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Abstract

This work is devoted to study the temperature dependence of the effective width and expansion energy

on the finite size and interaction effects (repulsive interactions). It is found that the effective size
�
r2
�
, and

expansion energy in the radial direction Ey of a Bose gas follow a characteristic temperature dependence,

i.e.
�
r2
�
, Ey ∝ (T/T0)4 if T0 < T and

�
r2
�
, Ey ∝ (T/T0) if T0 > T . Our results show that these

two parameters increases with the number of atoms, and with increasing repulsive interaction strength

at temperature less than the transition temperature, (T < To ); yet it has little effect at temperatures

higher than the transition temperature (T > To ). The obtained results are compared with the available

experimental data for 87 Rb directly, full agreement is obtained.

Key Words: Interacting Bose gas; Thermodynamical properties for BEC; Semiclassical approach.

1. Introduction

Trapped gases offer a new opportunity to study the interplay between quantum-statistical phenomena
and interactions in Bose systems. Many properties of these trapped gases have been extensively studied and
understood [1, 2]. Although several key thermodynamical properties, such as condensed fraction and average
energy, are readily measurable experimentally, a detailed comparison of experiments with finite-temperature
theories of the interacting cloud is to our knowledge still lacking. Surprisingly less attention has been payed to
the effective width and expansion energy for condensed Bose gases [3-5].

One way of obtaining information on the properties of a Bose-Einstein condensate (BEC) is to investigate

its behavior after it is released from the trap. Recent experimental realization of BEC for 87Rb [6-9], has filled
this gap. These experiments provide us an important thermodynamical parameter. Among them is the axial
length and the expansion energy in the redial direction. These parameters have special behavior at temperatures
greater or less than the transition temperature T0 . These two parameters drop suddenly when the condensation
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occurs, after the trapped gas temperature is lowered below the transition temperature T0 . As a consequence,
this reduction is used as a good evidence for the onset of BEC. Information about these two parameters are
extracted from time-of-flight absorption imaging.

Two important quantities are calculated through a fit to absorption images: the condensed fraction and
the effective temperature. The condensed number N0 can be estimated from the effective width through the
parametrization [7] 〈

r2
〉1/2

=
〈
r2
0

〉1/2
(1 + αN0)1/5,

where
〈
r2
0

〉1/2 is the predicted non-interacting effective width and α is extracted empirically. This procedure

yields robust values of N0 provided that the temperature is high enough that the non-condensed atoms form a
distribution that is significantly broader than the sharp condensate feature. The effective temperature can be
extracted from the cloud size via the relation

kBTx =
Mω2

x

〈
x2

〉
1 + (ωxτ )2

,

where
〈
x2

〉
is the radial size and ωx is the radial frequency. So, it is very important to study and investigate

these parameters intuitively.

One of the efficient methods for describing these systems is the density-of-state approach. In this approach
the sums over the energy levels for the thermodynamical quantities are approximated directly by ordinary
integrals weighted by an appropriate density of state [10-19]. In our previous work, [20-22], an accurate ansatz
formula for the density of states was suggested. This ansatz formula enabled us to study the finite size,
interatomic interaction and anisotropic of the external potential effects (repulsive interactions) simultaneously.
It is used to calculate condensed fraction, average energy per particle, release energy and specific heat capacity
. The calculated results for the above mentioned thermodynamic parameters are compared with the available

measured experimental data for 87Rb, and full agreement is obtained [7].

In this paper we report our investigations of the temperature-dependent effective width and expansion

energy of a trapped interacting 87Rb Bose gas by using the density of states approach. We undertake this study
in an effort to provide some theoretical support for the experiment by Gerbier et al. [8, 9]. Our results show

that, for high temperature (kBT >> �ω ), we ignored the contribution from the condensate, the axial length

and radial length are proportional to T 2 for T > T0 , and it is proportional to T 1/2 for T < T0 . Expansion
energy has the same behavior. This results agree with the measured experimental data. Moreover, we support
the opinion this behavior is a good indication for the presence of BEC.

