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Abstract

We examine whether it is possible for one-dimensional tediomally-invariant Hamiltonians to have
ground states with a high degree of entanglement. We preséahily of translationally invariant
Hamiltonians{H,,} for the infinite chain. The spectral gap &f, is Q(1/poly(n)). Moreover, for
any state in the ground space@f, and anym, there are regions of size with entanglement entropy
Q(min{m,n}). A similar construction yields translationally-invariatamiltonians for finite chains that
have unique ground states exhibiting high entanglemerg.aréa law proven by Hastings [Has07] gives
a constant upper bound on the entanglement entropy for lihgrstates that is independent of the size
of the region but exponentially dependentibi\, whereA is the spectral gap. This paper provides a
lower bound, showing a family of Hamiltonians for which th@anglement entropy scales polynomially
with 1/A. Previously, the best known such bound was logarithmic/if.

1 Introduction

Understanding and quantifying entanglement in quanturtesys is a central theme in quantum informa-
tion science. On one hand quantum entanglement is a valvedbeirce that enables novel computation
and communication. On the other hand, the fact that sometymasystems have bounded entanglement
accounts for the success of computational methods such &®iM finding ground states and simulating
dynamics [[Whi92, Whi93, Sch05, Vid(J3, Vid04]. We examineeatimensional quantum systems and ask
what is the minimal set of properties a system must have iaraalexhibit a high degree of ground state
entanglement. In particular, do symmetries such as trémiséd invariance limit entanglement?

We present two closely related constructions. The first isaastationally-invariant Hamiltonian for
a chain ofn 21-dimensional particles. The Hamiltonian has a unique gilostate and a spectral gap of
1/poly(n). We show that the entropy of the ground state when traced dowriinear number of particles
on either end of the chain scales linearly withlf we allow ourselves boundary conditions in the form of a
different single-particle term applied to the first and [gatticles of the chain, the Hamiltonian is frustration-
free and independent af. The boundary conditions can be removed with an additiarah tapplied to all
the particles in the chain. The additional term depends @md the resulting Hamiltonian is no longer
frustration free.

The second construction is a family of translationally nat Hamiltonians{ H,,}. When applied to
any cycle whose size is a multiple ofor an infinite chain of particles, the spectral gap jigoly(n). The
ground state is no longer unique, but for any state in thergt@pace and any:, a constant fraction of the
intervals of lengthm have entanglement entropy that(i$min{m,n}). Moreover, there exists a state in

*E-mail: irani@ics.uci.edu. Partially supported by NSF@&r@CR-0514082. Part of this work was done while the autha wa
visiting the Institute for Quantum Information at Caltech.


http://arXiv.org/abs/0901.1107v1

the ground space which is translationally invariant andthagroperty that every interval of length has
entanglement entropy which §&(min{m,n}).

This paper builds on recent work examining the computatipoaer of one dimensional quantum sys-
tems in which it is shown that it is possible to perform ungadradiabatic quantum computation using a 1D
guantum systenm [AGIK07]. In addition, it was shown that thelpem of determining the ground state of a
one dimensional quantum system with nearest neighboraictiens isQMA-complete. Both results make
critical use of position-dependent terms in the Hamiltanighe intuition that symmetry in quantum systems
is both natural and might lead to more tractable systemslelagdsresearchers to examine whether this con-
struction can be made translationally invariant. For insta [NWO08] gives &0-state translation-invariant
modification of the construction (improving on58-state construction by [JWZ07]) that can be used for
universal 1-dimensional adiabatic computation. Theseifications require that the system be initialized
to a particular configuration in which each particle is in @etthat encodes some additional information.
The terms of the Hamiltonian, although identical, act dédfely on different particles depending on their
initial state. The ground state is therefore degenerateoaadietermines which ground state is reached by
ensuring that the system starts in a particular state. KayQ&] gives a construction showing that deter-
mining the ground energy of a one dimensional nearest-beigHamiltonian iIQMA-complete even with
all two-particle terms identical, though the constructrequires position-dependent one-particle terms. It
is not clear how one would eliminate both the varying termsnalividual particles and the degeneracy of
the ground state and still obtain a complexity result. Irtipalar, it is not clear how a single Hamiltonian
term with bounded precision acting on a pair of particlehwiinstant dimension would encode a circuit or
an input instance. However, it is still natural to examineugrd state entropy under these limitations.

This work also relates to the area law for one dimensionsaurdy Hastings/ [Has07]. An area law
asserts that in ground states of local Hamiltonians, thengiheément entropy of the reduced state of a sub-
region should scale with the boundary of the region as ogptsthe volume of the region. In one dimen-
sions, the bounding area of a contiguous region is composddof the two endpoints of the segment, so
the area law says that the entropy of entanglement shoulddepéndent of the size of the region. The
area law for one-dimensional systems proven by Hastingerdispexponentially oh/A, whereA is the
spectral gap. Gottesman and Hastings raised the questiorvd®ether this dependence dnis tight and
towards this end gave a family of Hamiltonians on the infigit@in whose entanglement entropy scales
asQ((—Alog A)~/*). Previously studied systems have the property that thegntof all intervals is
bounded by a constant timéss(1/A).

The results presented in this paper independently providerer bound of this kind, although the two
sets of results have different features resulting from tifferént motivation of the authors. The [GHO8]
construction is not translationally invariant as this is¢ reguired for the area law. However, it is simpler,
uses fewer states and the lower bound on entanglement astefuaf the spectral gap is a larger polyno-
mial (((—Alog A)~/*) as opposed t62((A)~1/12)). Much of the effort in the construction presented
here stems from designing a translationally invariant Hi@mian. In both constructions, the ground state
achieves high entanglement on some but not all of the regibashnically, this is valid for a lower bound
on the area law since an area law must give an upper bound antheglement entropy for all regions.
Nonetheless, Gottesman and Hastings point out that thegtaation can be augmented, using 81 instead
of 9 states, to produce a ground state with high entanglemeevery sufficiently large region. Note that
high entanglement entropy means polynomial fith. The entropy will not grow as the region size tends to-
wards infinity as this would violate Hastings’ upper bounghafy there is the fact that the ground space for
the construction presented here is degenerate. Note thateheneracy is fundamentally different from the
degeneracy in the constructions lof [NWO08] ahd [JWZ07] dised above in that every state in the ground
space exhibits the desired entanglement properties. Tlo&® not seem a way to break the degeneracy in
this particular construction using local, translatiopativariant rules. The basis of the ground space consists
of states which are translations of each other along theitafifnain. Since the basis states for the ground
space ofH,, are periodic with period:, the dimension of the ground spacenislif one is willing to forego



translational invariance, we could use the constructiortte finite chain presented here to design a Hamil-
tonian for the infinite chain with a unique ground state bymimepeating copies of the Hamiltonian for a
chain of lengthn, side by side.

In the constructions presented here and in [GHO08], each an@n depends on the parametawhich
in turn gives a fixed upper bound for the entanglement enttbpt/can be achieved for any region. It is
unclear whether there is a way to achieve entanglementmnthat is linear in the region size simulta-
neously for all region sizes. In the only known examples ofdibund states for which the entanglement
entropy grows asymptotically with the size of the regiom &mtropy depends logarithmically on the region
size [VLRKO3/ECPO0B]. It has been conjectured that for aapdtationally invariant pure state, the entropy
of entanglement of a contiguous setroparticles is sublinear as grows [FZ05]. This conjecture does not
require that the state be a ground state of a Hamiltonianglionally invariant or otherwise). It is simply
a question about what can be achieved by a quantum stateis Isetiise it should be easier to achieve high
entanglement. On the other hand, the conjecture requiat$hit state itself be translationally invariant.

