
ar
X

iv
:0

90
1.

11
07

v1
  [

qu
an

t-
ph

]  
8 

Ja
n 

20
09

Ground State Entanglement in One Dimensional Translationally
Invariant Quantum Systems

Sandy Irani∗

Computer Science Department
University of California, Irvine, USA

January 8, 2009

Abstract

We examine whether it is possible for one-dimensional translationally-invariant Hamiltonians to have
ground states with a high degree of entanglement. We presenta family of translationally invariant
Hamiltonians{Hn} for the infinite chain. The spectral gap ofHn is Ω(1/poly(n)). Moreover, for
any state in the ground space ofHn and anym, there are regions of sizem with entanglement entropy
Ω(min{m,n}). A similar construction yields translationally-invariant Hamiltonians for finite chains that
have unique ground states exhibiting high entanglement. The area law proven by Hastings [Has07] gives
a constant upper bound on the entanglement entropy for 1D ground states that is independent of the size
of the region but exponentially dependent on1/∆, where∆ is the spectral gap. This paper provides a
lower bound, showing a family of Hamiltonians for which the entanglement entropy scales polynomially
with 1/∆. Previously, the best known such bound was logarithmic in1/∆.

1 Introduction
Understanding and quantifying entanglement in quantum systems is a central theme in quantum informa-
tion science. On one hand quantum entanglement is a valuableresource that enables novel computation
and communication. On the other hand, the fact that some quantum systems have bounded entanglement
accounts for the success of computational methods such as DMRG in finding ground states and simulating
dynamics [Whi92, Whi93, Sch05, Vid03, Vid04]. We examine one dimensional quantum systems and ask
what is the minimal set of properties a system must have in order to exhibit a high degree of ground state
entanglement. In particular, do symmetries such as translational invariance limit entanglement?

We present two closely related constructions. The first is a translationally-invariant Hamiltonian for
a chain ofn 21-dimensional particles. The Hamiltonian has a unique ground state and a spectral gap of
1/poly(n). We show that the entropy of the ground state when traced downto a linear number of particles
on either end of the chain scales linearly withn. If we allow ourselves boundary conditions in the form of a
different single-particle term applied to the first and lastparticles of the chain, the Hamiltonian is frustration-
free and independent ofn. The boundary conditions can be removed with an additional term applied to all
the particles in the chain. The additional term depends onn and the resulting Hamiltonian is no longer
frustration free.

The second construction is a family of translationally invariant Hamiltonians{Hn}. When applied to
any cycle whose size is a multiple ofn or an infinite chain of particles, the spectral gap is1/poly(n). The
ground state is no longer unique, but for any state in the ground space and anym, a constant fraction of the
intervals of lengthm have entanglement entropy that isΩ(min{m,n}). Moreover, there exists a state in
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the ground space which is translationally invariant and hasthe property that every interval of lengthm has
entanglement entropy which isΩ(min{m,n}).

This paper builds on recent work examining the computational power of one dimensional quantum sys-
tems in which it is shown that it is possible to perform universal adiabatic quantum computation using a 1D
quantum system [AGIK07]. In addition, it was shown that the problem of determining the ground state of a
one dimensional quantum system with nearest neighbor interactions isQMA-complete. Both results make
critical use of position-dependent terms in the Hamiltonian. The intuition that symmetry in quantum systems
is both natural and might lead to more tractable systems, haslead researchers to examine whether this con-
struction can be made translationally invariant. For instance, [NW08] gives a20-state translation-invariant
modification of the construction (improving on a56-state construction by [JWZ07]) that can be used for
universal 1-dimensional adiabatic computation. These modifications require that the system be initialized
to a particular configuration in which each particle is in a state that encodes some additional information.
The terms of the Hamiltonian, although identical, act differently on different particles depending on their
initial state. The ground state is therefore degenerate andone determines which ground state is reached by
ensuring that the system starts in a particular state. Kay [Kay08] gives a construction showing that deter-
mining the ground energy of a one dimensional nearest-neighbor Hamiltonian isQMA-complete even with
all two-particle terms identical, though the constructionrequires position-dependent one-particle terms. It
is not clear how one would eliminate both the varying terms onindividual particles and the degeneracy of
the ground state and still obtain a complexity result. In particular, it is not clear how a single Hamiltonian
term with bounded precision acting on a pair of particles with constant dimension would encode a circuit or
an input instance. However, it is still natural to examine ground state entropy under these limitations.

