has since
been extended to, so called, forgetful memory channels
[3]. The inclusion of memory is the next step in the
attempt of accurately modelling the complicated noise-
correlated real world. Now that these initial seeds of the
theoretical framework are in place, it is enlightening to
use these tools, in specific cases, to analytically study the
new effects that noise with memory has on the capacity.

We construct a forgetful channel and incorporate
memory effects by Markov switching between two sub-
channels. In order to investigate the classical product
state capacity of this channel we must look at the en-
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tropy of the classical output. The output sequence of
qubits and their associated errors are correlated. To
manage this complicated conditional dependence, we use
the hidden Markov nature of the process to reformulate
the problem using the algebraic measure construction [4].
The algebraic measure approach allows us to derive an
expression for the asymptotic entropy rate. We then ex-
plore the effects that our non-Markovian memory has on
the classical product state capacity.

This paper is structured as follows. In Section II, we
take a closer look at the quantity we are investigating,
namely the product state classical capacity. In Section
III, we construct the forgetful channel with Markovian
noise correlations. In Section IV, algebraic measures are
introduced, which are used in Section V to reformulate
the problem. Finally, in Section VI, we show how this
allows us to easily calculate the capacity of the channel
numerically.

II. CLASSICAL CAPACITY OF QUANTUM

CHANNELS

The information process we are studying is classical
communication through a noisy quantum channel. The
layout of this section largely follows that in [1].

With the classical information we want to send en-
coded using an input alphabet A = {1, . . . , a}, we choose
for every element i ∈ A an encoding quantum state ρi

on a Hilbert space H. This input state is then trans-
mitted using a quantum channel Λ : B(H) → B(K). For
the channel to be a valid quantum channel it must be a
completely positive trace preserving map.

Transmitting the element i ∈ A results in a quantum
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state Ri = Λ(ρi) being received on the output side. On
this side, the received quantum state is measured using
a resolution of identity in K. This resolution of identity
is a set of positive operators X = {Xi} on K such that
∑

i Xi = 1.
The conditional probability of the receiver measuring

j, when the input i was sent, is given by p(j|i) = Tr RiXj.
If at the input side the element i is sent with a probability
πi, the amount of information that will be received is
quantified by the classical Shannon information,

IΛ,1(π, ρ, X) =
∑

i,j∈A

πip(i|j) log

(

p(j|i)
∑

k∈A πkp(j|k)

)

.

(1)
If the sender is allowed to use the channel n times,

the channel use can be described by the product channel
Λn = ⊗nΛ on ⊗nH = H⊗ . . .⊗H. The input alphabet is
now An and the probability distribution of a word u =
(i1, . . . , in) ∈ An being sent is again denoted by πu. The
codeword corresponding to the input u is given by

ρu = ρi1 ⊗ . . . ⊗ ρin

and results in Ru = Ri1 ⊗ . . . ⊗ Rin
being received. The

conditional probability and the Shannon information IΛ,n

for the n-product of the channel can now be introduced
completely analogously to Eq. (1), with the summations
over An instead of A.

The maximum amount of information that can be sent
with n channel uses is now given by

Cn(Λ) = sup
π,ρ,X

IΛ,n(π, ρ, X) .

Due to the fact that Cn + Cm ≤ Cm+n, the limit

Cclass(Λ) = lim
n→∞

Cn(Λ)

n

exists. Using Shannon’s coding theorem, we see that C
is the least upper bound of the rate of information that
can be transmitted with asymptotically vanishing error.

The HSW theorem [1] gives an expression for this clas-
sical product state capacity of noisy memoryless quantum
channels,

Cclass(Λ) = χ∗ = sup
π,ρ

χ(Λ),

where χ is the Holevo χ quantity

χ({(πi, Λ(ρi))})

= S(
∑

i

πiΛ(ρi)) −
∑

i

πi S(Λ(ρi)) .

Due to the convexity of the von Neumann entropy, the
supremum can in fact be taken over pure states ρi.

The memoryless channel restriction has recently been
weakened to include, so called, forgetful memory chan-
nels. For such channels, the classical product state ca-
pacity has been shown [3] to correspond to

C∗ = lim
n→∞

Cclass(Λn)

n
, (2)

where Λn is a channel representing the transmission of n
states, with the noise on subsequent transmissions is cor-
related. See [3] for details or Section III for an example.