1.1 Ouitline of Techniques

We begin with an overview of the construction for the finiteich much of which will also be used for the
cycle and infinite chain. We will havgl states on each site consisting of 2-state subsystems wbidhah
qubit of data and 1-state subsystems. We use thedenfigurationto refer to an arrangement of the states
on a line without regard to the value of the data stored in th@tgubsystems. The Hamiltonian applied to
each pair of particles will consist of a sum of terms of whisére are two types. The first type will have the
form |ab) (ab| wherea andb are single particle states. We call thdkmal pairs as it has the effect of adding
an energy penalty to any state which has a particle in atai¢he immediate left of a particle in staieWe

will say a configuration igegal if it does not contain any illegal pairs. The second type aohtavill have
the form: 1 (|ab)(ab| + |cd)(cd| — |ab)(cd| — |cd)(ab|). These terms enforce that for any eigenstate with
zero energy, if there is a configuratichwith two neighboring particles in statasandb, there must be a
configurationB with equal amplitude that is the sameAgxcept that: andb are replaced by andd. Even
though these terms are symmetric, we associate a directtbrinem by denoting them a® — cd. These
terms will be referred to asansition rules We will say that configuratior transitions into configuratio®

by ruleab — cd if B can be obtained fror by replacing an occurrence @b with an occurrence afd. We
say that the transition rule appliesAoin the forward direction and applies & in the backwards direction.
We will choose the terms so that for any legal configuratianmast one transition rule applies to it in the
forward direction and at most one rule applies in the bacle/girection. Thus, a ground state consists of
an equal superposition of legal configurations such thaetiseexactly one transition rule that carries each
configuration to the next. So far what we have described iswredsrd procedure iIQMA-completeness
results with the chain of configurations in the ground stateesponding to the execution of the circuit
through time [[KSV02, KKRO6, AvDK 04,0T05]. For a one dimensional system, we have a small set of
designated states calledntrol states and we enforce that any legal configuration has gxaod particle

in a control state. The transition rules apply only to thetamrstate and a particle to the immediate left or
right, possibly moving the control state left or right by gresition, much like the head of a Turing Machine.
This idea was also employed in [AGIKO7].

In the construction we present here, particles on the léffoifithe chain start in &-state subsystem that
each encode a qubit in stgte). The control state will act as a courier, carrying the valtia qubit on the
left end and entangling it with a particle on the right endistlereating an entangled pair which spans the
center of the chain. In each round trip made by the controésthe number of entangled pairs increases
by one and eventually the number of entangled pairs spanthagenter of the chain is roughly half the
number of particles in the chain. When the qubit value of digaron the left has been recorded by (or
entangled with) the qubit value stored with the control iphet it transitions to a two-state subsystem which
we represent by the symb@). Similarly when the particle on the right becomes entanglét the qubit
value of the control state, it transitions to a two-statesyatem represented by the symle)l Thus the



particles in these states build up over time on the two endlseofhain. The transition rules ensure that the
courier changes direction as soon as it hits a particle te ©aor ®).

Once the construction is given in detail, it is fairly evidiégimat it results in a high entanglement ground
state and the main difficulty is to establish that this grostade is unique. Thus, additional constraints are
required to give energy penalties to configurations thatadeyrom this plan. As was the case with the one
dimensionalQMA-completeness construction of [AGIKIO7], we are not ablelimiaate every undesirable
configuration with local checks and we need to show that sadebnfigurations are ruled out because they
must eventually evolve (via forward or backwards traneiijoto a configuration which can be eliminated
by local constraints. For the problem addressed here, wiesmre means of enforcing that entangled pairs
actually span the center of the chain instead of spanninge dmandary to the far left or the far right as
this could severely limit the number of entangled pairs. We aeed to enforce the condition that particles
initially storing the|+) state to be entangled with other particles further down tiencoccur on the left
half of the chain. This could be easily managed with difféeterms on the left half and the right half of the
chain. However, since we insist on uniform terms, we enfdhese conditions by showing that violating
states will evolve to illegal states. For example, if the bemof particles in stat@© on the left is less than
the number of particles in sta® on the right, we show that this state will evolve via backvearansitions
to a state with a collection of particles in stéezon the right and no particles in stege on the left. The first
and last particles in the chain will be in special delimiti&tas (with< at the left end anc> at the right
end) which will be used to detect this occurrence and triggeenergy penalty. This raises a new problem
of how to make sure only the end particles are in these delimatates. This is done by adding a penalty for
any particle that is in a state which is different from onetwf telimiter states. Finally, we add even greater
penalties for any pair of the forlY © or X which ensures that only the leftmost particle will be instat
<) and only the rightmost particle will be in sta>.

The construction for the finite chain makes use of the fadt tt& endpoints of the chain have only
one neighbor. When we move to the cycle we not longer haveethpsacial particles. We change the
Hamiltonian for the cycle by allowing the pa>< with the effect that the set of legal states become
sequences of segments bracketed on either side. The latgs &iok like the following type of sequence
wrapped around the cycle:

L) - O - - DKL) -+ - D)) - >

Suppose we fix the locations of tti<) and & sites and consider the space of states with those locations
fixed. The HamiltonianH,, will be closed on that space which allows us to analyze eveth subspace
separately. Finally a term is added that gives an energyltgahthere is a sequence from<) site to a&

site whose length is not exactly equalto Thus, the ground state for a cycle of lengthwill be ¢ copies

of the ground state for a finite chain of lengtitensored together. There asesuch global states, each a
rotation of the others. We will show that the bounds on thespkgap and the entanglement entropy are
independent of, so ast goes towards infinity, the bounds will still hold which medinat they also hold for

the infinite chain.

2 The Basic Construction on a Finite Chain

The 21 states in each site consist ®fstate subsystems (different versions of a qubit holding)daepre-
sented by elongated shapes (e5)), and1-state subspaces, represented by round shapesed.di Three
of the2-state subsystems and three of thetate subsystems will be control sites, which will be repreed
by dark shapes and can be thought of as pointers on the libéritiger transitions. Light-colored shapes
represent a site that is inactive, waiting for the active witcome nearby. There will only be one control site
in any legal configuration. Particles in states denoted tefacase letters will always be to the left of the

This notation, which | have adapted for the constructiors@néed here, was developed by my co-author$ of [AGIK07] in
collaboration with Oded Regev.



control site and particles in states denoted by upper ctisedavill be to the right of the control state. When
needed, we will indicate the value of the qubit stored irstate subsystem with a subscript indicating the
state, such a@ , or @,. We have the following types of states:

Inactive states Control states

E), ©: Qubits entangled with another site &, @: Right-moving control states
V), W: Qubits unentangled with another site®: Left-moving control state

w), w): Particles waiting to be entangled @, ®: Left-end turning contol states
<), &: The left and right end delimiters @: Right-end turning control state

We start by introducing the set of transition rules. Unlegsemwise specified, a rule applied t2a
state subsystem is summed over all possible values for thiessqwith the control particle keeping its value
and the non-control particle keeping its value. For example rule@© — @& would be the sum of
(—:9 v, —w (—:9 over all possible values fat,y € {0,1}. The exceptions to this are made explicit in the
set of rules below The sum of all the resulting terms is dethbty H;, 41,

The rules involving sites with single arrows are used thhmur most of the evolution of the configura-
tions. Rules involving sites with double arrows occur onlyidg the first iteration of the construction and
are used to check the validity of the starting configuration.

Transition Rules:

1. QU — WO, OW — WE: Sweeping to the right pa® and sites, transforming them tw and

w).

N

. ®® — @®: Control turns once an entangled site is reached on theeight

3. @x — ©®,_: Control starts moving left and transfers its qubit statthe®).

B

we — @WwW, We — ©WU: Control sweeps to the left paw and® sites, transforming them to
U andw sites.

. ©@©@ — ©@®: Control turns once an entangled site is reached on therldft e

. Qu, — € x@x: Control starts moving right. Qubit values € and@ become entangled.

