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Does three-tangle properly quantify the three-party entanglement for mixture of
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Some mixed states composed of only GHZ states can be expressed in terms of only W-states.
This fact implies that such states have vanishing three-tangle. One of such rank-3 states, ΠGHZ, is
explicitly presented in this paper. These results are used to compute analytically the three-tangle of
a rank-4 mixed state σ composed of four GHZ states. This analysis with considering Bloch sphere
S

16 of d = 4 qudit system allows us to derive the hyper-polyhedron. It is shown that the states in
this hyper-polyhedron have vanishing three-tangle. Computing the one-tangles for ΠGHZ and σ, we
prove the monogamy inequality explicitly. Making use of the fact that the three-tangle of ΠGHZ is
zero, we try to explain why the W-class in the whole mixed states is not of measure zero contrary
to the case of pure states.

Nowadays, it is well-known that entanglement is the
most valuable physical resource for the quantum in-
formation processing such as quantum teleportation[1],
superdense coding[2], quantum cloning[3], quantum
algorithms[4], quantum cryptography[5], and quantum
computer technology[6]. Thus, it is highly important to
understand the various properties of the mutipartite en-
tanglement of the quantum states.

The main obstacle for characterizing the entanglement
of the multipartite state is its calculational difficulties
even if original definition of the entanglement measure
itself is comparatively simple. In addition, computation
of the entanglement for the multipartite mixed states
is much more difficult than that for the pure states,
mainly due to the fact that the entanglement for the
mixed states, in general, is defined by a convex-roof
extension[7]. In order to compute the entanglement ex-
plicitly for the mixed states, therefore, we should find an
optimal decomposition of the given mixed state, which
provides a minimum value of the entanglement over all
possible ensembles of pure states. However, there is no
general way for finding the optimal decomposition for the
arbitrary mixed states except bipartite cases[8]. Thus, it
becomes a central issue for the computation of the mixed
state entanglement.

Few years ago, fortunately, Wootters[8] has shown how
to construct the optimal decompositions for the most
simple bipartite cases. This enables us to be able to
compute the concurrence, one of the entanglement mea-
sure, analytically for the arbitrary 2-qubit mixed states.
It also makes it possible to understand more deeply the
role of the entanglement in the real quantum informa-
tion processing[9]. Most importantly, it becomes a basis
for the quantification of three-party entanglement called
residual entanglement or three-tangle[10]. Thus, it is ex-
tremely important to find a calculation tool for the three-
tangle if one wants to take a step toward a fundamental

issue, i.e. characterization of the mutipartite mixed state
entanglement.

It is well-known[11] that the three-qubit pure states
can be classified by product states (A − B − C), bisep-
arable states (A − BC,B − AC,C − AB) and true tri-
partite states (ABC) through stochastic local operation
and classical communication(SLOCC). The true tripar-
tite states consist of two different classes, GHZ-class and
W-class, where

|GHZ〉 = 1√
2

(|000〉+ |111〉)
|W 〉 = 1√

3
(|001〉+ |010〉 + |100〉) . (1)

Since the three-tangle τ3 for the pure state |ψ〉 =
∑1

i,j,k=0 aijk|ijk〉 is defined as[10]

τ3 = 4|d1 − 2d2 + 4d3| (2)

with

d1 = a2
000a

2
111 + a2

001a
2
110 + a2

010a
2
101 + a2

100a
2
011

d2 = a000a111a011a100 + a000a111a101a010

+a000a111a110a001 + a011a100a101a010

+a011a100a110a001 + a101a010a110a001

d3 = a000a110a101a011 + a111a001a010a100,

(3)

it is easy to show that the product and biseparable states
have zero three-tangle. This fact implies that the three-
tangle is a genuine measure for the three-party entangle-
ment.

