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Abstract 
In the many-worlds interpretations (MWIs) of Everett and others, if I am 
the observer, there are several versions of me but no version is singled out 
as the one corresponding to my perceptions.  However, it can be shown 
that the probability law implies one version must be singled out.  Thus 
MWIs do not provide a sufficient basis for probability.  If we are to have 
an acceptable description of the physical universe, MWIs must be 
supplemented by some mechanism, such as hidden variables or collapse, 
which singles out one version of the observer as the perceiving version. 

 
PACS numbers: 03.65.-w, 03.65.Ta 

 
 

1. Introduction. 
 Many-worlds interpretations (MWIs), as originally proposed by Everett 
[1] and elaborated upon by others [2]-[13], are among the major interpretations of 
quantum mechanics.  They are of interest because they seem to require no 
amendments or additions—such as hidden variables or collapse—to the highly 
successful mathematics of quantum mechanics.  The question to be considered is 
whether such interpretations are acceptable.  A key feature of MWIs is that there 
are many equally valid versions of the observer in these interpretations, but none 
is singled out as the perceiving version.  We argue (1) that this implies the 
probability law cannot even be stated in MWIs; and (2) that if the probability law 
is to hold, one version must be singled out as the version corresponding to 
perception.  Since no version is singled out in MWIs, we conclude that many-
worlds interpretations are not capable of accounting for the probability law.  
Some singling out mechanism must be added to the pure quantum mechanics of 
MWIs to account for the Born rule. 
 
 

2. Quantum Mechanics and Versions of the Observer. 
The basic or pure quantum mechanics used in MWIs—no hidden 

variables, no collapse, no “sentient beings,” just the state vectors with all their 
branches—is called QMA here.  Suppose we perform a measurement on an 
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atomic-level system, with state vector,  


n

i i ia
1

| .  After the measurement, if I am 
the observer, the state vector of the system in QMA is 
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n

i
iii iAIa
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|||  

 
The iA|  are the n versions of the apparatus that detect and record the n possible 
outcomes, and the iI|  are the n versions of the observer that perceive the 
readings on the versions of the apparatus.  Note that the time evolution of the state 
vector is deterministic in QMA; there is nothing probabilistic in the mathematics. 

There are two interesting characteristics of Eq. (1) and QMA.  The first is 
that there are n equally valid versions of the observer but no singular “the” 
observer; that is, no version is singled out as the one corresponding exclusively to 
my experiential perceptions.  If “I” perceive one result, there are n – 1 other, 
equally valid “Is” perceiving the other results.  The second point is that the n 
versions of the observer simultaneously perceive their respective outcomes.  This 
immediately makes one wonder how probability of perception is to be introduced 
into this scheme because, when all outcomes are simultaneously perceived, there 
can be no probability of perceiving one, specific outcome. 
 
 

3. The Probability Law. 
It would seem to be straightforward to state the probability law.  If I am 

the observer, then the law says: 
 

P1. The probability that I will perceive outcome i is 2|| ia . 
 

This statement is certainly correct experientially, but it is not acceptable within 
the framework of QMA.  “I will perceive” implies perception of a single outcome 
by a unique I.  But in QMA, there is no unique I that perceives just one outcome; 
instead there are n equally valid versions of I.  So we might try a second 
statement, which acknowledges that only the versions perceive: 
 

P2. The probability of my perceptions corresponding to those of version 
iI|  is 2|| ia . 

 
But because there is a version of me associated with every outcome, my 
perceptions on each run correspond to those of every version, not just one version 

iI| .  And all the n perceptions simultaneously occur on every run, so there can 
be no probability of perceiving a single, given outcome.    Thus neither P1 nor P2 
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can be used as the statement of the probability law in QMA.  A third possible 
statement is:  
 

P3. The probability of perceiving outcome i is 2|| ia . 
 
But this dodges the issue of what it is that perceives, and that is not acceptable in 
this context.  We might try: 
 

P4. The probability of outcome i occurring is 2|| ia . 
 
But that won’t do either because all outcomes occur on every run of the 
experiment. 
 The point is this: The probability law is about what is perceived.  And the 
only entities that perceive in QMA-MWI are the n versions of the observer.  So  
 

the probability law in QMA-MWI must be written solely in terms of the 
perceptions of the versions of the observer   

 
with no reference to “my” perceptions or the perceptions of “the” observer.  But 
that seems patently impossible because every version of the observer perceives its 
respective outcome on every run with 100% certainty; there is nothing 
probabilistic about the perceptions of the versions.   