5

6

7. ®0, — ©_@,: Control starts moving right. Qubit values €f and@ become entangled.

8. UL — WG, W — WE: Sweeping to the right pa® andw), transforming them t andw).
9

. ®5 — @®3: Control turns once the right end delimeter is reached.

We are now ready to describe the evolution of configurationthé target ground state. We assume
that we start with a configuration in the following for@®©" W™ S, wheren = 2m + 3. (We will
eventually prove that the low energy states exist only wi&nhodd). The construction is illustrated with a
small example below to show what happens as each rule issdppli

Round One Round Two
U@ VLWWE QEdLWES
LEBOLVWWE LEeEOWEE
LELVOWWS QEeEWOEE
LELWWAOWS> QEeEWQEE
VDEOLWWE> KeEee®EEE
QELWWO> KEeEe®E®E
LQRLWWOEGC
LQeLWEWEC
LeOLWEE



Now we describe a set of terms that are designed to ensurthéhsiate corresponding to the evolution
of configurations shown above is the only low energy state ddmstraints are expressed in terms of illegal
pairs (pairs of states which cause an energy penalty if th@gar side by side in a configuration). It is
sometimes convenient to describe a set of states inforreatih as (Upper Case) which denotes any state
represented by an upper case letter.

lllegal Pairs:
1. &@(Any State), (Any State<): & must be at the right end if at al<) must be at the left end if at all.

2. (Upper Case)(Lower Case), (Control)(Lower Case), (Ugaese)(Control) : Lower case sites before
control sites before upper case sites.

3. (Contral)(Control) : At most one control site.

B

(Lower Case 0KK)) (Upper case 05>)): Lower case an& sites must be buffered from upper case
and® sites by a control site.

w®©), WE: © sites beforew andw sites.
BDwW, ®U: W and sites beforek) sites.
uw®, V®, w®, w®: Control turns at the left end of unentangled and waitingssit

@O, @w: Control turns at the right end of unentangled and waititessi

© © N o v

w W), WL): W and) sites should come befoiw) andw) sites.

10. &®, ©>: Will be used to enforce the correct initial configuration.

11. @@, @®, ®®: Will be used to enforce correct initial configuration.

12. W, W@, ©Q: Will ensure number of sites iw and@ is same as the number of siteswhor w.
13. & 0@1, e 1(—:90 : Will ensure pairs of qubits are properly entangled.

14. & 0@1, e 1@0 : Will ensure pairs of qubits are properly entangled.

To define the set of terms arising from the illegal pairs ag #et on states (and not jutstate subsys-
tems), we simply sum over all combinations of qubit valugseet for constraints in itemis3 and14 which
are explicitly specified. For example, the illegal puire gives rise to the termw @) (W ®| which is then
is expanded as follows:

W@ ) (W®] + W@ ) W@, | + |V, @)W, & + |V, @) (W, ®,]

The resulting term obtained from adding all the constraafitsve iSH ;.

We will often make use of the standard basis for our quantusteay where a state in the basis is first
specified by its configuration and then by ar 1 value for each2-state subsystem in the configuration.
Although we will ultimately insist that legal configuratiswlo not contain any illegal pairs, it will be conve-
nient to work with a larger set of configurations/states Wwtinly omit illegal pairs listed in items 1 through
8.

Definition 2.1 A configuration is said to bkegalif it has no illegal pairs listed in item$ through12. (The

illegal pairs in itemsl3 and 14 apply only to states). A statelsgalif it has noillegal pairs. A configuration
or state issemi-legalif it does not contain any of the illegal pairs listed in iteth¢hrough 8.
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We start by characterizing the set of semi-legal configonati In doing so, we will use the following
notation: (—:9* will denote a sequence of sites in st&eof arbitrary (possibly zero) lengti® + @ + &)
is a single state which is eith@ or @ or &. e will denote an empty string of symbols.

Lemma 2.2 The set of semi-legal configurations are those configuratishich conform to one of the ex-
pressions below or any substring of one of the expressidiesvbe

(R+@ (W +®(O+0+8)(W+0)E® (S +e¢)
(4@ (@D +®)(W+0)® (S +e)
(@ +)@ (W +Q)QO (S +e¢)
Proof: Constraintl ensures that if there is>), then it must be the right-most particle in the chain. Sim-

ilarly, if there is a< then it is the left-most particle in the chain. The remainatgtes are all either lower
case, upper case or control states, so semi-legal stateédenokthe form

(2 + €)(Lower Caset Control+ Upper Casg (> + ).

Constrain2 says that lower case sites must precede control sites whishpreced upper case sites, so we
have:
(Q + €)(Lower Casg*(Control)*(Upper Casg (> + ¢).

Constraint3 enforces that there can be at most one control state in a raghwtelds:
(K + ¢)(Lower Casg*(Control+ ¢)(Upper Casg (> + ¢).

Constraint4 says that if there are particles in a lower cas&ostate and there are particles in a upper case
or & state, then there must be something to buffer them. This thomgecan only be a control site because
the configurations are restricted as indicated above. Tkusww the configuration must be a substring of:

(K + €)(Lower Casg*(Control)(Upper Casg (> + ¢).

Constraints in iten® ensure that within the lower case sit€),must precedew and® sites. Constraints
in item 6 ensure that within the upper case sitUs,and W sites must preced® sites. So a semi-legal
configuration must be a substring of:

(@ +6)@" (@ + ®)*(Control) @ + ©)*®"(® +¢)

If the control symbol is one c@, @, @, there are no further constraints. If the control symb®@ior ®,
then constraint says that we have nu or W particles. If the control symbol i), then constraing says
that we have n or W particles. [

Any state that corresponds to a configuration that is not-$egai will have an energy penalty from one
of the terms from the first eight items in the list of illegaliga Thus, we can focus our attention on the
semi-legal states. The following two lemmas show that thesition rules are well behaved on this set.

Lemma 2.3 The set of semi-legal states is closed under the transitioles in both the forward and the
backward directions.

Proof: We will argue that if a configuration does not contain any efitkegal pairs listed in items through

8, the same will hold after the application of a transitiorerun either the forward or reverse directions. Since
a control state is involved in every transition rule, we assuhat the configuration before the application of
the rule has one control state. We will address the illegas fiated in itemsl throughs:
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>(Any State), (Any Statel<): The transition rules do not create, remove or move the enttena
states<) and®), so no illegal pairs of this form will be created by the apalion of a transition rule.

2. (Upper Case)(Lower Case), (Control)(Lower Case), (Ufpase)(Control) : None of the rules in
either direction place an upper-case state to the left af¢inérol site or a lower-case state to the right
of the control state.

3. (Contral)(Control) : None of the rules create or elim@atcontrol site from the configuration, so the
property that the configuration has at most one control sitdoe/maintained.

4. (Lower Case 1<) (Upper case 1>): The configuration before the transition rule has the priype
that all the sites to the left of the control site are lowerecas<) and all the sites to the right of the
control site are upper case . After the application of a transition rule (in either theviard or
backward directions) this will still be the case becauseerairthe pairs in the transition rules violate
this condition.

5. w®), WE: Since we are assuming that the configuration was semi-tezfale the application of
the rule, the control site must be to the right of the offegdiair. Since we did not havew®) or
a (W®E pair before the application of the rule, the applicationtaf tule must have replaced a pair
(Control)X or Y(Control) by®(Control), where Y is any state besides The only transition rules
of this form are Rule$ and7 applied in the forward direction. This implies we would hédnzd one
of the following pairs before the transitiorw®, W®, w®, w®. However, these are all illegal
pairs listed in Itenv in the list of illegal pairs.