III. THE DEPOLARIZING MEMORY

CHANNEL

Treating information or noise sources as independent
random variables is a successful but crude first approxi-
mation. To improve the modelling process and to achieve
better performance in real world applications, the inde-
pendence assumption needs to be removed. The first step
in this direction is to introduce forgetful noise memory. A
forgetful noise process is one which after sufficiently long
time, ‘forgets’ or is independent of previous noise. Thus,
here the independence is pushed further away, allowing
a space to study the effects of short-term memory. With
the theoretical tools in place, it is instructive to study
even very simple models to see the effects of memory on
the classical capacity.

A. Construction of the Channel

The forgetful channel is constructed by combining two
memoryless single qubit depolarizing channels (E0 and
E1), switching between them using a two-state Markov
chain (Q = (qij), i, j ∈ {0, 1}). Thus, Q is the 2 × 2
Markovian channel selection matrix with qij being the
probability of switching from channel i to channel j.
Hence, qij ≥ 0 and qi0 + qi1 = 1 for i, j ∈ {0, 1}. It
is forgetful, in the case when the Markov chain is aperi-

odic and irreducible.
The depolarizing channels can be written as: Ei(ρ) =

x0
i ρ + x1

i (1 − ρ). These single qubit channels can be
thought of as probabilistically mixing the identity chan-
nel (with probability x0

i ) and ‘flip’ channel (with proba-
bility x1

i = 1−x0
i ) acting on a single qubit density opera-

tor ρ. However this rewriting is only completely positive
for 1/3 ≤ x0

i ≤ 1.
The built-up channel Λn, corresponding to n successive

uses is

Λn = ρ1 ⊗ . . . ⊗ ρn 7→
∑

i1,...,in

γi1qi1i2 . . . qin−1in
Ei1(ρ1) ⊗ . . . ⊗ Ein

(ρn) .

The sum is over all possible paths (i1, . . . , in) ∈ {0, 1}n

and each term is a tensor product of the selected sub-
channels weighted by the probability of occurrence (γi is
the initial probability of selection set to the stationary
distribution of the Markov process: QT γ = γ).

B. Classical Capacity

We calculate the capacity with this n-use form of the
channel and regularize by taking the limit n → ∞ as
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in Eq. (2). Since we are looking at the product state
capacity, we choose

ρi = Φ(n)(l) = Φ(n)(l1, . . . , ln)

:= |l1〉〈l1| ⊗ . . . ⊗ |ln〉〈ln| ,

where the li are arbitrary pure qubit states.
Applying the channel Λn, we get

Λn(Φ(n)(l)) =
∑

i1,...,in

γi1qi1i2 . . . qin−1in

(x0
i1
|l1 ⊕ 0〉〈l1 ⊕ 0| + x1

i1
|l1 ⊕ 1〉〈l1 ⊕ 1|) ⊗ . . .

⊗ (x0
in
|ln ⊕ 0〉〈ln ⊕ 0| + x1

in
|ln ⊕ 1〉〈ln ⊕ 1|) ,

where (li⊕1) denotes the qubit state with a flipped Bloch
vector with respect to li = (li ⊕ 0)

|li ⊕ 1〉〈li ⊕ 1| = 1
¯
− |li ⊕ 0〉〈li ⊕ 0|

By expanding the product above we see that the eigen-
values of the output state are given by

λn(k) =
∑

i1,...,in

γi1qi1i2 . . . qin−1in
xk1

i1
. . . xkn

in
. (3)

Note that these eigenvalues are independent of the choice
of the input state.

The channel output can now be written as

Λn

(

Φ(n)(l)
)

=
∑

k

λn(k)Φ(n)(l + k) .

Hence, if we calculate the first term in the Holevo χ quan-
tity for π, the uniform distribution (πi = 1/2n), and Φi

going over all the ρ(n)(l), we see that

Φout :=
∑

l

1

2n
Λn

(

Φ(n)(l)
)

=
1

2n

∑

k

λn(k)
∑

l

Φ(n)(l + k) .

Since l goes over all possible combinations, so does l + k,
so we can relabel them

Φout =
1

2n

∑

k

λn(k)
∑

l
′

Φ(n)(l′) .