It has been argued [3]-[6], [9], [11]-[13] that probability can arise in 
deterministic QMA through a “subjective” process (see appendix C).  But this 
does not help in stating the probability law in terms of the perceptions of the 
versions. 

The conclusion is that it is not possible to properly state the probability 
law in QMA.  And if it is not possible to state it, it is surely not possible for the 
law to hold in QMA.  This inability of QMA to account for the probability law 
implies QMA, by itself, is not a sufficient basis for describing reality.  That in 
turn means MWIs, which are based solely on QMA (plus, in some treatments, the 
assumption that the probability law holds), cannot be valid interpretations. 
 
 

4. Singling Out. 
By looking at a particular case, we can see the problem with MWIs in 

more detail.  Suppose we consider a two-state case  
 
(2)    2|||1||| 222111 AIaAIa  
 
with 001.||,999.|| 2

2
2

1  aa , and suppose we do 10 runs, with the observer 
perceiving the results of every run.  There will be 024,1210   possible outcomes 
and 1,024 versions of the observer, each equally valid.  But we know 
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experientially that my perceptions will (almost always) correspond to only one of 
them, the one with all 10 outcomes 1.  That is, one version from among all the 
1,024 versions is singled out as the one corresponding to my experiential 
perceptions. 

But in QMA, not only is each version equally valid, but also every version 
of the observer perceives its respective outcome on every run of 10.  No version is 
singled out as the perceived version in QMA.  However, we know that one 
version is singled out in “perceptual reality.”  The inescapable conclusion is that 
there must be a coefficient-sensitive mechanism (collapse?, hidden variables?), 
outside QMA, that singles out one version as the perceived version.  That is, 
QMA-MWI must be supplemented if one is to obtain a sufficient basis for 
explaining the probability law. 

 
 

5. Conclusion. 
The above arguments show that QMA cannot accommodate the 

probability law, even if one simply assumes the law holds instead of attempting to 
deduce it from within QMA.  For the probability law to hold, there must be a 
random, coefficient-dependent process that singles out version i as the perceived 
version on a fraction 2|| ia  of the runs of the experiment.  The singling out process 
could be collapse [14] [15], or hidden variables [16]-[18], or something else (see 
version 2).  But since there is no singling out mechanism in many-worlds 
interpretations, including Everett’s, these interpretations cannot be valid. 

 
 

Appendix A. 
The Auxiliary-Experiment Reasoning. 

A line of reasoning has been proposed [5]-[8], [10] which, it is claimed, 
shows that if equal coefficients imply equal probability of perception, then the 
probability law can be deduced from QMA alone.  It is my opinion that this 
reasoning contains an unwarranted assumption (or two).  To illustrate, we will 
apply it to our 001.||,999.|| 2

2
2

1  aa  case.  The state is 
 

(3)    2|||
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When the apparatus registers state 1 in this reasoning, it causes an experiment to 
be done on an auxiliary system, with the state of the auxiliary system being  
 

(4)   '|
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1
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When we put (4) into (3) and assume the apparatus and the observer perceive the 
auxiliary experiment results, then the state is 
 

(5)    


2|||
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1
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That is, there are now 1,000 versions of the observer, each with the same 
coefficient, 001. .   

Now one can assume, or attempt to derive under various assumptions, that 
in the equal-coefficient case, my perceptions correspond to each possible outcome 
on an equal fraction of the runs.   

[I do not believe this is an allowable assumption in QMA.  When every 
outcome is perceived on every run, there can no probability of perceiving 
a particular outcome, even when the coefficients are equal.  Outcome i is 
perceived on every run, not just 1/n of the runs.]   

Then under this assumption, outcome 2 will be perceived only 0.1% of the time 
(from the single last term) and outcome 1 will be perceived—by the 999 different 
versions of observer 1, each in a different universe—99.9% of the time.   
 In addition to the questionable nature of the equal-coefficient assumption, 
the problem with this argument is that the same conclusion is presumed to hold 
when the auxiliary experiment is not done.  But in that case, one must assume one 
can replace the single state, 1|999. I , by 999 states of the observer, 

999,...,1,| ,1  jI j , each in a different universe (because the equal-coefficient-
implies-equal-probability-of-perception assumption “holds” only if each version 
is in a different universe).  I don’t believe there is any way to justify that 
assumption.   