6. ®wW, ®WV: Analogous argument to itef

7. WO, W, w®, w®: The only way to get an up arrow by applying a rule in the fovdirection
is to use transition rulé. However, in this case the site to the left of the control siigst be ane
before and after the transition. The only way to get an upvatyg applying a rule in the reverse
direction is to use transition rulgor 7. This means that the site which transitions to Qer ® was
previously ane. However, this would imply that the configuration before &pplication of the rule
had an an occurrence of eithwr@) or W ®) which are both illegal.

(o]

. QU, Qw: Similar argument to itend.

Lemma 2.4 For each semi-legal state, at most one transition rule wplbly in the forward direction and at
most one will apply in the reverse direction.

Proof: We use the fact that a semi-legal state has at most one sitedntel state. Every transition rule,
whether applied in the forward or reverse direction, inesha control site and a site to the immediate left or
right. Furthermore, the type of control state uniquely datees whether it will be the site to the left or the
right that it will be involved in the transition in the forwddirection. The same holds true for the reverse
direction. [

We now define a graph where each state in the standard bageniffied with a node in the graph and
there is a directed edge from one state to another if thergrémaition rule that takes one state to the other.
We will call this graph thestate graphfor our construction. Lemma 2.3 implies that the set of skega
states is disconnected from the rest of the states. Furtimerroy Lemma 2]4, the graph when restricted
to the set of semi-legal states forms a set of disjoint daegtaths. If there is a maximal path in the graph
that has no illegal states, then a uniform superpositiom thvese states is a zero eigenstate. Our next task is



to characterize these paths. We would like to be able to ssythle zero eigenstates are exactly those that
correspond to the sequence of configurations illustratdizeas our target ground state. Unfortunately, this
is not necessarily true. For example, we could have a legtd sthich does not have a particle in a control
state at all and this state will correspond to a componeriidrstate graph that is a single node. We can not
enforce by local checks that a state has a control state. Woywee will be able to make this assertion if we
assume that the state begins and ends Kitand>. Later we will need to add terms to our Hamiltonian to
ensure the endpoints of the chain are in these delimetesstat

Definition 2.5 A state idbracketed if the leftmost particle is in stat<)and the rightmost particle is in state
>.

Note that the transition rules do not alter the number ortlona of the> and < sites, so the set of
states in a path in the state graph are either all bracketall wot bracketed. Thus, we can refer to a path
as bracketed or not. Now we have several definitions that Weisa to characterize the states in the target
ground state. The first definition enumerates a set of priegdtiat guarantee that the entangled pairs span
the center of the chain.

Definition 2.6 A bracketed state is said tmlancedif it is semi-legal and the following conditions hold:
1. Every site in stat or w occurs to the right of every site in staL or W in the chain.

2. If the control symbol i€, & or @ then the number or particles in sta© is one more than the
number of particles ir®) and the number of particles in staL or @ is one less than the number of
particles in statew) or w).

3. If the control symbol i®, @ or ©, then the number or particles in stae is equal to the number of
particles in state®) and the number of particles in staL or W is equal to the number of particles
in statew or W),

4. If the control symbol i€ there is one particle in stat© and if the control symbol i©), there are at
least two particles in stat®©).

5. If the control symbol i@® there are no particles in state) and if the control symbol i® or ©, there
is at least one patrticle in state).

The next definition is the property that ensures that quatestare properly entangled.

Definition 2.7 Consider a balanced state in the standard basis witbarticles in state®. The state is
consistentif for i = 1 tor, thei*” site in state®) from the right end has the same qubit value asithetate
in © from the left. Furthermore, if the control symbol&, & or @, then the qubit stored in the control
state is the same as the qubit stored in the rightmost siteate ©.

We will show that if a path in the state graph is composed ofketed, balanced and consistent nodes
then the first state in the path has the following configurato ® O™ W' . We say that any state that
corresponds to this configuration isgaod start state The next lemma says that if a state is bracketed,
balanced and consistent, then it belongs to a path whosa& stidte is a good start state. Furthermore the
path is composed entirely of legal states. Then in the fallgwiwo lemmas, we show that if a state is
bracketed but not balanced or consistent, it belongs totatpat has at least one illegal state. This will
leave three possibilities for a path: it is not bracketed,dontains an illegal state, or it starts in a good start
state and is composed entirely of legal states.

Lemma 2.8 Consider a bracketed, balanced and consistent state anplathey in the state graph to which
it belongs.p contains only legal states. Furthermore, the start state isfa good start state.
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Proof: We will enumerate the possibilities for a bracketed, badanand consistent state and show that
after a transition rule is applied in either the forward afemse direction, it remains bracketed, balanced and
consistent. Furthermore, none of these states contaiflegal pair. We will also show theo ®0"" W™ &

is the only bracketed, balanced, consistent configuratonwhich there is no tranisition rule that applies
in the reverse direction. This makes it the only candidatetlie first configuration in the path. Let

m = (n — 3)/2. We will refer to the sequence ), ©, w andWw particles as theniddle sectionWe will

break the argument down into cases, depending on the typmbbt symbol in the state:

@®: There is only one balanced configuration for this contratestvhich is ®0"™" @™ . The only

rule that applies to it does so in the forward direction argliits in<©&© @™, Thisis a
balanced configuration. Since the rule entanglesehgubit with the@), it is also consistent and
legal.

@: The possible configurations a<x© @’ @ U "I @™ ), whered) < j < m-10r@Q@©G" @ ‘éw" >,
where0 < j < m. If the control state is at the leftend of the middle sectind the state is consistent,
it will transition in the reverse direcion t @O W™ S. If the control state is at the right end of
the middle section, it will transition in the forward direm to @@ ®" @ . Otherwise, when
a transition rule is applied in the forward direction, thentrol state moves one site to the right and
when a transition rule is applied in the reverse directibmaves one site to the left. The state remains
bracketed, balanced, legal and consistent.

m—i . m—i

@®: The configuration must have the following forr< ei(i) ] ) ' >, wherel < ¢ < m. If
m = i, there is no transition in the forward direction. nif < 4, in the forward direction it goes to
2@ T'O0™ '@ '®'®. The rule entangles the qubit values for @eand the rightmos®),
so the state remains consistent. In the reverse directigoes to< @ Z'@ o wm_i ' >. The

resulting states are bracketed, balanced, consistentegad |

@: The first possible configurations & @ g j@ 0" T @™ ® ), wherel < i < m — 1 and
0<j<m—i—1. The second i©® '&"™ "' W OW" ' '®'®), wherel <i<m—1and
0 < j <m — 1. If the control state is at the leftend of the middle sectind the state is consistent, it

m—1i s m—i 1

will transition in the reverse direcion <) (€ i@ U W E) . If the control state is at the right

end of the middle section, it will transition in the forwaridettion o0 © @™ '@ ' Q®'>.
Otherwise, when a transition rule is applied in the forwardation, the control state moves one site
to the right and when a transition rule is applied in the regatirection, it moves one site to the left.
The eesulting states are bracketed, balanced, consisigegal.

1 ~m—i—1

@: The configuration looks like< oG w m_Z@ ' >, for0 < ¢ < m — 1. In the reverse
direction, it transitions t<) € o e m_i@ ©'®. In the forward direction, it transitions to
2@ @™ T @® ™. The forward transition rule transfers the qubit value frra
(D state to the leftmos®), so it remains consistent. The resulting states are bregtkéalanced,
consistent and legal.

m—j—i

©: The first possible configuration <€ QT wj@ W 0’ >, wherel <i <mand0 < j <

m — i. The secon@®'G’'@0™ 7 '@™ ' ®'®), wherel < i < mand0 < j < m —i. If the
control state is at the leftend of the middle section and taee 3s consistent, it will transition in the

m—1i ~ m—i 1

forward direcion to<® ' ® 0 W £) (3. If the control state is at the right end of the middle

section, it will transition in the reverse direction ©@'©"™ '@ m_i“@ 5 ', The @ state
takes the qubit value of the leftmcE: that it replaces and so the state remains consistent. Cifeerw
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when a transition rule is applied in the forward directidme tontrol state moves one site to the left
and when a transition rule is applied in the reverse diraciiomoves one site to the right. The state
remains bracketed, balanced, legal and consistent.