Since the eigenvalues in Eq. (3) sum to one, we see that
Φout is the maximally mixed state

Φout =
1

2n

∑

l
′

Φ(n)(l′) .

Thus, S(Φout) is maximal and is equal to log2(2
n) = n.

The second term in the Holevo χ quantity is

−
∑

i

πiS (Λn(ρi)) .

Since the eigenvalues λn(k) of Λn(ρi) do not depend on
the choice of ρi, this term does not influence the max-
imization. Hence our choice of π and ρ maximizes the
Holevo χ quantity.

Thus, the final expression for the regularized capacity
Eq. (2) is

C∗ = lim
n→∞

1

n
Cclass(Λn)) = 1 − lim

n→∞

1

n
S(Λn(ρ)) . (4)

If we were to calculate the output entropy using the
eigenvalues in Eq. (3), the calculation would be exponen-
tially long in n. Therefore, other techniques are needed.
The way we approach the problem is by reformulating
it as a hidden Markov process. The eigenvalues of the
output state correspond to the probabilities of such a
process.

A hidden Markov process can be defined as follows.
If we have a translation-invariant measure ν with the
Markov property on LZ, where L is a finite set, then
a hidden Markov measure can be constructed on KZ

through a function Φ : L → K, with the following lo-
cal densities

µ((ωm, . . . , ωn)) =
∑

ǫm,...,ǫn

Φ(ǫm)=ωm...Φ(ǫn)=ωn

ν((ǫm, . . . , ǫn)) ,

(5)
where ωm, . . . , ωn ∈ K and ǫm, . . . , ǫn ∈ L . For obvi-
ous reasons, these processes are also called functions of
Markov processes.

IV. ALGEBRAIC MEASURES

An algebraic measure, µ, is a translational-invariant
measure on a set {0, . . . , q−1}Z, with probabilities deter-
mined by matrices Ea with positive entries, one for each
of the q states. The probability of a sequence is obtained
by applying a positive linear functional σ to a matrix
product of the corresponding matrices of the states of the
sequence: µ(i1, . . . , in) = σ(Ei1 . . . Ein

). This matrix al-
gebraic construction is the reason for the name Algebraic

Measure, studied in detail in Ref. [4]. As we shall see,
the hidden Markov processes correspond to a set of al-
gebraic measures with a specific positivity structure and
remarkably, the converse holds too.

A. Manifestly Positive Measures

In [4] it was shown that hidden Markov processes cor-
respond to manifestly positive algebraic measures. The
local densities of such a manifestly positive algebraic
measure on an infinite chain KZ of classical state spaces
K = {0, . . . , q − 1} are of the form

µ((ω1, . . . , ωn)) = 〈τ |Eω1 . . . Eωn
σ〉 ,
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where ωi ∈ K, τ and σ are vectors in R
d with non-

negative elements (denoted (Rd)+) and the Ei are d × d
real matrices with non-negative elements (denoted M+

d ).
As an example of these manifestly algebraic measures,

let us look at a regular Markov chain µ((ωm, . . . , ωn)) on
{0, . . . , q − 1}Z. If we choose τ , σ and the Ei as

σ ∈ (Rd)+ : σa = 1 for a ∈ K ,

τ ∈ (Rd)+ : τa = µ((a)) for a ∈ K ,

Ea ∈ M+
d : (Ea)b,c = δa,b

µ((b, c))

µ((b))
for a, b, c ∈ K ,

one can check that 〈τ |Eωm
. . . Eωn

σ〉 indeed gives the cor-
rect densities.

From this example it is easy to see that if we have a
hidden Markov process on LZ defined by a map Φ : K →
L and a Markov measure µ on K with corresponding
matrices Ea, the manifestly positive algebraic measure
corresponding to the hidden Markov measure is given by
the same vectors σ and τ as before and the following
matrices:

Fa ∈ M+
d : Fa =

∑

ǫ,Φ(ǫ)=a

Eǫ for a ∈ K . (6)

For a proof of the converse, which is namely, that every
manifestly positive algebraic measure corresponds to a
hidden Markov measure, we refer to [4].

B. Mean Entropy

We will now briefly summarize how the algebraic mea-
sure approach allows for a simpler approach to finding
the entropy density [4, 5].