This paper is organized as follows. The present section provides a brief introduction. Sections two
and three describe the calculations for the effective width for both an ideal and interacting trapped Bose gas
respectively. We analyze the expansion energy in the radial direction of a Bose gas in section four. Section five
presents a short conclusion.

2. Effective width of a trapped Bose gases

We now discuss the square width of an ideal Bose gases at finite temperature. For an ideal Bose gas, the
average number of particles in a single particle state |i〉 with energy εi is given by the familiar Bose-Einstein
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distribution

ni =
1

eβ(εi−μ) − 1
=

ze−βεi

1 − ze−βεi
, (1)

where β = 1/kBT , with kB denoting the Boltzmann constant. The degeneracy factors are avoided by accounting

for degenerate states individually [23, 24]. The fugacity z is determined in terms of the chemical potential μ as

z = eβ(μ−ε0) , with ε0 being the energy of the lowest state. Within the grand canonical ensemble the chemical
potential μ is determined by the conservation of the total number N

N =
∞∑

i=0

ni (2)

The statistical properties of a Bose gas are completely determined once the sum in equation (2) is found or z

is calculated.
For a spherically symmetric harmonic trap, the external harmonic potential is given by

Vext(r) =
M

2
ω2r2,

where ω ’s is the frequency. The corresponding quantized energy levels is given by

εi = i�ω + ε0,

where ε0 is the zero point energy and ε0 = 3
2�ω . The square width of a single particle state |i〉 can be obtained

from the first principle of quantum mechanics: [5, 25],

〈
r2
i

〉
=

〈2Vext(r)〉
Mω2

=
εi

�ω
a2

r , (3)

where ar =
√

�

Mω is the characteristic length for the harmonic trap. The expected square width of N trapped

atoms of a Bose gas is then given by

〈
r2

〉
=

∞∑
i=0

ni

〈
r2
i

〉

=
∞∑

i=0

ze−βεi

1 − ze−βεi

〈
r2
i

〉
. (4)

The key point for exploring BEC within this formalism is to treat the lowest energy state separately, i.e.

〈
r2

〉
=

z

1 − z

〈
r2
0

〉
+

∞∑
i=1

ze−βεi

1 − ze−βεi

〈
r2
i

〉

=
3
2

z

1 − z
a2

r +
∞∑

i=1

∞∑
j=1

zje−jβεi
〈
r2
i

〉

=
3
2

z

1 − z
a2

r +
a2

r

�ω

∞∑
j=1

zj
∞∑

i=1

εie
−jβεi . (5)
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For large N , the usual approximation of changing the summation over i into an integral weighted by an accurate
density of states can be taken:

〈
r2

〉
=

3
2

z

1 − z
a2

r +
a2

r

�ω

⎧⎨
⎩

∞∑
j=1

zj

∫ ∞

0

Eρ(E)e−jβEdE

⎫⎬
⎭ , (6)

where ρ(E) is the density of states. It plays an important role in our calculations. The main effect is the ideal
Bose gas can be embodied in this density of states. However, the resulting thermodynamic properties depend
crucially on the choice and contraction of the power law of the density of states. For anisotropic harmonic
potential, the density of states is given by [20-22]

ρ(E) =
1
2

E2

(�ω)3
+

E

(�ω)2
{

γ +
μ

�ω
.
}

(7)

The constant γ = 3
2

[12]. This approximation requires the condition kBT >> �Ω. Equation (6) includes all

the main effects of the density of states [12, 20-22].

From equation (6) and equation (7), the temperature dependent square width is given by

〈
r2

〉
= a2

r

{
3
2

z

1 − z
+ 3

(
kBT

�ω

)4

g4(z) + 2
(

kBT

�ω

)3

g3(z)
[
γ +

μ

�ω

]}

= a2
r

{
3
2
N0 + 3

(
kBT

�ω

)4

g4(z) + 2
(

kBT

�ω

)3

g3(z)
[
γ +

μ

�ω

]}
. (8)

Here, gn(z) =
∑∞

j=1(z
j/jn) is the usual Bose function, N0 = 0 for T0 > T and N0 = {1 − (T/T0)3} for

T0 < T , and T0 = (�ω
kB

)(N/ζ(3))(1/3) is the transition temperature for ideal Bose gas. Bracket in equation (8)

takes a familiar form with the first term denoting the square width for the ground state (condensate), while

the second term gives the excited states (the thermal component). The last term includes the correction due
to finite size and interaction effects as we shall see later.