This work also relates to the area law for one dimensions proven by Hastings [Has07]. An area law
asserts that in ground states of local Hamiltonians, the entanglement entropy of the reduced state of a sub-
region should scale with the boundary of the region as opposed to the volume of the region. In one dimen-
sions, the bounding area of a contiguous region is comprisedonly of the two endpoints of the segment, so
the area law says that the entropy of entanglement should be independent of the size of the region. The
area law for one-dimensional systems proven by Hastings depends exponentially on1/∆, where∆ is the
spectral gap. Gottesman and Hastings raised the question asto whether this dependence on∆ is tight and
towards this end gave a family of Hamiltonians on the infinitechain whose entanglement entropy scales
asΩ((−∆ log ∆)−1/4). Previously studied systems have the property that the entropy of all intervals is
bounded by a constant timeslog(1/∆).

The results presented in this paper independently provide alower bound of this kind, although the two
sets of results have different features resulting from the different motivation of the authors. The [GH08]
construction is not translationally invariant as this is not required for the area law. However, it is simpler,
uses fewer states and the lower bound on entanglement as a function of the spectral gap is a larger polyno-
mial (Ω((−∆ log ∆)−1/4) as opposed toΩ((∆)−1/12)). Much of the effort in the construction presented
here stems from designing a translationally invariant Hamlitonian. In both constructions, the ground state
achieves high entanglement on some but not all of the regions. Technically, this is valid for a lower bound
on the area law since an area law must give an upper bound on theentanglement entropy for all regions.
Nonetheless, Gottesman and Hastings point out that their construction can be augmented, using 81 instead
of 9 states, to produce a ground state with high entanglementon every sufficiently large region. Note that
high entanglement entropy means polynomial in1/∆. The entropy will not grow as the region size tends to-
wards infinity as this would violate Hastings’ upper bound. Finally there is the fact that the ground space for
the construction presented here is degenerate. Note that this degeneracy is fundamentally different from the
degeneracy in the constructions of [NW08] and [JWZ07] discussed above in that every state in the ground
space exhibits the desired entanglement properties. Theredoes not seem a way to break the degeneracy in
this particular construction using local, translationally invariant rules. The basis of the ground space consists
of states which are translations of each other along the infinite chain. Since the basis states for the ground
space ofHn are periodic with periodn, the dimension of the ground space isn. If one is willing to forego
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translational invariance, we could use the construction for the finite chain presented here to design a Hamil-
tonian for the infinite chain with a unique ground state by simply repeating copies of the Hamiltonian for a
chain of lengthn, side by side.

In the constructions presented here and in [GH08], each Hamiltonian depends on the parametern which
in turn gives a fixed upper bound for the entanglement entropythat can be achieved for any region. It is
unclear whether there is a way to achieve entanglement entropy that is linear in the region size simulta-
neously for all region sizes. In the only known examples of 1Dground states for which the entanglement
entropy grows asymptotically with the size of the region, the entropy depends logarithmically on the region
size [VLRK03,ECP08]. It has been conjectured that for any translationally invariant pure state, the entropy
of entanglement of a contiguous set ofn particles is sublinear asn grows [FZ05]. This conjecture does not
require that the state be a ground state of a Hamiltonian (translationally invariant or otherwise). It is simply
a question about what can be achieved by a quantum state. In this sense it should be easier to achieve high
entanglement. On the other hand, the conjecture requires that the state itself be translationally invariant.