Lemma 2.9 If a state in the standard bases is bracketed and semi-legiahbt balanced, it will evolve
eventually (via forward or backwards rules) to a configuoatiwhich is not legal.

Proof. Starting with the first condition on balanced configuratjotie only way for a configuration to
have aw or w) to the left of aL or W and not have an illegal pair from itefy is to havew (Control)V).
Because of the constraints in iteands, the control state must be one@¥, & or ©. In the next step, the
configuration will transition tcw) W) (Control) or (Controliw) @which will create an illegal pair from iter.

Now let’'s assume that the condition on tEeand©) sites is violated. We will first address the problem
that there are too man® sites. This will eventually evolve backwards to a configorathat looks like
Qe - ©WW...ww@>. Transitioning in the backwards direction, tI> site triggers the control
state to transition t@ instead of@, resulting iNQ @ --- ©@WW ... ww&>. The® state will sweep
leftwards in the reverse direction and eventually hit @esite resulting inQ@© --- ©@OVW ... WWE
which will transition toQ®©) - -- @ ®LWWW ... ww ), creating an illegal pair from iternl.

Similarly, if there are too manye) sites, we will eventually transition backwards to a confagian
that looks likeQ@WW ... ww@® --- ®E. This will transition tQEWVWW ... WWEA® --- ©O.
The @ state will sweep leftwards and eventually hit tezresulting inQ©@OV U ... WW®E --- ©G.
This transitions backwards QOO L ... WwW® - - - ® which again creates an illegal pair from item
11. We need to handle the configurati®® ... ® & separately because ti® state does not have a
transition in the reverse direction. However, this configion is disallowed because tIB® pair is one of
the illegal states pairs in itefl.

Now we will assume that the number &f sites ande) sites are properly balanced. If we have too many
w sites, we will eventually reach by forward transitions afgguration that looks like.. @ ®@UwWwW® ...
(with potentially morew sites). This configuration will evolve as follows:

ewWOWE
OWWE
e@DwwE

This creates an illegal pair in iteir2. Next we consider what happens if the numbeEbsites ande) sites
are properly balanced and we have too mungites. We start with the case where there is a surplus of two
or more@) sites:

.eQuu®E...

This creates an illegal pair from itei2. Now if there is only one too many) sites:

11



L.eduE...
L.ee0®...
. eEeQ®...

Once again, this creates an illegal pair from itén

Finally, we handle the case where we have a double arrownaithsiBa single arrow (or vice versa). In
the up-arrow case® and ©@® are both illegal pairs, so the condition is checked locdlitythe right-
arrow case, if there is a configuration witi@land more than on®), it will evolve by reverse transitions
to ©©@ ... which transitions tce ®© . .. which contains an illegal pair. Similarly, a state with cez
and a control in stat® will transition in reverse t0©®@ . .. which will go to @ © . .. which contains
an illegal pair.

[ ]

Lemma 2.10 If a state in the standard basis is bracketed and legal butoasistent, it will evolve eventu-
ally (via forward or backwards rules) to a configuration whiis not legal.

Proof: Since the state is bracketed, we know that if it is not baldntteen it will evolve to an illegal state,
S0 we can assume that the state is balanced by not consiBtentneans that there must be a paite»fand
e particles that don’t have the same qubit but should. Evdigiwee will transition backwards to this pair:

e, ww W@ElE
ONe oI ww@lE
eou u)(w ww@lE

©,8,0..0W.. WW® ...

This creates a violation with one of the constraints in iten The result would be similar if the control
states wa$ or the differing bits were swapped. [

Now that we have characterized the paths in the state graptath composed of legal configurations,
we need to bound the spectral gapif.,.s + Hieqqi- We first need to bound the length of the paths.

Lemma 2.11 The length of any chain of semi-legal states in the statelgia@t most:?, wheren is the
number of particles in the chain.

Proof: We associate an ordered péir, y) with every semi-legal configuration, whetes the number of
sites in a©) or a(® state. If the control site is in a sta®, @ or ®, theny = n. If the control state is in
state® or @, theny is the number of sites in stafw) or w that are to the left of the control state. If the
control state is in stat®, theny is the number of sites in staw or W) that are to the right of the control
state. We define an ordering on these pairs by first comparanfirst index. If the firstindex is the same, we
compare the second index. It can be easily verified that #msition rule applies to a configuration in the
forward direction, the new configuration is associated w&ifiair of strictly greater value. Similarly, reverse
transitions take a configuration to a configuration assediatith a pair of strictly lesser value. Since there
are at mosti? possible pairs, the lemma follows. [

Let S, denote the space spanned by the basis states within a.gdthe thatS, is closed undefy;.
and Hye4q1- Hiega When restricted t&, and expressed in the standard basis is diagonal with nagtineg
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integers along the diagonal{;,,,, when restricted t&, and expressed in the standard basis has the form:

1 1
3 2 0 0
1 1
S N T O
1 1
0 -1 1 -1 o
1 1
o4 14
A
0 0 -3 3

We can now invoke Lemm#4.4 from [KSV02] to lower bound the energy of the overall Hanmilian
for a subspace,, corresponding to a path with at least one illegal state.

Lemma 2.12 Let A, A, be nonnegative operators, aid, L, their null subspaces, whete, N Ly = {0}.
Suppose further that no nonzero eigenvaluel pbr A is smaller tharw. Then

Ay + Ay > v -2sin%6/2,
wheref = 6(L1, L2) is the angle betweeh; and L.

In our case,A; is the propagation Hamiltoniaf},.,s, and its null state, restricted ), is the equal
superposition over all states in the pathi, is the Hamiltonianf;.,;, diagonal in the standard basis. Then
sin? @ is the fraction of illegal states in the path. The minimum zeno eigenvalue 0ff}c4q IS 1, but (as
in [KSV02]) the minimum nonzero eigenvalue &f;,..,.s is (1/K?). In our casek, is the length of the
path which by LemmB&2.11 i9(n?). Thus, ifp is a path containing an illegal state, all statesjrhave an
energy at leas?(1/K3) = Q(1/n%).

Before we summarize the results of this section, we will definset of states which we will use to
characterize the ground spaceff.q,s + Hiega. FOr eache € {0,1, }', we defing¢,) to be the uniform
superposition of the states in the path that begin with thie st configuratioro® " W' & whose qubit
values in thev) particles are set according 10

Lemma 2.13 Consider the set of bracketed, semi-legal states.SLie¢ the space spanned by these states.
If n is even, then the ground energy(@;,ans + Hicgal)|s IS Q(1/n5). If nis odd, the ground energy @
the spectral gap i§2(1/n%) and the null space is spanned be the).

Proof: Consider a path in the configuration graph consisting of degzil, bracketed statesl;, s+ Hjegal
is closed on the space spanned by the states in the pathrdfithe state in the path which is balanced and
consistent, then by definition must be odd. Furthermore, we know by Lenmd 2.8 that the listie in
the path is a good start state and that the path containsegalilstates. The uniform superposition of all
states in this path is an eigenstatefhf.,,,s + Hjcgqa With zero energy.

If there is a state in the path which is either not balancedobrconsistent, then by Lemmas 2.9 and
[2.10, the path must contain an illegal state. Since the teoigany path is at most?, the lowest eigenvalue
in the subspace spanned by the states in this patfilign®). [

2.1 Initializing Qubits

We now add another term to each of the particles which wittédhe ground state to be a highly entangled
state. This term i$U_)(U_|. H;ni; is the Hamiltonian obtained from summing this term as appigeall
particles in the chain. Define
1
¢g) = o7 > o).