The entropy of a state µ on KZ restricted to a region
Λ is defined by

SΛ(µ) = −
∑

ωΛ∈KΛ

µ(ωΛ) log µ(ωΛ) .

SΛ can be shown to be bounded by #Λ log q, mono-
tonically increasing in Λ and strongly subadditive, that
is

SΛ1∩Λ2(µ) + SΛ1∪Λ2(µ) ≤ SΛ1(µ) + SΛ2(µ) .

Using the strong subadditivity of the entropy and the
translational invariance of the measure, one can show
that [2, 8]

S(µ) = lim
n→∞

S(µn)

n
= lim

n→∞
S(µn) − S(µn−1) .

We can then use this relation together with the ex-
pression for the local densities of the manifestly positive
measures to reformulate the convergence of the mean en-
tropy into a dynamical system of converging measures on
the set of d-dimensional probability measures Bσ as

S(µ) = lim
n→∞

∑

a∈K

∫

Bσ

φn(dν)ha(ν) ,

where

µ((ǫ0, . . . , ǫn)) = 〈τ |Eǫ0 . . . Eǫn
σ〉

with σ, τ ∈ (Rd)+

Bσ = {ν ∈ (Rd)+| 〈ν|σ〉 = 1}

ha(ν) = −〈ν|Eaσ〉 log〈ν|Eaσ〉

φn(dν) =
∑

ǫ0,...,ǫn∈K

µ((ǫ0, . . . , ǫn))

δ E∗
ǫn

...E∗
ǫ0

µ((ǫ0 ,...,ǫn))

(dν) .

If we define the linear transformation Tµ on functions

on Bσ : (Tµf)(ν) =
∑

a∈K〈ν|Eaσ〉f
(

E∗

aν

〈ν|Eaσ〉

)

, one can

show that φn(f) = φ0(T
n
µ f). Tµ is a contraction map,

so a fixed point argument can be used to show that φn

converges to a unique measure φ that is invariant under
Tµ

φ(Tµf) = φ(f) .

This measure allows us then to calculate the mean en-
tropy

S(µ) =
∑

a∈L

∫

B

φ(dν)ha(ν) . (7)

Our goal in the remaining part of the article is to trans-
late the switching depolarizing channel into the setting
of algebraic measures and to try and find the invariant
measure that allows us to calculate the mean entropy.

V. ALGEBRAIC MEASURE OF THE CHANNEL

The relationship between the hidden Markov measure,
say µ′ on KZ, and the underlying Markov measure ν
with the Markov property on LZ is through a ‘tracing’
function Φ : L → K, as is shown in Eq. (5).

The underlying Markov process for the overall quan-
tum channel has a four state configuration space cor-
responding to channel selection and error occurrence:
K = {(0, 0), (0, 1), (1, 0), (1, 1)}. The first index indicates
which depolarizing channel has been chosen and the sec-
ond indicates whether a bit flip occurred. The elements
of the transition matrix, E, for this process are then given
by

(E){(ij)(i′j′)} = qii′x
j′

i′ , (8)

the probability of going from (i, j) to (i′, j′) is given by
the switching probability qii′ from channel i to i′, multi-

plied by the probability xj′

i′ that channel i′ produces the
error-occurrence j′.

The function that produces the correct hidden Markov
process is then given by

Φ((i, j)) = j .
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This function reflects the fact that we are unaware of the
choice of channel that has been made. The only effect
that is visible from the outside is whether or not an in-
put qubit has been flipped. Thus, Φ has to ‘trace out’ the
choice of channel. Φ maps into the two-state error con-
figuration space containing ‘no flip’ and ‘flip’: L = {0, 1}
.

Using the fact that the matrices E(i,j) defining the al-
gebraic measure of a Markov process ((Sec. IVA, Pg. 3),
a = (i, j) ∈ K) have only one non-zero row and Eq. (6),
we get the matrices F0 and F1 that define the algebraic
measure corresponding to µ′. The matrix corresponding
to 0, the first element of L is given by

F0 =
∑

(i,k),Φ′((i,k))=0

E(i,k) =
∑

i

E(i,0)

=







q00x
0
0 q00x

1
0 q01x

0
1 q01x

1
1

0 0 0 0
q10x

0
0 q10x

1
0 q11x

0
1 q11x

1
1

0 0 0 0







and similarly for 1, the second element of L.
The hidden Markov process then gives us almost the

same probabilities as the eigenvalues in Eq. (3)

p((k1, . . . , kn)) = 〈τ |Fk1 . . . Fkn
1
¯
〉

=
∑

i1,...,in

τi1,k1qi1i2 . . . qin−1in
xk2

i2
. . . xkn

in
.