It is convenient to introduce a dimensionless parameter η [1]:

μ(N0, T )
kBT0

=
μ(N, T = 0)

kBT0
(
N0

N
)2/5 = η(1 − t3)2/5.

Parameter η is a scaling parameter that gives the scaling behavior of all thermodynamic quantities due
to interatomic interaction. In terms of the scattering length a , the scaling parameter η is given by η =

1.57
(
N1/6 a

ar

)2/5

[26-29].

The approximation made here involve two energy scales: kBT0 and �ω . In most of the traps, the former
is about 2 orders of magnitude greater than the latter, so semiclassical approximation is expected to work well
in these systems over a wide range of temperatures. Moreover, as pointed by W. Zhang et al. [5], at high
temperatures kBT >> �ω , as normally is the case, the contribution from the condensate can be ignored. We
thus have the following two cases.
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1. For temperature T < T0 :

〈
r2

〉
≈ 3a2

r

(
kBT

�ω

)4

g4(z) + 2γa2
r

(
kBT

�ω

)3

g3(z) + 2a2
r

(
kBT

�ω

)3

g3(z)
μ

�ω

= r2
c t4 + r2

c

ζ(3)
ζ(4)

[(
ζ(3)
N

)1/3

+
2
3
η(1 − t3)2/5

]
t3.

Here, r2
c denotes the square width of a Bose condensate at the transition temperature T0 :

r2
c = 3a2

rζ(4)[N/ζ(3)]4/3,

where t = T/T0 is the reduced temperature, ζ(n) is the Riemann zeta function. The dimensionless square
width is given by

〈
r2

〉
r2
c

= t4 +
ζ(3)
ζ(4)

[(
ζ(3)
N

)1/3

+
2
3
η(1 − t3)2/5

]
t3

= t3χ1(t), (9)

where

χ1(t) = t +
ζ(3)
ζ(4)

[(
ζ(3)
N

)1/3

+
2
3
η(1 − t3)2/5

]
.

In the thermodynamic limit (N → ∞ and η → 0) χ1(t) → t

2. On the other hand, for T ≥ T0 , we found

〈
r2

〉
≈ 3a2

rN

(
kBT

�ω

)
g4(z)
g3(z)

+ 2γa2
r

(
N

g3(z)

)
g3(z) + 2a2

r

(
N

g3(z)

)
g3(z)

μ

�ω
}

= αr2
ct +

ζ(3)
ζ(4)

[(
ζ(3)
N

)1/3

+
2
3
η(1 − t3)2/5

]
,

where α = g4(z)ζ(4)/[g3(z)ζ(4)] ≈ 1 has a very weak dependence on T . The dimensionless form is given
by 〈

r2
〉

r2
c

= χ1(t). (10)

Therefore there is a qualitative as well as quantitative difference between the ideal Bose gas and a system

of interacting Bose gases. The width of a Bose gas
〈
r2

〉1/2 is proportional to T 2 for T < T0 and to T 1/2 for

T ≥ T0 . This result is consistent with earlier experimental reports, that the area of absorption image of a Bose
gas is proportional to its temperature in the absence of a condensate [7-9].

In Figure 1, the temperature dependence effective width,
〈
r2

〉1/2
/rc , of a Bose gas in a spherically

symmetric harmonic trap is given. In this figure we consider the interatomic interaction effect on the ideal
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Figure 1. The temperature-dependent width of a Bose gas in spherically symmetric harmonic trap. The trap parameters are
γ′s = 2π × 65 and the number of particles is taken to be 4 × 104 . Note that both Tc and rc depend on N .

trapped Bose gas. The solid, dashed and dotted lines denote, respectively, the case of width with η = 0, 0.5,

and 1.0; the number of particles is taken to be N = 1 × 106 .