1.1 Outline of Techniques

We begin with an overview of the construction for the finite chain, much of which will also be used for the
cycle and infinite chain. We will have21 states on each site consisting of 2-state subsystems which hold a
qubit of data and 1-state subsystems. We use the termconfigurationto refer to an arrangement of the states
on a line without regard to the value of the data stored in the qubit subsystems. The Hamiltonian applied to
each pair of particles will consist of a sum of terms of which there are two types. The first type will have the
form |ab〉〈ab| wherea andb are single particle states. We call theseillegal pairsas it has the effect of adding
an energy penalty to any state which has a particle in statea to the immediate left of a particle in stateb. We
will say a configuration islegal if it does not contain any illegal pairs. The second type of term will have
the form: 1

2
(|ab〉〈ab| + |cd〉〈cd| − |ab〉〈cd| − |cd〉〈ab|). These terms enforce that for any eigenstate with

zero energy, if there is a configurationA with two neighboring particles in statesa andb, there must be a
configurationB with equal amplitude that is the same asA except thata andb are replaced byc andd. Even
though these terms are symmetric, we associate a direction with them by denoting them asab→ cd. These
terms will be referred to astransition rules. We will say that configurationA transitions into configurationB
by ruleab→ cd if B can be obtained fromA by replacing an occurrence ofab with an occurrence ofcd. We
say that the transition rule applies toA in the forward direction and applies toB in the backwards direction.
We will choose the terms so that for any legal configuration, at most one transition rule applies to it in the
forward direction and at most one rule applies in the backwards direction. Thus, a ground state consists of
an equal superposition of legal configurations such that there is exactly one transition rule that carries each
configuration to the next. So far what we have described is a standard procedure inQMA-completeness
results with the chain of configurations in the ground state corresponding to the execution of the circuit
through time [KSV02, KKR06, AvDK+04, OT05]. For a one dimensional system, we have a small set of
designated states calledcontrol states and we enforce that any legal configuration has exactly one particle
in a control state. The transition rules apply only to the control state and a particle to the immediate left or
right, possibly moving the control state left or right by oneposition, much like the head of a Turing Machine.
This idea was also employed in [AGIK07].

In the construction we present here, particles on the left half of the chain start in a2-state subsystem that
each encode a qubit in state|+〉. The control state will act as a courier, carrying the value of a qubit on the
left end and entangling it with a particle on the right end, thus creating an entangled pair which spans the
center of the chain. In each round trip made by the control state, the number of entangled pairs increases
by one and eventually the number of entangled pairs spanningthe center of the chain is roughly half the
number of particles in the chain. When the qubit value of a particle on the left has been recorded by (or
entangled with) the qubit value stored with the control particle, it transitions to a two-state subsystem which
we represent by the symbol . Similarly when the particle on the right becomes entangledwith the qubit
value of the control state, it transitions to a two-state subsystem represented by the symbol. Thus the
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particles in these states build up over time on the two ends ofthe chain. The transition rules ensure that the
courier changes direction as soon as it hits a particle in state or .

Once the construction is given in detail, it is fairly evident that it results in a high entanglement ground
state and the main difficulty is to establish that this groundstate is unique. Thus, additional constraints are
required to give energy penalties to configurations that deviate from this plan. As was the case with the one
dimensionalQMA-completeness construction of [AGIK07], we are not able to eliminate every undesirable
configuration with local checks and we need to show that some bad configurations are ruled out because they
must eventually evolve (via forward or backwards transitions) to a configuration which can be eliminated
by local constraints. For the problem addressed here, we need some means of enforcing that entangled pairs
actually span the center of the chain instead of spanning some boundary to the far left or the far right as
this could severely limit the number of entangled pairs. We also need to enforce the condition that particles
initially storing the|+〉 state to be entangled with other particles further down the chain occur on the left
half of the chain. This could be easily managed with different terms on the left half and the right half of the
chain. However, since we insist on uniform terms, we enforcethese conditions by showing that violating
states will evolve to illegal states. For example, if the number of particles in state on the left is less than
the number of particles in state on the right, we show that this state will evolve via backwards transitions
to a state with a collection of particles in stateon the right and no particles in stateon the left. The first
and last particles in the chain will be in special delimiter states (with at the left end and at the right
end) which will be used to detect this occurrence and triggeran energy penalty. This raises a new problem
of how to make sure only the end particles are in these delimiter states. This is done by adding a penalty for
any particle that is in a state which is different from one of the delimiter states. Finally, we add even greater
penalties for any pair of the formX or X which ensures that only the leftmost particle will be in state