[One might try to use the “physical” reasoning that it shouldn’t make any 
difference whether the auxiliary experiments are done or not.  But the 
resulting states of the versions of the observer are just too different—in 
one case the Hilbert space for the states of I has dimension 2, in the other, 
1,000—to allow this physical reasoning.  In addition, reasoning from the 
physical situation doesn’t seem appropriate when one is trying to make a 
point about the mathematics.] 

 
 

Appendix B. 
The Almost-All Strategy. 

 A probability law is a statement about what happens when an experiment 
is repeated many times.  So let us consider N runs of a two-state experiment, with 
N very large.  Then the state after the N runs is 
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(6)    
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where )}({ mi  denotes the values of a particular set of outcomes 

)21(,,...,, 21 oriiii jN   for which m of the I’s are 1.  Note that, for a given m, the 
second sum runs over N!/m!(N – m)! states, and there are a total of N2  versions of 
the observer. 

Case 1: 21 aa  so all the coefficients in the sum are equal.  Then, because 
m is near N/2 for almost all of these states (from the binomial coefficient), almost 
all versions of the observer will perceive m near N/2.  Now the reasoning is (1) 
that my perceptions correspond to one of the versions of the observer and (2) that 
the corresponding version is “chosen,” without bias, from the N2 versions of the 
observer.  If these two assumptions are granted, then my perceptions at the end of 
the N runs will almost always correspond to perceiving m near N/2, thus agreeing 
with the probability law in this simple case.   

But this is not an allowable line of reasoning in QMA.  The concept of my 
perception in (1)—implying exclusive perception by me of a single outcome—
does not exist because there is no singular me; every outcome is simultaneously 
perceived by a version of me.  So even in this simple case, the barrenness of 
QMA precludes support for the probability law.  Once again, there can be no 
probability of perception when every outcome is simultaneously perceived by its 
respective version of the observer. 

Case 2: |||| 21 aa  .  It is still true in this case that almost all versions of the 
observer perceive m near N/2.  But this does not lead to Born’s rule so the MWI 
advocate is forced to change assumption (2) to: (2*) for unknown reasons, the 
version corresponding to my perceptions is randomly chosen with a bias 
proportional to the coefficient ( mNmaa 

21 ) squared.  But the objection in case 1—
that there is no my perception—still holds.  The assumption (2*) implies there is a 
me that the biased choice applies to, as if the me were a (biased) spotlight 
focusing on one version.  But that is not correct in QMA; singling out one version 
does not occur there.   

Because we are precluded by assumption (2*) from perceiving the vast 
majority of states—those with m near N/2—it is clear that a selection or singling 
out process is necessary to obtain the Born rule in the N-run case.  But QMA does 
not provide such a process.  So the probability law implies QMA-MWI must be 
supplemented by a singling out process.  (And the singling out mechanism must 
be specified to have a complete picture of what governs our universe.) 
 
 

Appendix C. 
Subjective Probability. 
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One can argue [3]-[6], [9], [11]-[13] that from the point of view of a single 
version, there is an uncertainty in the outcome.  After the measurement by the 
apparatus is made, but before the versions of the observer look at the readings, 
each version is asked, “What state are you in?”  Each version is indeed ignorant of 
which universe he is in, and so that opens the door a crack for introducing 
probability.  But I don’t see how this uncertainty leads to any probability relevant 
to the Born rule. 

Within QMA (rather than in the actual scheme that governs our universe), 
when a version is asked the probability of being in state i, why isn’t the answer of 
every version just 1/n, rather than 2|| ia ?  Why should it depend on the 
coefficients?   (Note that in QMA, the versions of the observer have no direct 
knowledge of the coefficients or of n.)   

Actually there is a probability although it has nothing to do with the Born 
rule; the probability of version j perceiving outcome i is ij .     

For an odd illustration of our objection, suppose each face of a biased die 
is intelligent.  The die is rolled.  After the roll, each face has a different number 
painted on it, but the faces cannot perceive the numbers.  Then the “subjective 
probability” strategy is like asking each face, “What is the number painted on 
you?”  It introduces a probability of sorts, but it doesn’t seem relevant to any 
observation (such as which one might come out on top when the die is rolled). 

To pursue the illustration further, suppose the die is rolled in the middle of 
empty space so there is no top face.  When the faces are allowed to see the 
numbers, every outcome is simultaneously perceived, but no version is singled 
out as the “top” version (analogous to the one that is actually perceived in 
quantum mechanics).  So there can be no probability of perceiving the “top” 
version.  This seems to be an accurate analogy to the QMA situation. 
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