However, there is a crucial defect in the three-tangle
as a three-party entanglement measure. While the three-
tangle for the GHZ state is maximal, i.e. τ3(GHZ) = 1,
it vanishes for the W-state. This means that the three-
tangle does not properly quantify the three-party entan-
glement for the W-type states. The purpose of this letter
is to show that besides W-type states the three-tangle τ3
does not properly quantify the three-party entanglement
for a rank-3 mixtures composed of only three GHZ-type
states.
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Recently, the three-tangle for rank-2 mixture of GHZ
and W states is analytically computed[12]. In Ref.[13],
furthermore, the three-tangle for the rank-3 mixture of
GHZ, W, and inverted W states is also analytically com-
puted. In this letter we start with showing that a mixed
state

ΠGHZ = 1
3

[

|GHZ, 2+〉〈GHZ, 2+|
+ |GHZ, 3+〉〈GHZ, 3+|+ |GHZ, 4+〉〈GHZ, 4+|

]

(4)
has vanishing three-tangle, where we define for later use
as following:

|GHZ, 1±〉 = 1√
2

(|000〉 ± |111〉)
|GHZ, 2±〉 = 1√

2
(|001〉 ± |110〉)

|GHZ, 3±〉 = 1√
2

(|010〉 ± |101〉)
|GHZ, 4±〉 = 1√

2
(|011〉 ± |100〉) .

(5)

Let us consider a pure state

|J(θ1, θ2)〉 = 1√
3
|GHZ, 2+〉 − 1√

3
eiθ1 |GHZ, 3+〉

− 1√
3
eiθ2 |GHZ, 4+〉. (6)

Then, it is easy to show that the three-tangle of
|J(θ1, θ2)〉 is

τ3(θ1, θ2) =
1

9
|1−

(

eiθ1 − eiθ2

)2 ||1−
(

eiθ1 + eiθ2

)2 |, (7)

which vanishes when

(θ1, θ2) =















( π/3, 2π/3) , (5π/3, 4π/3)
(2π/3, π/3) , (4π/3, 5π/3)
( π/3, 5π/3) , (5π/3, π/3)
(2π/3, 4π/3) , (4π/3, 2π/3)















. (8)

Moreover, one can show straightforwardly that ΠGHZ

can be decomposed into

ΠGHZ = 1
8

[

| J (π/3, 2π/3)〉〈J (π/3, 2π/3) |
+ | J (5π/3, 4π/3)〉〈J (5π/3, 4π/3) |
+ | J (π/3, 5π/3)〉〈J (π/3, 5π/3) |
+ | J (2π/3, 4π/3)〉〈J (2π/3, 4π/3) |
+ terms with exchanged arguments

]

.

(9)

Combining Eq.(8) and (9), one can show that Eq.(9) is
the optimal decomposition of ΠGHZ and its three-tangle
is zero:

τ3 (ΠGHZ) = 0. (10)

The reason why ΠGHZ has vanishing three-tangle is that
the optimal ensembles given in Eq. (9) are all W-states.
Therefore, ΠGHZ can also be expressed in terms of only
W-states. As a result, we encounter a very strange situ-
ation that ΠGHZ has vanishing three- and two-tangles1,

1 It is easy to show that C2

AB
and C2

AC
are zero, where C is con-

currence for corresponding reduced states.

but non-vanishing one-tangle

4 min [det (TrBCΠGHZ)] =
5

9
. (11)

For comparison one can compute π-tangle[14], another
three-party entanglement measure defined in terms of the
global negativities[15]. It is easy to show that the π-
tangle of ΠGHZ is not vanishing but 1/9. This fact seems
to indicate that the three-tangle does not properly reflect
the three-party entanglement for GHZ-type states as well
as W-type states.