and only the rightmost particle will be in state.
The construction for the finite chain makes use of the fact that the endpoints of the chain have only

one neighbor. When we move to the cycle we not longer have these special particles. We change the
Hamiltonian for the cycle by allowing the pair with the effect that the set of legal states become
sequences of segments bracketed on either side. The legal states look like the following type of sequence
wrapped around the cycle:

· · · · · · · · · · · ·
Suppose we fix the locations of the and sites and consider the space of states with those locations
fixed. The HamiltonianHn will be closed on that space which allows us to analyze every such subspace
separately. Finally a term is added that gives an energy penalty if there is a sequence from a site to a
site whose length is not exactly equal ton. Thus, the ground state for a cycle of lengthtn will be t copies
of the ground state for a finite chain of lengthn tensored together. There aren such global states, each a
rotation of the others. We will show that the bounds on the spectral gap and the entanglement entropy are
independent oft, so ast goes towards infinity, the bounds will still hold which meansthat they also hold for
the infinite chain.

2 The Basic Construction on a Finite Chain

The21 states in each site consist of2-state subsystems (different versions of a qubit holding data), repre-
sented by elongated shapes (e.g.,), and1-state subspaces, represented by round shapes (e.g.,). 1 Three
of the2-state subsystems and three of the1-state subsystems will be control sites, which will be represented
by dark shapes and can be thought of as pointers on the line that trigger transitions. Light-colored shapes
represent a site that is inactive, waiting for the active site to come nearby. There will only be one control site
in any legal configuration. Particles in states denoted by lower case letters will always be to the left of the

1This notation, which I have adapted for the construction presented here, was developed by my co-authors of [AGIK07] in
collaboration with Oded Regev.
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control site and particles in states denoted by upper case letters will be to the right of the control state. When
needed, we will indicate the value of the qubit stored in a2-state subsystem with a subscript indicating the
state, such as

+
or

1
. We have the following types of states:

Inactive states Control states
, : Qubits entangled with another site , : Right-moving control states
, : Qubits unentangled with another site : Left-moving control state
, : Particles waiting to be entangled , : Left-end turning contol states
, : The left and right end delimiters : Right-end turning control state

We start by introducing the set of transition rules. Unless otherwise specified, a rule applied to a2-
state subsystem is summed over all possible values for the qubits, with the control particle keeping its value
and the non-control particle keeping its value. For example, the rule → would be the sum of

x y → y x over all possible values forx, y ∈ {0, 1}. The exceptions to this are made explicit in the
set of rules below. The sum of all the resulting terms is denoted byHtrans.

The rules involving sites with single arrows are used throughout most of the evolution of the configura-
tions. Rules involving sites with double arrows occur only during the first iteration of the construction and
are used to check the validity of the starting configuration.

Transition Rules:

1. → , → : Sweeping to the right past and sites, transforming them to and
.

2. → : Control turns once an entangled site is reached on the rightend.

3. x → x: Control starts moving left and transfers its qubit state tothe .

4. → , → : Control sweeps to the left past and sites, transforming them to
and sites.

5. → : Control turns once an entangled site is reached on the left end.

6. x → x x: Control starts moving right. Qubit values of and become entangled.