Note that according to our discussion in Section IV, the
vector τ is the stationary distribution of the full matrix
E. Using Eq. (8), one can see that the invariant distri-
bution τ is in fact τ(i,k) = γix

k
i , so the probabilities of

the hidden Markov process coincide with the eigenvalues
in Eq. (3).

Having constructed the correct algebraic measure, we
can determine Tµ explicitly and use it to greatly simplify
the corresponding invariant measure φ.

The expression for Tµ, as can be found in [4], is

(Tµf)(ν̂) =
∑

a∈K

〈ν̂|Fa1〉f

(

F ∗
a ν̂

〈ν̂|Fa1〉

)

,

where ν̂ is any 4-dimensional vector such that 〈ν̂|1〉 = 1
and f is a continuous real-valued function on the set of
such vectors. For the case of our hidden Markov measure,
the form of this transformation can be greatly simplified.
Due to the stochasticity of the matrix E, we have the
following:

F0|1〉 =







1
0
1
0






and F1|1〉 =







0
1
0
1






.

If we furthermore denote the four row vectors of E by
µ̂1, µ̂2, µ̂3 and µ̂4, we can write

F ∗
0 ν̂ = ν1µ̂1 + ν3µ̂3 and F ∗

1 ν̂ = ν2µ̂2 + ν4µ̂4 .

On top of this, µ1 = µ2 and µ3 = µ4, so the total form
of the transformation becomes

(Tµf)(ν̂) =(ν1 + ν3)f

(

ν1µ̂1 + ν3µ̂3

ν1 + ν3

)

+ (ν2 + ν4)f

(

ν2µ̂2 + ν4µ̂4

ν2 + ν4

)

.

From this form of the transformation, we can already
greatly restrict the support of φ. Our claim is that the
support of φ is restricted to the set of convex combina-
tions of µ1 and µ3

supp(φ) ⊂ {aµ̂1 + (1 − a)µ̂3 | a ∈ [0, 1]} .

To show this, let’s suppose that ν̂ ∈ supp(φ) and ν̂ 6∈
S := {aµ̂1 + (1− a)µ̂3 | a ∈ [0, 1]}. Take ζν̂ a function on
Bσ such that ζν̂(ŝ) = 0 for all ŝ ∈ S and ζν̂(ν̂) 6= 0, then

0 6=φ(ζν̂ ) = φ(Tµζν̂) =

∫

φ(dν)Tµ(ζν̂(ν))

=

∫

φ(dν)
[

(ν1 + ν3)ζν̂

(ν1µ̂1 + ν3µ̂3

ν1 + ν3

)

+ (ν2 + ν4)ζν̂

(ν2µ̂1 + ν4µ̂3

ν2 + ν4

)]

.

However, this integral is equal to zero, since the argu-
ments to ζν̂ run over the set S.

Therefore, we have for f ∈ C(B),

φ(f) =

∫ 1

0

dλ(a)f(aµ̂1 + (1 − a)µ̂3) , (9)

with λ a measure on [0, 1].
Now let us look at φ acting on the transformed f :

φ(Tµf) =

∫

φ(dν)
[

(ν1 + ν3)f
(ν1µ̂1 + ν3µ̂3

ν1 + ν3

)

+ (ν2 + ν4)f
(ν2µ̂1 + ν4µ̂3

ν2 + ν4

)]

=

∫ 1

0

dλ(a)
[

(µ̂a,1 + µ̂a,3)f
( µ̂a,1µ̂1 + µ̂a,3µ̂3

µ̂a,1 + µ̂a,3

)

+ (µ̂a,2 + µ̂a,4)f
( µ̂a,2µ̂1 + µ̂a,4µ̂3

µ̂a,2 + µ̂a,4

)]

, (10)

where

µ̂a = aµ̂1 + (1 − a)µ̂3 .