We can use Eq.(10) for computing the three-tangles of
the higher-rank mixed states. For example, let us con-
sider the following rank-4 state

σ = x|GHZ, 1+〉〈GHZ, 1 + | + (1 − x)ΠGHZ (12)

with 0 ≤ x ≤ 1. In order to compute the three-tangles
for σ we first consider a pure state

|X(x, ϕ1, ϕ2, ϕ3)〉 =
√
x|GHZ, 1+〉

−
√

1−x
3

(

eiϕ1 |GHZ, 2+〉 + eiϕ2 |GHZ, 3+〉
+eiϕ3 |GHZ, 4+〉

)

.
(13)

Then it is easy to show that the three-tangle of
|X(x, ϕ1, ϕ2, ϕ3)〉 becomes

τ3 (|X(x, ϕ1, ϕ2, ϕ3)〉)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2 + (1−x)2

9

(

e4iϕ1 + e4iϕ2 + e4iϕ3

)

− 2
3x(1 − x)

(

e2iϕ1 + e2iϕ2 + e2iϕ3

)

− 2
9 (1 − x)2

(

e2i(ϕ1+ϕ2) + e2i(ϕ1+ϕ3)

+e2i(ϕ2+ϕ3)

)

− 8
√

3
9

√

x(1 − x)3ei(ϕ1+ϕ2+ϕ3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
(14)

The vectors |X(x, ϕ1, ϕ2, ϕ3)〉 has following proper-
ties. The three-tangle of it has the largest zero at
x = x0 ≡ 3/4 and ϕ1 = ϕ2 = ϕ3 = 0. The
vectors |X(x, 0, 0, 0)〉, |X(x, 0, π, π)〉, |X(x, π, 0, π)〉 and
|X(x, π, π, 0)〉 have same three-tangles. Finally, σ can be
decomposed into

σ = 1
4

[

|X(x, 0, 0, 0)〉〈X(x, 0, 0, 0)|
+|X(x, 0, π, π)〉〈X(x, 0, π, π)| + |X(x, π, 0, π)〉〈X(x, π, 0, π)|
+|X(x, π, π, 0)〉〈X(x, π, π, 0)|

]

.
(15)

When x ≤ x0, one can construct the optimal decomposi-
tion in the following form:

σ = x
4x0

[

|X(x0, 0, 0, 0)〉〈X(x0, 0, 0, 0)|
+|X(x0, 0, π, π)〉〈X(x0, 0, π, π)|
+|X(x0, π, 0, π)〉〈X(x0, π, 0, π)|
+|X(x0, π, π, 0)〉〈X(x0, π, π, 0)|

]

+x0−x
x0

ΠGHZ .

(16)

Since ΠGHZ has the vanishing three-tangle, one can show
easily

τ3(σ) = 0 when x ≤ x0 = 3/4. (17)
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Now, let us consider the three-tangle of σ in the region
x0 ≤ x ≤ 1. Since Eq.(15) is an optimal decomposition
at x = x0, one can conjecture that it is also optimal in
the region x0 ≤ x. As will be shown shortly, however,
this is not true at the large-x region. If we compute the
three-tangle under the condition that Eq.(15) is optimal
at x0 ≤ x, its expression becomes

αI(x) = x2 − 1

3
(1 − x)2 − 2x(1 − x) − 8

√
3

9

√

x(1 − x)3.

(18)
However, one can show straightforwardly that αI(x) is
not a convex function in the region x ≥ x∗, where

x∗ =
1

4

(

1 + 21/3 + 41/3
)

≈ 0.961831. (19)

Therefore, we need to convexify αI(x) in the region
x1 ≤ x ≤ 1 to make the three-tangle to be convex func-
tion, where x1 is some number between x0 and x∗. The
number x1 will be determined shortly.