We now come to our analysis of equations (9) and (10), and the fundamental difference between our

results and the ideal Bose gas (thermodynamic limit) [5]. An interesting feature we note is that the repulsive
interaction causes the width of a Bose gas to increase at temperatures lower than the transition temperature
(T < To ), yet it has little effect on the width at temperatures higher than the transition temperature (T > To ).
The low temperature phenomenon is easy to understand in terms of a repulsive-interaction induced expansion of
a Bose gas [3, 4]. First, a condensate with repulsive interaction is larger in its size due to atom-atom repulsion.
Second, the presence of a condensate pushes the thermal non-condensed cloud out, further increasing the size of
a gas [29]. At high temperatures (T > To ) the effect of repulsive interaction becomes negligible as the density
of a Bose gas decreases dramatically with increasing temperatures.

3. Axial and radial width, and effective area

One of the key parameters for describing an expanding condensate is its effective area, which is normally
defined as a square root of the condensate widths along the two symmetric axes. In general, for the magnetic
traps that are used in the experiment the axes are parallel to the axial and the radial direction, respectively.
The effective area is given by

S(t) =
√
〈z2〉 〈x2〉,

where
〈
z2

〉
and

〈
x2

〉
is the effective width in the axial and radial direction respectively.

Theoretically, the expansion of a condensate width and its effective area, as a function of temperature,
can be found in special cases. So, it can be used as a direct test of the validity of the density of state approach
when it is applied to a dilute atomic Bose gases.
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For cylindrically symmetric trap with frequencies ωx = ωy and ωz = λωx,y , the external potential in
this case is given by

Vext(r) =
M

2
(ω2

xx2 + ω2
yy

2 + ω2
zz2).

The temperature dependence of the three squared width are the same as in a spherically symmetric trap
discussed above. The normalization factors become, respectively,

z2
c = a2

zλ
−2/3ζ(4) [N/ζ(3)]4/3 =

λ−2/3

Mω2
z

ζ(4)
ζ(3)

NkBT0

x2
c ≡ y2

c = a2
x,yλ

1/3ζ(4)[N/ζ(3)]4/3 =
λ1/3

Mω2
x,y

ζ(4)
ζ(3)

NkBT0 (11)

for the axial and transverse directions, respectively. Note that γ = 3
2 ( ω̄

Ω) = 1
2(2+λ)λ−1/3 , and the characteristic

lengths for the harmonic trap is given by ax,y,z =
√

�/Mωx,y,z .

The axial length is given by

〈
z2

〉
z2
c

= t4 +
1
3

ζ(3)
ζ(4)

[
(λ + 2)λ−1/3

(
ζ(3)
N

)1/3

+ 2η(1 − t3)2/5

]
t3

= χ2(t)t3, T ≤ T0

= χ2(t), T ≥ T0, (12)

while the transverse length is given by

〈
x2

〉
x2

c

≡
〈
y2

〉
y2

c

= t4 +
1
3

ζ(3)
ζ(4)

[
(λ + 2)λ−1/3

(
ζ(3)
N

)1/3

+ 2η(1 − t3)2/5

]
t3

= χ2(t)t3, T ≤ T0

= χ2(t), T ≥ T0, (13)

with

χ2(t) = t +
1
3

ζ(3)
ζ(4)

[
(λ + 2)λ−1/3

(
ζ(3)
N

)1/3

+ 2η(1 − t3)2/5

]

In the thermodynamic limit, N → ∞ and η → zero,χ2(t) → t

The effective area is given by

S(t) ≈
√

〈z2〉 〈x2〉
= Scχ2(t)t3, T ≤ T0

= Scχ2(t), T ≥ T0. (14)

Once again, this is clearly consistent with earlier experimental observations that the effective area is proportional
to the temperature above BEC and drops suddenly below the condensation temperature.
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4. Expansion energy