7. x → x x: Control starts moving right. Qubit values of and become entangled.

8. → , → : Sweeping to the right past and , transforming them to and .

9. → : Control turns once the right end delimeter is reached.

We are now ready to describe the evolution of configurations in the target ground state. We assume
that we start with a configuration in the following form

m m
, wheren = 2m + 3. (We will

eventually prove that the low energy states exist only whenn is odd). The construction is illustrated with a
small example below to show what happens as each rule is applied:

Round One Round Two
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Now we describe a set of terms that are designed to ensure thatthe state corresponding to the evolution
of configurations shown above is the only low energy state. The constraints are expressed in terms of illegal
pairs (pairs of states which cause an energy penalty if they appear side by side in a configuration). It is
sometimes convenient to describe a set of states informallysuch as (Upper Case) which denotes any state
represented by an upper case letter.

Illegal Pairs:

1. (Any State), (Any State) : must be at the right end if at all. must be at the left end if at all.

2. (Upper Case)(Lower Case), (Control)(Lower Case), (Upper Case)(Control) : Lower case sites before
control sites before upper case sites.

3. (Control)(Control) : At most one control site.

4. (Lower Case or ) (Upper case or ): Lower case and sites must be buffered from upper case
and sites by a control site.

5. , : sites before and sites.

6. , : and sites before sites.

7. , , , : Control turns at the left end of unentangled and waiting sites.

8. , : Control turns at the right end of unentangled and waiting sites.

9. , : and sites should come before and sites.

10. , : Will be used to enforce the correct initial configuration.

11. , , : Will be used to enforce correct initial configuration.

12. , , : Will ensure number of sites in and is same as the number of sites inor .

13.
0 1

,
1 0

: Will ensure pairs of qubits are properly entangled.

14.
0 1

,
1 0

: Will ensure pairs of qubits are properly entangled.

To define the set of terms arising from the illegal pairs as they act on states (and not just2-state subsys-
tems), we simply sum over all combinations of qubit values, except for constraints in items13 and14 which
are explicitly specified. For example, the illegal pair gives rise to the term| 〉〈 | which is then
is expanded as follows:

|
0 0

〉〈
0 0

| + |
0 1

〉〈
0 1

| + |
1 0

〉〈
1 0

| + |
1 1

〉〈
1 1

|.

The resulting term obtained from adding all the constraintsabove isHlegal.
We will often make use of the standard basis for our quantum system where a state in the basis is first

specified by its configuration and then by a0 or 1 value for each2-state subsystem in the configuration.
Although we will ultimately insist that legal configurations do not contain any illegal pairs, it will be conve-
nient to work with a larger set of configurations/states which only omit illegal pairs listed in items 1 through
8.

Definition 2.1 A configuration is said to belegal if it has no illegal pairs listed in items1 through12. (The
illegal pairs in items13 and14 apply only to states). A state islegal if it has no illegal pairs. A configuration
or state issemi-legalif it does not contain any of the illegal pairs listed in items1 through 8.
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We start by characterizing the set of semi-legal configurations. In doing so, we will use the following
notation:

∗
will denote a sequence of sites in stateof arbitrary (possibly zero) length.( + + )

is a single state which is either or or . ǫ will denote an empty string of symbols.

Lemma 2.2 The set of semi-legal configurations are those configurations which conform to one of the ex-
pressions below or any substring of one of the expressions below:

( + ǫ)
∗
( + )∗( + + )( + )∗

∗
( + ǫ)

( + ǫ)
∗
( + )( + )∗

∗
( + ǫ)

( + ǫ)
∗
( + )∗

∗
( + ǫ)

Proof: Constraint1 ensures that if there is a , then it must be the right-most particle in the chain. Sim-
ilarly, if there is a then it is the left-most particle in the chain. The remainingstates are all either lower
case, upper case or control states, so semi-legal states must be of the form

( + ǫ)(Lower Case+ Control+ Upper Case)∗( + ǫ).