2 xe{0,1}m
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Lemma 2.14 Consider a quantum system consisting of a chain pérticles, wheren is odd. LetS be the
space spanned by semi-legal bracketed standard basissté{e,,,; + Hicga + Hini: restricted toS has a
spectral gap of2(1/n®) and|g,) is its unique zero energy state.

Proof: SinceH;,; is non-negative, any state  outside the space spanned by the) will have energy
at least2(1/n%) by Lemmd2.1B. The space spanned by|the is also spanned by a different basis;,),
wherea € {+,—}" and|¢,) is the uniform superposition of all states in the path whdaeieg state is
the state in configuratio® ®U"" W™ S with the qubits in the sites set according te. The|¢p,) are
all zero eigenstates afl.qns + Hiegar- Each|¢,) is also an eigenstate @f;,;;. The only|¢,) for which
Hinit|¢a) = 0 hasa = |+)™ (which is exactlyj¢,) ).
Now consider somép,,) with a # |+)™. This state will violateH,,;; in at least one term for at least the

first state in the path. Since the path has length at mistve know that(¢, | Hinit|6a) > 1/n2. Thus, the
energy penalty off;,;; for |¢,) is at leastl /n?. n

2.2 Boundary Conditions

We now want to add an energy term that will penalize statesatiganot bracketed. If we can put a position-
dependent term on the first and the last particles in our clharcould simply add the terf? — |<Q) (<] —
|>)(>)]) to the first and last particle in the chain. This would add aafigrof at least one to any semi-legal
state which is not bracketed. The resulting Hamiltonianrisstfation free. Although there are position
dependent terms, each of the terms in the Hamiltonian igpiewmi#gent of.

Alternatively, we can add the following position-indepentiterm to our Hamiltonian which will penal-
ize each particle for not being in one of the bracketed st&fs)I — |<Q)(<Q| — |S)(>)|. Hpracket IS the
Hamiltonian obtained from summing this term as applied kpaitticles in the chain. In order to do this, we
need to weightd;,q,s + Hicgar + Hinit t0 €nsure that the overall Hamiltonian is non-negative aadian’t
have endmarkers occurring in the middle of the chain.

Lemma 2.15 Let H = n(Hrans + Hiegat + Hinit) + Hyracket, the unique ground state éf is |¢,) and its
spectral gap i€2(1/n").

Proof: LetS be the space spanned by the set of states in the standarthiaasise semi-legal and bracketed.
H is closed onS. First we consider standard basis states outside df the state is not semi-legal, it will
have energy at leastfrom then H. 4, term. The energy frontly,.....: is at leask/n — 1 for each particle
giving an overall energy df — n for the Hy, 4.k t€rms. Sincedy,..,,s and H;,;; are both non-negative, the
energy is at least for any standard basis state that is not semi-legal. If adstahbasis state is semi-legal
but not bracketed, it will have at most o<»or & site. This comes from our characterization of semi-legal
states in Lemmia2.2. ThuB,....: Will have energy2/n on all but at most one particles and enegy. — 1

on the remaining particle. This results in an overall enafygt leastl.

Any state inS is an eigenstate affy,.....: With eigenvalued. Thus, the ground state &f is still |¢,)
and any other state i has energy that i€(1/n°) from then(Hyqns + Hiegat + Hinit) term. Note that
|H|| is O(n?). This comes from the observation ththas energy)(n) for each particle or pair of particles
and there are — 1 neighboring pairs in the systeni can then be normalized so that|| is O(1) which
will give a spectral gap of2(1/n7). [ ]

2.3 Entropy of Entanglement

We will use the following lemma several times in our discarsdf the entanglement in the finite chain in
this section and the discussion of the cycle in the next@ecti
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Lemma 2.16 Let |¢;) for 1 < ¢ < r be a set of states of a quantum system @farticles. LetA be a
subset of the particles and I& be the complement of. For each statgi);), let S; be the set of standard
basis states in the support pf;) and letS7* be the resulting set when each stateSinis traced down to
the particles inA. S5 is the set resulting from tracing down the statesSirto the particles inB. p; is the
density matrix forjy;) and p#! is the resulting state whep is traced down to the particles id. Define a
new statgy)) = S°7_, a;[v;). If all the S7* are mutually disjoint or all theS? are mutually disjoint, then

S(p™) = |’ S(pf).
=1

Proof: Let's assume first that th&” sets are mutually disjoint. We will establish thet = Sy yaiPp;‘.
The lemma then follows from the fact that the entropy is ceaca

p= 2> ol (il = Y laal*pi + Y afailuby){uil
i=1

i=1 j=1 i£j

The last sum consists of terms which are in turn sums overstefithe forme|x) (y|, wherec is a complex
numberx € S; andy € S; for i # j. We can express asa,b, wherea, € S]A andb, € SJB. Similarly, we
can expresg asa,b, Wherea, € S andb, € SP. When we trace out the particles B the terme|z)(y|
becomes:|a,)(a,|(b:|b,). By assumtion), # b,, so all of the terms if);) (1/;| go to zero wheri # j.

If we know that theSiA sets are mutually disjoint, we can apply the result to theisahd use the fact
thatS(pjl) = S(p]B) for all j andS(p?) = S(p?). ]

Now we need to determine the entropy of entanglement forrinergl states,). We start by calculating
the number of configurations in a path that begins with a géad state. We define ateration to be the
sequence of configurations beginning with the control plarth state® or @® until it transitions ta® again.
The first configuration in the path hagfx control state and the last has @hcontrol state. If there are
particles in stateL) at the beginning of an iteration, the iteration takes + 1 transitions.m ranges from
(n—3)/2 down tol which gives(n — 3)%/2 + 3(n — 3) /2 transitions and” = (n —3)?/2+3(n—3)/2+1
configurations in the path.

We will need to divide the path into two parts since only theelgpart of the path has high entanglement.
We break the path at the point when the state (nas 3)/4 + 1 particles in statee). LetT; denote the
number of configurations in the first part of the path &hdthe number of configurations in the second
part of the path. The second part of the path correspondsetdat(n — 3)/4 iterations and sds =
(n—3)%?/8+3(n—3)/4+ 1. For everyn > 5, there is some constant> 1/4 such thatT, = T Let|¢1)
denote a uniform superposition of the fi#t configurations in the path and-) the lastT’, configurations
in the path. Recall that each configuration corresponds tata which is a superposition of tl&* basis
states corresponding to tB& ways of setting the qubits in the 2 dimensional subsystemean i there are
more thanm particles in states that can hold a qubit, we know that thexealy 2™ ways to set the values
of the qubits since we are guaranteed that the state is temis{sée. entangled pairs are really entangled).

We have that
[6g) = V(1 = c)|d1) + Velba),

where (¢1|¢2) = 0. All of the configurations ir¢,) start with@®©"® '..., wheres = (n —3)/4. The
configurations in the support ¢f;) have at moss particles in stat€e). This means that when we trace out
at mostn — s — 2 particles on the right end of the chain, we can invoke Lemmé.2Thus, we can lower
bound the entropy of entanglement fgx) which will serve to lower bound the entropy of entanglement
for |¢4) to within a constant factor. Note thatsf< (n — 3)/4 and we trace out — s — 2 particles, we need
to break the path at the place where theresarel particles in stat€e), but the latter portion of the path will
be larger and this will only serve to increase the value. of

+
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|¢p2) is a uniform superposition of states in the standard baséscai organize these in25 equal sized
sets corresponding to the value of the qubits in the figsrticles in statee). Since these first qubits are
entangled with qubits on the right end of the chain, if we tale standard basis states from two different
sets, these states must also differ somewhere in theis fatgs. Thus if we trace outparticles on the right
end of the chain for any € {s+2,n—s—2}, the resulting reduced density matrix expressed in thelatan
basis will be block diagonal witB* blocks each of which has a trace 2f°. The entropy of the reduced
density matrix is therefore at least

3 Cycles and the Infinite Chain

We now describe how to extend the construction for finite mhadd cycles and the infinite chain. The
parameter is no longer the number of particles in the system but justrarpater of the Hamiltonian that
determines the spectral gap and a bound on the entanglemtenpyein the ground state. We will assume
throughout this section thatis odd and that the number of particles in the cycle willisdor anyt > 2.
We will show bounds on the spectral gap and the entanglenmérdpy that are independent 6fso ast
goes towards infinity, the bounds will still hold which imgdi that they also hold for the infinite chain. The
ground state is degenerate but any state in the ground splheshibit entanglement entropy that is linear
in n. As before, we describe a single two-particle term and afbyalt/term to every neighboring pair on the
cycle.