By invariance (Sec. IVB, Pg. 4), we can equate Eq.
(9) and the above Eq. (10) to discover an invariance
concerning λ. We thus arrive at the following symmetry
of λ:

λ = T [λ] = a 7→ c1(a)λ[f1(a)] + c2(a)λ[f2(a)] .

The two functions f1 and f2 are relatively simple shrink
functions about two separate points in the domain [0, 1],
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that shrink the [0, 1] domain into two (possibly overlap-
ping) sub-intervals of [0, 1].

We can turn this analytic symmetry into a cyclic def-
inition or iterative procedure to generate λ up to some
approximation λn.

λn+1 = T (λn) .

We still have not defined λ0, but taking a look the
iterative procedure, we see that there exist fixed points
of the two shrink functions, call them a1 and a2,

a1 = f1(a1) a2 = f2(a2) a1, a2 ∈ [0, 1] .

With this observation the idea is to begin the iteration
procedure with two Dirac delta’s at these fixed points,

λ0(a) =
1

2
δ(a − a1) +

1

2
δ(a − a2) .

Note that
∫

λ0(a)da = 1, as a measure should be. Since
there is unique convergence then the initial weightings
should not matter [4].

To see that this is a good starting point and to get
further insight into the support of λ, it can be seen that
the support will grow, but most importantly, once a point
is within the support of λm it remains there for all n ≥ m.
So if the procedure is taken to infinity the support is fixed
and countably infinite. Thus, we arrive at the following
expression for the full support,

supp(λ) = {a ∈ [0, 1] : ∃n ∈ N, ∃ki ∈ {0, 1}∀i ∈ [1, n]

fkn
◦ fkn−1 ◦ . . . ◦ fk1(a1 or a2) = a} .

We use this iterative procedure to generate λn and
then use it in Eq. (9) to approximate the measure. The
entropy in Eq. (7) can then be calculated and finally
we use the entropy to calculate the capacity through Eq.
(4). It is the capacity and its dependence on memory
that we are interested in.

VI. RESULTS

In constructing our channel we defined certain param-
eters. It is useful to introduce a new set of suggestive
parameters in terms of the old and also to reduce their
number by making some assumptions. Firstly, we assume
that the sub-channels switch symmetrically, that is, the
probabilities of reuse are the same for both sub-channels.
This makes the Markov matrix doubly stochastic and
allows us to use its non-one eigenvalue as a useful char-
acterizing parameter s. Thus, we set q00 → (1 + s)/2
and q10 → (1 − s)/2. The domain of s is (−1, 1), with
s = 0 corresponding to no noise correlations. Secondly,
we parametrize the error probabilities by their average
and difference: x0

0 → a + d, x0
1 → a − d.

The main result is that the capacity increases with
stronger noise-correlations. This manifests itself in two
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FIG. 1: Capacity for maximally different sub-channels in-
creases with memory
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FIG. 2: Capacity versus the average no-error probability a

ways. Firstly, if we make the switching more correlated
(s away from 0) the capacity increases and secondly, if we
increase the difference between the two sub-channels the
capacity also increases. Similar results have been found
for the quantum capacity of the dephasing channel with
Markovian memory [12].

In Figure 1, d is set to the maximum possible value
while keeping an average of a (d = min[a − 1/3, 1 − a]).
Remember that both a − d and a + d have to lie in the
[1/3, 1] interval for the two sub-channels to be completely
positive. The capacity is plotted against varying a and
s. We can see that the capacity increases as the noise-
correlation (s) gets stronger. When a = 2/3, d attains
its maximum (1/3) and the effect of increasing s on the
capacity is greatest. Another interesting observation is
the case when the two sub-channels average to the max-
imally mixing channel (a = 1/2, which ignoring memory,
has zero capacity), taking into account memory effects
there is a non-zero capacity.

To better illustrate the last point and to further ex-
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FIG. 3: Capacity versus the memory parameter s using many
iterations and including full Markov calculation

plore the relationship between the capacity of the mem-
ory channel and its sub-channels, we plot in Figure 2,
slices of Figure 1 of fixed s together with plots of the
underlying sub-channel capacities.