Constrain2 says that lower case sites must precede control sites which must preced upper case sites, so we
have:

( + ǫ)(Lower Case)∗(Control)∗(Upper Case)∗( + ǫ).

Constraint3 enforces that there can be at most one control state in a row which yields:

( + ǫ)(Lower Case)∗(Control+ ǫ)(Upper Case)∗( + ǫ).

Constraint4 says that if there are particles in a lower case orstate and there are particles in a upper case
or state, then there must be something to buffer them. This something can only be a control site because
the configurations are restricted as indicated above. Thus we know the configuration must be a substring of:

( + ǫ)(Lower Case)∗(Control)(Upper Case)∗( + ǫ).

Constraints in item5 ensure that within the lower case sites,must precede and sites. Constraints
in item 6 ensure that within the upper case sites,and sites must precede sites. So a semi-legal
configuration must be a substring of:

( + ǫ)
∗
( + )∗(Control)( + )∗

∗
( + ǫ)

If the control symbol is one of , , , there are no further constraints. If the control symbol isor ,
then constraint7 says that we have no or particles. If the control symbol is , then constraint8 says
that we have no or particles.

Any state that corresponds to a configuration that is not semi-legal will have an energy penalty from one
of the terms from the first eight items in the list of illegal pairs. Thus, we can focus our attention on the
semi-legal states. The following two lemmas show that the transition rules are well behaved on this set.

Lemma 2.3 The set of semi-legal states is closed under the transitionsrules in both the forward and the
backward directions.

Proof: We will argue that if a configuration does not contain any of the illegal pairs listed in items1 through
8, the same will hold after the application of a transition rule in either the forward or reverse directions. Since
a control state is involved in every transition rule, we assume that the configuration before the application of
the rule has one control state. We will address the illegal pairs listed in items1 through8:
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1. (Any State), (Any State) : The transition rules do not create, remove or move the end marker
states and , so no illegal pairs of this form will be created by the application of a transition rule.

2. (Upper Case)(Lower Case), (Control)(Lower Case), (Upper Case)(Control) : None of the rules in
either direction place an upper-case state to the left of thecontrol site or a lower-case state to the right
of the control state.

3. (Control)(Control) : None of the rules create or eliminate a control site from the configuration, so the
property that the configuration has at most one control site will be maintained.

4. (Lower Case + ) (Upper case + ): The configuration before the transition rule has the property
that all the sites to the left of the control site are lower case or and all the sites to the right of the
control site are upper case or. After the application of a transition rule (in either the forward or
backward directions) this will still be the case because none of the pairs in the transition rules violate
this condition.

5. , : Since we are assuming that the configuration was semi-legalbefore the application of
the rule, the control site must be to the right of the offending pair. Since we did not have a or
a pair before the application of the rule, the application of the rule must have replaced a pair
(Control)X or Y(Control) by (Control), where Y is any state besides. The only transition rules
of this form are Rules6 and7 applied in the forward direction. This implies we would havehad one
of the following pairs before the transition: , , , . However, these are all illegal
pairs listed in Item7 in the list of illegal pairs.

6. , : Analogous argument to item5.

7. , , , : The only way to get an up arrow by applying a rule in the forward direction
is to use transition rule5. However, in this case the site to the left of the control sitemust be an
before and after the transition. The only way to get an up arrow by applying a rule in the reverse
direction is to use transition rule6 or 7. This means that the site which transitions to theor was
previously an . However, this would imply that the configuration before theapplication of the rule
had an an occurrence of either or which are both illegal.

8. , : Similar argument to item7.

Lemma 2.4 For each semi-legal state, at most one transition rule will apply in the forward direction and at
most one will apply in the reverse direction.

Proof: We use the fact that a semi-legal state has at most one site in acontrol state. Every transition rule,
whether applied in the forward or reverse direction, involves a control site and a site to the immediate left or
right. Furthermore, the type of control state uniquely determines whether it will be the site to the left or the
right that it will be involved in the transition in the forward direction. The same holds true for the reverse
direction.