Another important quantity to discuss is the expansion energy in the redial direction (release energy).
This energy is defined as the sum of the kinetic and interaction energy released at the trap cutoff and available
for the expansion of the whole cloud. Experimentally it is measured from time of flight of the condensed gas.
In an anisotropic trap such as considered by Gerbier et al. (ωx,y/ωz = 51), all the interaction energy converts

into radial expansion velocity [9]. The radial expansion of the cloud is observed in the y -direction and fixed by
the expansion energy

Ey =
1
2
M

〈
v2

y

〉
τ→∞ =

1
2τ2

M
〈
y2

〉
τ→∞ (15)

with τ as the time of flight.

Theoretically in the present formalism the expansion energy can be calculated from the root mean-square

cloud size
〈
y2

〉
[5, 28]. Assumed that on average the kinetic and interaction energy are equal to the measured

quantity, the expansion energy is given by

Ey =
1

2τ2
M

〈
y2

〉
τ→∞

=
1

6τ2
My2

c

{
3t4 +

ζ(3)
ζ(4)

[
(λ + 2)λ−1/3

(
ζ(3)
N

)1/3

+ 2η(1 − t3)2/5

]
t3

}
, (16)

which, if its scaled by the characteristic energy scale, NkBT0 , becomes a universal function of interaction
strength parameter η and the reduced temperature t . It is given by

Ey

NkBT0
=

λ1/3

6τ2ω2
y

{
ζ(4)
3ζ(3)

t4 +

[
(λ + 2)λ−1/3

(
ζ(3)
N

)1/3

+ 2η(1 − t3)2/5

]
t3

}
T ≤ T0

=
λ1/3

6τ2ω2
y

{
3
ζ(4)
ζ(3)

t +

[
(λ + 2)λ−1/3

(
ζ(3)
N

)1/3

+ 2η(1 − t3)2/5

]}
T ≥ T0. (17)

The calculated results from equation (17) are illustrated in Figure 2. In this figure the temperature

dependence of the expansion energy Ey

NkBT0
( released energy) is compared with the measured data of Gerbier

et al. [8]. The trap parameters are taken to be ωx,y/2π = 413 Hz, ωz/2π = 8.69 Hz, the number of 87Rb atoms

is taken to be 1.2× 106 , the time of flight is τ = 24.27 ms and the interaction parameter η = 0.49. This figure
reveals that the behavior of the expansion energy is similar to the behavior for the square size. The difference
between the expansion energy of an interacting Bose gas and an ideal gas decreases when the temperature
increases and becomes negligible for T > To . We also note that the main feature of the expansion energy at

high temperatures again follow the characteristic temperature dependence, i.e. Ey ∝ (T/T0)4 if T < To and

Ey ∝ (T/T0) if T > To .

5. Conclusion

The analytical approach adopted in the present paper would be effective to study interacting condensed
Bose gas. We have investigated theoretically the temperature dependence of the effective width and the
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Figure 2. Expansion energy in the radial y direction as a function of temperature. The interaction parameter is taken
to be η = 0.49, while the anisotropic parameter is equal to 3.66, and N = 1.2 × 106 .

expansion energy of a trapped interacted 87Rb gas. Our approach provides a direct comparison between
the calculated results and the measured experimental data. We have investigated primarily two quantities: the
effective width and the radial expansion (release energy). The data display without ambiguity an interacting
gas behavior, and is in agreement with the experimental data.

Our results summarize as follows. A sudden drop for the effective width and expansion energy occur
when temperature is lowered below the transition temperature. For the effective area, and the expansion
energy, equations (14) and (17) reveal that the difference between an ideal gas and an interacting one increases
with the number of atoms, and with increasing repulsive interaction strength for T < To . Sudden decrease in
the reduced width near the transition temperature has little dependence on the number of atoms. The effective
width can serve as a good indication for the presence of BEC. In view of this, our results provide a solid
theoretical foundation for the experiment. Finally, in contrast to the previous work, this approach involves only
analytical calculations without technical complication.
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