Hyrans remains unchanged, but we make several small changes toatimdtéhian H;.,,;. The first
change is that we allow the pe>&). For a particular state, we will refer to a sequence of sikaneling
from a & site through the nex> site as asegment The set of legal and semi-legal states is exactly the
same as it was for the finite chain except that we can now have than one segment around the cycle. For
example, we could have the following state wrapped aroungie.c

QOELOLWWEESL®VLVLWWWS LEDE .

Segment Segment Segmens

Note that it would be possible to replace the [>i<) by a single delimiting symbol, but it will be convenient
to use the same notation we have developed in the previotisrsec

We will also add some additional illegal pairs. These > and anything of the forn< X for any
state X not equal to® or ©. These additional illegal pairs serve to disallow segmentiength two
or three because a sequence of the fKKX S or ©& will contain an illegal pair. (The pai®® is
already disallowed in the original list of illegal pairs teim4.) They have no effect on the ground state of
Hyrans + Hiega foOr larger chains or segments since they never appear inrtlung state configurations.

We will fix a set of locations for th<> <) pairs in the cycle, which will then determine the segments. L
S be the subspace spanned by all semi-legal states in theastidoakis that have these segmefts., s is
closed overs as it was for the chain. The Hamiltonidh will be the sum ofH,..,,s and a set of terms which
are all diagonal in the standard basis which meansShaill also be closed undel. We will characterize
the eigenstates and corresponding eigenvalués iof S.

DefineH yqin = Hirans + Hiegai + Hinit- These are the terms that we borrow from the previous section
on 1D chains (with the changes i.,,; mentioned above). We will add in another Hamiltonidg.. that
will be designed to be energetically favorable to segmehsizen. The final Hamiltoniand will have the
form p(n) Hchain + Hsize fOr some polynomial im.

Since all two-particle terms are zero on the [>i<), we can omit the two-particle terms which span two
segments when consideriif)s. Now H can be divided into a sum of terms, each of which acts on festic
entirely within a segment. Lé’ be the terms which act on particles within segmeme can defind?

) . size
and H, . similarly. An eigenstate off in S is then a tensor product of eigenstates of eAChacting
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on the particles in segemeit The energy is the sum of the energies of eathon their corresponding
eigenstate.

ConsiderHqns + Hiega + Hinit from the previous section restricted to the subspace spdmnthe set
of all semi-legal bracketed states acting on a chain of kehgThis is exactly the same operator &S, ;..
restricted to subspacg, acting on the particles in segmentf length/ (with all other particles traced out).
From Lemma2.14, we know thatlifs odd, the spectral gap §(1/1°) and there is a unique zero eigenstate
|¢§> (with an additional parametémow denoting the length of the chain).(Ifs even, then the minimum
energy is2(1/1%). Note that in the case of the chain, we did not have o>eand<) sites in the middle of
the chain because they were ruled out by the illegal pairshdrcase of the cycle, we allo>&) pairs in
the middle of the cycle, but we are not handling them for nosalbee we are choosing to focus on a single
segment.

We are now ready to define the final componentlofRecall thatl}, is the length of the path in the state
graph corresponding tgy). In other words), is the number of configurations in the supportgf). In
Sectior 2.8, we determined thB{ = (n — 3)2/2 + 3(n — 3)/2 + 1.

1 T,
Hiize = —1 = 2|@)(@] + ——5 (I0)(®| + [®)(®| + |®)(®]) -
We will analyze the ground energy of a segment as a functids eEngth. We will need to use the Projection
Lemma from [KKRO6] which will allow us to focus on the grounpeze ofH?, . .
Lemma 3.1 Let H = H, + H, be the sum of two Hamiltonians acting on a Hilbert spate= 7 + 7.
The HamiltonianH> is such that7 is a zero eigenspace fdi, and the eigenvectors i+ have value at
leastJ > 2||H||. Then

NPy < A ),
J = 2|[Hy ||

A(Hh|r) -
Corollary 3.2 There is a polynomigh(n) such thatp(n) is O(n!?) and for any segment of size at mest
andHi = p(n)thain + H;ize’

NH'|s) = by Hiieldg) — 1/2n%

Proof: We use the projection lemma wit, = p(n)H!, .. andH; = H!.... Note thatH; need not be
positive, although it does need to be positive/om order to yield a non-trivial lower bound’, the ground
space forH, ..., is just the statép,). We need to establish thaf’,.. || = O(n). Sincel < 2n, the first
term isO(n). The Hilbert space is the set of all semi-legal, bracketed states for that segenso there
can be at most one site §, ® or ® and at most one site i<). Thus the second two terms i, are

at mostl + 7, /n for any state inS which is alsoO(n). The spectral gap off?, . is Q(1/n), so we
can choose(n) so thatp(n) is O(n'%) and.J > 2n?| H,||? + 2||H|| which will lower bound\(H?|s) by

<¢Q|H2ize|¢g> - 1/2n2' u

Note that we are not able to use the projection lemma for \anyell because th&)(1/1°) gap will
not be large enough. In the lemma below, we determine thengrenergy of a segment as a function of
its length. Largd (greater thar2n) are dealt with separately with an argument that does natineghe
projection lemma.

Lemma 3.3 The operatorH® acting on thd particles of segmernitrestricted to semi-legal bracketed states
will have ground energy if I = n and ground energy at leasy/2n? for any other value of.

Proof: Any sequence<) X & will have an illegal pair.< & is also illegal. Therefore, we can assume that
I > 4. We consider four different cases based on the size of thraey.
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[ =n:

Consider the statg}). (¢y|Hcnainl¢y) = 0. Recall thatg,) is a uniform superposition of states.
There arel;, distinct configurations represented in the support¢gh each of which a®™ states
for m = (n — 3)/2. Each configuration has one haGasite and the number of configurations that

contain a), @ or ® state isn — 2. Therefore

no T, (n—2)

2 =0.
Ty T,

<¢Z|H;zze|¢g> =

n

> 2n:

Let ¢y be a state in the standard basis that is semi-legal, bratclket has length. We will only
lower bound(y|H?,, |¢). SinceH!, . is non-negative, the lower bound will hold for all &f".
Furthermore, we will omit the last term ;.. because this only adds to the energy. Every standard
basis state in a bracketed semi-legal segment of Idnugis exactly one occurrence <f. Therefore

the energy of a segment of lengthvill be at least /n — 2. Sincel > 2n + 1, this will be at least /n.