We now define a graph where each state in the standard basis is identified with a node in the graph and
there is a directed edge from one state to another if there is atransition rule that takes one state to the other.
We will call this graph thestate graph for our construction. Lemma 2.3 implies that the set of semi-legal
states is disconnected from the rest of the states. Furthermore, by Lemma 2.4, the graph when restricted
to the set of semi-legal states forms a set of disjoint directed paths. If there is a maximal path in the graph
that has no illegal states, then a uniform superposition over those states is a zero eigenstate. Our next task is
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to characterize these paths. We would like to be able to say that the zero eigenstates are exactly those that
correspond to the sequence of configurations illustrated earlier as our target ground state. Unfortunately, this
is not necessarily true. For example, we could have a legal state which does not have a particle in a control
state at all and this state will correspond to a component in the state graph that is a single node. We can not
enforce by local checks that a state has a control state. However, we will be able to make this assertion if we
assume that the state begins and ends withand . Later we will need to add terms to our Hamiltonian to
ensure the endpoints of the chain are in these delimeter states.

Definition 2.5 A state isbracketed if the leftmost particle is in state and the rightmost particle is in state
.

Note that the transition rules do not alter the number or locations of the and sites, so the set of
states in a path in the state graph are either all bracketed orall not bracketed. Thus, we can refer to a path
as bracketed or not. Now we have several definitions that we will use to characterize the states in the target
ground state. The first definition enumerates a set of properties that guarantee that the entangled pairs span
the center of the chain.

Definition 2.6 A bracketed state is said tobalancedif it is semi-legal and the following conditions hold:

1. Every site in state or occurs to the right of every site in state or in the chain.

2. If the control symbol is , or then the number or particles in state is one more than the
number of particles in and the number of particles in state or is one less than the number of
particles in state or .

3. If the control symbol is , or , then the number or particles in state is equal to the number of
particles in state and the number of particles in state or is equal to the number of particles
in state or .

4. If the control symbol is there is one particle in state and if the control symbol is , there are at
least two particles in state .

5. If the control symbol is there are no particles in state and if the control symbol is or , there
is at least one particle in state .

The next definition is the property that ensures that qubit states are properly entangled.

Definition 2.7 Consider a balanced state in the standard basis withr particles in state . The state is
consistentif for i = 1 to r, theith site in state from the right end has the same qubit value as theith state
in from the left. Furthermore, if the control symbol is, or , then the qubit stored in the control
state is the same as the qubit stored in the rightmost site in state .

We will show that if a path in the state graph is composed of bracketed, balanced and consistent nodes
then the first state in the path has the following configuration:

m m
. We say that any state that

corresponds to this configuration is agood start state. The next lemma says that if a state is bracketed,
balanced and consistent, then it belongs to a path whose initial state is a good start state. Furthermore the
path is composed entirely of legal states. Then in the following two lemmas, we show that if a state is
bracketed but not balanced or consistent, it belongs to a path that has at least one illegal state. This will
leave three possibilities for a path: it is not bracketed, itit contains an illegal state, or it starts in a good start
state and is composed entirely of legal states.

Lemma 2.8 Consider a bracketed, balanced and consistent state and thepathp in the state graph to which
it belongs.p contains only legal states. Furthermore, the start state ofp is a good start state.
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Proof: We will enumerate the possibilities for a bracketed, balanced and consistent state and show that
after a transition rule is applied in either the forward or reverse direction, it remains bracketed, balanced and
consistent. Furthermore, none of these states contains an illegal pair. We will also show that

m m

is the only bracketed, balanced, consistent configuration for which there is no tranisition rule that applies
in the reverse direction. This makes it the only candidate for the first configuration in the pathp. Let
m = (n − 3)/2. We will refer to the sequence of , , and particles as themiddle sectionWe will
break the argument down into cases, depending on the type of control symbol in the state:

: There is only one balanced configuration for this control state which is
m m

. The only

rule that applies to it does so in the forward direction and results in
m−1 m

. This is a
balanced configuration. Since the rule entangles thequbit with the , it is also consistent and
legal.