In the large x-region one can derive the optimal de-
composition in a form:

σ = 1−x
4(1−x1)

[

|X(x1, 0, 0, 0)〉〈X(x1, 0, 0, 0)|
+|X(x1, 0, π, π)〉〈X(x1, 0, π, π)|
+|X(x1, π, 0, π)〉〈X(x1, π, 0, π)|
+|X(x1, π, π, 0)〉〈X(x1, π, π, 0)|

]

+x−x1

1−x1

|GHZ, 1+〉〈GHZ, 1 + |

(20)

which gives a three-tangle as

αII(x, x1) =
1 − x

1 − x1
αI(x1) +

x− x1

1 − x1
. (21)

Since d2αII/dx
2 = 0, there is no convex problem if

αII(x, x1) is a three-tangle in the large-x region. The
constant x1 can be fixed from the condition of minimum
αII , i.e. ∂αII(x, x1)/∂x1 = 0, which gives

x1 =
1

4
(2 +

√
3) ≈ 0.933013. (22)

As expected, x1 is between x0 and x∗. Thus, finally the
three-tangle for σ becomes

τ3(σ) =







0 x ≤ x0

αI(x) x0 ≤ x ≤ x1

αII(x, x1) x1 ≤ x ≤ 1
(23)

and the corresponding optimal decompositions are
Eq.(16), Eq.(15) and Eq.(20) respectively. In order
to show Eq.(23) is genuine optimal, first we plot x-
dependence of Eq.(14) for various ϕi (i = 1, 2, 3). These
curves have been referred as the characteristic curves[16].
Then, one can show, at least numerically, that Eq.(23) is
a convex hull of the minimum of the characteristic curves,
which implies that Eq.(23) is genuine three-tangle for σ.

It is straightforward to show that the mixture σ has
vanishing two-tangles, i.e. CAB = CAC = 0, but non-
vanishing one-tangle

C2
A(BC)(σ) =

1

9

(

5 − 4x+ 8x2 − 8
√

3x(1 − x)3
)

. (24)

Thus, the monogamy inequality τ3+C2
AB+C2

AC ≤ C2
A(BC)

holds for the rank-4 mixture σ.
Eq.(10) can be used to compute the upper bound of

the three-tangle for the higher-rank states. For example,
let us consider the following rank-8 state

ρ = ξσ + (1 − ξ)σ̃ (25)

where σ is given in Eq.(12) and σ̃ is

σ̃ = y|GHZ, 1−〉〈GHZ, 1 − |
+ 1−y

3

[

|GHZ, 2−〉〈GHZ, 2 − |
+|GHZ, 3−〉〈GHZ, 3 − |
+|GHZ, 4−〉〈GHZ, 4 − |

]

.

(26)

If x = y, σ and σ̃ are local-unitary(LU) equivalent with
each other. Since the three-tangle is LU-invariant quan-
tity, τ3(σ̃) should be identical to τ3(σ) when x = y

Since ρ is rank-8 mixed state, it seems to be extremely
difficult to compute its three-tangle analytically. If, how-
ever, 0 ≤ y ≤ 3/4, τ3(σ̃) becomes zero and the above
analysis yields a non-trivial upper bound of τ3(ρ) as fol-
lowing:

τ3(ρ) ≤ ξτ3(σ). (27)

In this letter we have shown that the three-tangle does
not properly quantify the three-party entanglement for
some mixture composed of only GHZ states. This fact
has been used to compute the (upper bound of) three-
tangles for the higher-rank mixed states.

The fact τ3(σ) = 0 for x ≤ 3/4 can be used to find
other rank-4 mixtures which have vanishing three-tangle
by considering the Bloch hypersphere of d = 4 qudit
system. First, we correspond the GHZ-states in σ to the
basis of the qudit system as follows:

|GHZ, 1+〉 = (1, 0, 0, 0)
T
, |GHZ, 2+〉 = (0, 1, 0, 0)

T

|GHZ, 3+〉 = (0, 0, 1, 0)
T
, |GHZ, 4+〉 = (0, 0, 0, 1)

T

(28)
where T stands for transposition. It is well-known[17]
that the density matrix of the arbitrary d = 4 qudit state
can be represented by ρ = (1/4)(I +