2n > 1 > n.
We will first handle the case thats even. From Lemma 2.1.3, we know that the lowest eigenvdiue o
Hirans + Hiega ON @ chain of length is 2(1/1°) which is in turnQ(1/n®). The other terms i
are positive and thély,..,s + Hicqu are weighted by a factor ¢f(n) which bring the lowest energy
to Q(1).
Since we can assume thaindn are both odd, we know that> n + 2. We will use the projection

lemma for this case and show that | H;..|¢.) > 1/n? which by Corollary3.2 will be enough to
lower bound\(H?) by 1/2n2. We osberve that

(n —3)2 3(n—3)+1:(n—1)(n—2)

T, = ~ =
”2+2 2 7

S0T,/(n —2) = (n — 1)/2, and

' I T, -2
hiitsd) = -2+ (225) ()

ol n—1
T on T -1
o l=-n n-l
T oon T1-1

AV

|
S
7 N\
S

|
|‘r—t
—_
N~

AV

|

S
N
| =

|
—_
N———

AV
[\V]

vV
| =

I <n:

We can use the same reasoning as in the previous case to asimis odd. Since botl andn
are odd, we know thdt< n — 2. Now we will use the projection lemma for this case and shat th
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(¢} |H; . |¢L) > 1/n* which will be enough to lower boundl(H) by 1/2n?.

i l—n n-1
(GglHizeldg) = —— +7—

As a result of LemmBa 313, we know that if the number of parsidgtethe chain is:¢, a multiple ofn, and if

n is odd, then the ground energy HBfis zero and the ground space is spanned by the states thatairis
copies of¢y) tensored together. There are actuallguch states, which can be obtained by taking one and
rotating it by one positiom times along the cycle. We will call thesey), . .., |¢¥,—1). Any eigenstate of

H that has a segment which is not equahtwill have energy at leas®(1/n2) while the norm of a single
term in H which acts on a pair of neighboring states is at n@gt'?). This means the final spectral gap
is O(n'?). We still need to handle the case where there is a configaratfach is semi-legal but has no
segments. This would just correspond to a configuration Idbaler case states or all upper case states.
H hq:n Would evaluate to zero on such a state But.. would bent/(n — 2) which would be at least/2

for anyt > 1. Since these bounds are independentarid hold for arbitrarily large, they hold ag tends
towards infinity.

3.1 Entropy of Entanglement

Consider the cycle witht particles, a basis staté;) and a setd of contiguous particles in the cycle. We
say that a particle il is goodfor |+;) if it is the p'* particle in a some segmegtwhere2 < p < n/4 or
3n/4 < p <n—1andthe(n — p)** particle in that segment is not ia.

Lemma 3.4 Consider a statdy;) and a contiguous sefl of r particles on the cycle. We assume that
r < nt — n. When|v;) is traced down to the particles iA, the entropy of the resulting state is at least the
number of particles iM that are good for«);) divided by4.

Proof: The segments if);) are fixed and we shall number them frdnto ¢. |¢;) is a tensor product of
states|t! ), where|yy) is the ground state for a finite chain of lengthfor segment;j. The set of good
particles can only come from two different segments. Thizeicause if a segment contains a good particle,
one of the endpoints id must be contained in that segment. We will arbitrarily dadide segmengsandk.
Let A; be the set of good particles jrand A, be the set of good particles in The statgs);) can be written
as|y;) = |¢7) @ [¢F) @ 7). Where|y) is the state for the rest of the cycle (all sites not in segrjent
k).

The support oﬂz/;g) can be partioned into two sets depending on whether the gaxitlps are all in
an entangled statee{ or ()) or whether there is a good particle that is not in an entahglate. Lel1¢§>
be the uniform superposition of the states in which all thedgparticles are entangled ahﬁb be uniform
superposition of the states for which there is a good siteish#ot in an entangled state.

Since the good particles are all either in the firgtt or lastn /4 particles in the chain, we can use the
same argument used in Sectionl 2.3 to determine that thereoisstantc; > 1/4 such that a fraction of;

of the states in the support pf;) are in the support dfs!). We can writeje!) = /&;|¢7) + /T — ¢;|¢7)
and|yF) = \/cx|¢F) + T — cx|¢F). ¢ is also at least /4 although not necessarily equaldg
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|hi) = (\/ (1= ¢j)(L = ew)lD)IF) +\/ei (1 = en)lo]) o) + /(1 = ej)enld])|of) + \/0j6k|¢?>|¢f>) ® [f).

_ Furthermore, the four states in the above sum satisfy theitoms for for Lemmad 2.16 for the set.
|97)|¢¥)|b1t) has| Ag| entangled pairs betweehand the rest of the cycle. Similarlys?)|¢F)|4F) has| 4|
entangled pairs and?)|#¥)|vF) has|A;| + | Ax| entangled pairs betweet and the rest of the cycle. We
then have

S(pt) = ¢j(1 = e) (JAl) + (1 = ¢j)en(|Akl) + cjen(| 4]+ [Ak]) = 2 (145] + [A])-

|

In the next lemma, we extend the lower bound on the entangietonean arbitrary superposition of the

|9i)-
n—1

Lemma 3.5 Consider a cycle witht particles. Lety) = > """ o;|t;). For any fixed- < (n —1)t, pick a
random set4 of r contiguous particles in the cycle. The expected entropytafinglement ofy)) when the
state|v) is traced down toA is at least(min{r,n/4} — 2)/16.

Proof: Consider a particulary;). With probability 1/4, the left end of the segment will fall in the last4
particles in a segment. if < n/4, this means that all but two of the particles are good (thetkans are
the sites in stat and). If n/4 < r < n/2, thenn/4 — 2 of the particles are good. With probability
1/4, the left end will fall in the range:/2 + 1 to 3n/4. If r > n/2, then the number of good particles is at
leastn /4 — 1 becaused will contain all of the particles in the last quarter of thgsent. Since' < nl —n,
it can not wrap around and contain any of the particles in ttst fjuarter of that segment. Thus, with
probability at least /4, there are at leashin{r, n/4} — 2 good particles irA for |¢;). Using Lemma 34,
E[S(pf)] > (min{r,n/4} — 2)/16.

Let B be the complement oft and SZ be the set of standard basis stateg/ip) traced down to the set
B. If A has at mosht — n particles then every state in eve${’ contains &< site. Furthermore, for the
states within a singlé?f, the K sites are the same and they are all different from<hsites for the states
inaSP fori # j. Thus, theS/’s are all mutually disjoint and we can apply Lemma2.16 anddrity of
expectations to get
min{r,n/4} — 2

16 '

E[S(p"] =) leilElS(p")] =
1=1
|

Since the random variable denoting the entropy of entargeiior a randomly chosea of sizer is in
the range) to log(21)r, we can apply Markov’s inequality to determine that with stamt probability the
entanglement entropy of a randomly choseis Q(min{r,n}).

Finally consider the translationally invariant stéfe = zy;olu/\/ﬁ)w. For any fixed sei, A will
have at leastin{r, n/4} good particles for at least/4 of the|+;). Applying Lemma$ 2.16 arid 3.4 to these
states, we get that the entanglement entropy &dr |®) is at leas{min{r,n/4} —2)/16 = Q(min{r,n}).

4 Open Questions

There still remains an exponential difference in the depand onl /A between Hastings’ area law and the
lower bound presented here and thatin [GHO08]. Resolvirgdiscrepancy may involve strengthening the
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upper bound given in the area law. There are also issuesddiathe translationally invariant construction
given here that would be worthwhile to clarify. For exampeit possible to obtain a construction on the
infinite chain that achieves the same entanglement entrofpyith a unique ground state? Can one obtain
a lower bound of2(min{m, n}) for the entanglement entropy on all regions of sizénstead of a constant
fraction of the regions? Is there a 1D Hamiltonian for whibk £ntanglement is linear in the region size
simultaneously for all region sizes? The latter propertyld@nly be achieved on a gapless system because
the 1D area law indicates that any non-zero spectral gapmplly a finite upper bound on the entanglement
entropy for any region. It is not known whether this can beeaad even for a Hamiltonian with position-
dependent terms. Finally, how robust are the entanglermepepies in the ground state to small fluctuations
in the terms of the Hamiltonian? It seems likely that the tacsion presented here will break with small
errors in the transition rules. Is it possible to obtain dtfsmlerant version of this construction?
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