Thus, in the ‘Avg Capacity’ curve of Figure 2, we see
the edge of Figure 1 (for fixed s = 1, equivalently s = −1,
not actually attained), which corresponds to the average
of the capacities of the sub-channels. The sub-channels’
separate capacities are plotted in curves labelled ‘Low
Noise Sub’ and ‘Noisier Sub’. They are chosen to have
maximum allowed separation for each point as a varies
(and thus the artificial discontinuities). In a real world
example, this separation parameter is fixed by the chan-
nel and the sub-channels and their capacities would not
be accessible. The capacity of the average channel, la-
belled ‘Avg Channel’, corresponds to a slice of fixed s = 0
(the center of Figure 1), since a no-memory/non-biased
Markov walk factors into a tensor product of the average
of the sub-channels, which is thus equivalent to just one
depolarizing channel with the average error probability.
The curve, ‘With Memory’, is a smooth intermediary be-
tween the ‘Avg Channel’ and ‘Avg Capacity’ and is an
example slice of Figure 1 for 0 < s = 2

3 < 1, which il-
lustrates how taking memory into account improves the
capacity. Of course, again, in a real world example this
parameter is specified by the channel. The smooth trans-
formation is not straightforward nor linear, which can be
seen in the way Figure 1 curves for varying s.

To see the last point more clearly and also to indicate
the convergence of the iteration procedure we next plot
a slice of Figure 1 for fixed a. In Figure 3 we plot the
regularized capacity against s with the following fixed
parameters: a = 2

3 , d = 1
3 .

We can see that the capacity increases as the noise-
correlation gets stronger. The blue dots are calculated
using a simplified (s = 1) full Markov walk calculation
(1000 steps) which doesn’t suffer from the usual expo-
nential blow-up. The horizontal green line is the output
entropy for s = 0, which is corresponds to no correla-

tions and is equivalent to having only one depolarizing
channel.

A. Non-Forgetful Limit

To complete the discussion concerning correlations we
need to look at the two extreme cases: s = 1, corre-
sponding to the case where a sub-channel is selected and
used for every channel use afterwards, and s = −1, cor-
responding to the case where the choice of sub-channel is
flipped with every channel use. Therefore, in construct-
ing the overall channel and taking into account the initial
random channel selection, we just have the mixing of two
n-use channels. Specifically, in the s = 1 case, we have
the mixing of the two n-fold tensor products of the two
sub-channels separately, and in the s = −1 case, we have
the mixing of two n-use channels where each determinis-
tically alternates between the sub-channels but starting
with a different sub-channel.

Both these extreme cases are non-forgetful since the
initial sub-channel selection (the initial noise) is ‘remem-
bered’ and the forgetful Holevo capacity theorem no
longer applies (the Markov selection matrix is periodic
in the s = −1 case and reducible in the s = 1 case).
While our forgetful channel approach breaks down there
are alternate theoretical frameworks that do actually cap-
ture these extreme cases. For s = −1 the capacity can
be calculated using [9] and agrees with the limit of the
forgetful approach, the capacity is the average capacity
of the two sub-channels separately. However, for s = 1
case there is a discontinuity and the capacity suddenly
drops to the minimum capacity of the sub-channels [10].

The intuition is that in the s = −1 case, the deter-
ministic flip can be used to determine ‘on-the-fly’ which
sub-channel is being used and then it is the same as using
the two channels separately each half the time, so the ca-
pacity must be the average capacity. For the s = 1 case
once you have the poorer channel you are stuck with it
forever and so because of the mixture you can only guar-
antee the lower capacity.

VII. CONCLUSION

We have constructed a simple forgetful noise-memory
quantum channel. The noise-correlation is a function of
the underlying hidden Markov process. This setup al-
lowed us to construct a corresponding algebraic measure.
We used the measure in an algebraic asymptotic entropy
expression. Without this, the entropy would be very dif-
ficult to compute, involving exponentially many paths in
configuration space.

We studied the effects that the noise correlations had
on the classical capacity and discovered that the capac-
ity increases with stronger correlations. This is sensible
because the correlations can be used to combat the noise
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when coding information. We have arrived at the under-
standing that stronger correlations increases the capacity
from that of the average channel to the average capac-
ity of the sub-channels with very interesting limiting be-
haviour.

Further work includes using other approximation tech-
niques, arriving at a full analytic expression of the ca-
pacity and looking at other similarly constructed chan-
nels. We are also confident and hopeful that the hid-
den Markov technique could be successfully employed in
other contexts.
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