√
6~n ·~λ), where ~n is

15-dimensional unit vector and

~λ =
(

Λ12
s , · · · ,Λ34

s ,Λ
12
a , · · · ,Λ34

a ,Λ
1,Λ2,Λ3

)

. (29)

The generalized Gell-Mann matrices Λij
s , Λij

a and Λj are
explicitly given in Ref.[17]. Then, the 15-dimensional
Bloch vectors for |X (3/4, 0, 0, 0)〉, |X (3/4, 0, π, π)〉,
|X (3/4, π, 0, π)〉, and |X (3/4, π, π, 0)〉 can be easily de-
rived. Thus, these four points form a hyper-polyhedron
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in 16-dimensional space. Then all rank-4 quantum states
corresponding to the points in this hyper-polyhedron
have vanishing three-tangle.

As we have shown in this letter, ΠGHZ has vanishing
two and three-tangle, but non-vanishing one-tangle. It
makes the left-hand side of the monogamy inequality τ3+
C2

AB +C2
AC ≤ C2

A(BC) reduce zero. Thus, natural question
arises: what physical resources make the one-tangle to be
non-vanishing? Authors in Ref.[18] conjectured that the
origin of the non-vanishing one-tangle comes from the
higher tangles of the purified state. To support their
argument they considered a multipartite entanglement
measure defined

Ems(ΨN ) =

∑

k τk(Rk) − 2
∑

i<j C2
ij

N
(30)

where τk(Rk) = 2(1 − Trρ2
k) and |ΨN〉 is a N -qubit puri-

fied state of the given mixed state. Since the numerator
of Ems is difference between the total one-tangle and to-
tal two-tangle, it measures a contribution of the higher-
tangles to the one-tangle. If we choose the purified state
as

|Ψ5〉 = 1√
3
|GHZ, 2+〉|00〉+ 1√

3
|GHZ, 3+〉|01〉

+ 1√
3
|GHZ, 4+〉|10〉, (31)

Ems(Ψ5) reduces to 43/45, which is larger than the one-
tangle 5/9. Thus, it is possible that part of Ems(Ψ5) con-
verts into the non-vanishing one-tangle. However, still we
do not know how to compute the one-tangle explicitly
from Ems(Ψ5).

The three-tangle itself is a good three-party entangle-
ment measure. It exactly coincides with the modulus of
a Cayley’s hyperdeterminant[19] and is polynomial in-
variant under the local SL(2,C) transformation[20]. As
shown, however, it cannot properly quantify the three-
party entanglement of W-state and ΠGHZ : τ3(W ) =
τ3(ΠGHZ) = 0. On the other hand, the π-tangle gives the
non-zero values: π3(W ) = 4(

√
5− 1)/9 and π3(ΠGHZ) =

1/9. Does this fact simply imply the crucial defects
of the three-tangle as a three-party entanglement mea-
sure? Here, we would like to comment on the physical
implication of τ3(ΠGHZ ) = 0. Few years ago the three-
qubit mixed states were classified in Ref.[21]. Following
Ref.[21] the whole mixed states are classified as separable
(S), biseparable (B), W and GHZ classes. These classes
satisfy S ⊂ B ⊂W ⊂ GHZ. One remarkable fact, which
was proved in this reference, is that the W \B class is not
of measure zero among all mixed-states. This is contrary
to the case of the pure states, where the set of W-state
forms measure zero[11]. This fact implies that the por-
tion of W \ B class in the whole mixed states becomes
larger compared to that of W class in the whole pure
states. How could this happen? The fact τ3(ΠGHZ ) = 0
sheds light on this issue. Since ΠGHZ has zero three-
tangle but non-zero π-tangle, it is manifestly an element

of W \ B class. As shown in Eq.(4), however, it con-
sists of three GHZ states without pure W-type state. We
think there are many W \B states, which are mixture of
only GHZ states. It increases the portion of W \B class
and eventually makes the W \ B class to be of non-zero
measure in the whole mixed states.
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