: The possible configurations are
j m−j−1 m

, where0 ≤ j ≤ m−1 or
m−1 j m−j

,
where0 ≤ j ≤ m. If the control state is at the leftend of the middle section and the state is consistent,
it will transition in the reverse direcion to

m m
. If the control state is at the right end of

the middle section, it will transition in the forward direction to
m m

. Otherwise, when
a transition rule is applied in the forward direction, the control state moves one site to the right and
when a transition rule is applied in the reverse direction, it moves one site to the left. The state remains
bracketed, balanced, legal and consistent.

: The configuration must have the following form:
i m−i m−i i

, where1 ≤ i ≤ m. If
m = i, there is no transition in the forward direction. Ifm < i, in the forward direction it goes to

i+1 m−i−1 m−i i
. The rule entangles the qubit values for theand the rightmost ,

so the state remains consistent. In the reverse direction, it goes to
i m−i m−i i

. The
resulting states are bracketed, balanced, consistent and legal.

: The first possible configurations is
i+1 j m−j−i−1 m−i i

, where1 ≤ i ≤ m − 1 and

0 ≤ j ≤ m− i− 1. The second is
i+1 m−i−1 j m−j−i i

, where1 ≤ i ≤ m− 1 and
0 ≤ j ≤ m− i. If the control state is at the leftend of the middle section and the state is consistent, it
will transition in the reverse direcion to

i m−i m−i i
. If the control state is at the right

end of the middle section, it will transition in the forward direction to
i+1 m−i−1 m−i i

.
Otherwise, when a transition rule is applied in the forward direction, the control state moves one site
to the right and when a transition rule is applied in the reverse direction, it moves one site to the left.
The eesulting states are bracketed, balanced, consistent and legal.

: The configuration looks like
i+1 m−i−1 m−i i

, for 0 ≤ i ≤ m − 1. In the reverse

direction, it transitions to
i+1 m−i−1 m−i i

. In the forward direction, it transitions to
i+1 m−i−1 m−i−1 i+1

. The forward transition rule transfers the qubit value fromthe
state to the leftmost , so it remains consistent. The resulting states are bracketed, balanced,

consistent and legal.

: The first possible configuration is
i m−i j m−j−i i

, where1 ≤ i ≤ m and0 ≤ j ≤
m − i. The second

i j m−j−i m−i i
, where1 ≤ i ≤ m and0 ≤ j ≤ m − i. If the

control state is at the leftend of the middle section and the state is consistent, it will transition in the
forward direcion to

i m−i m−i i
. If the control state is at the right end of the middle

section, it will transition in the reverse direction to
i m−i m−i+1 i−1

. The state
takes the qubit value of the leftmost that it replaces and so the state remains consistent. Otherwise,
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when a transition rule is applied in the forward direction, the control state moves one site to the left
and when a transition rule is applied in the reverse direction, it moves one site to the right. The state
remains bracketed, balanced, legal and consistent.

Lemma 2.9 If a state in the standard bases is bracketed and semi-legal but not balanced, it will evolve
eventually (via forward or backwards rules) to a configuration which is not legal.

Proof: Starting with the first condition on balanced configurations, the only way for a configuration to
have a or to the left of a or and not have an illegal pair from item9, is to have (Control) .
Because of the constraints in items7 and8, the control state must be one of, or . In the next step, the
configuration will transition to (Control) or (Control) which will create an illegal pair from item9.

Now let’s assume that the condition on theand sites is violated. We will first address the problem
that there are too many sites. This will eventually evolve backwards to a configuration that looks like

· · · . . . . Transitioning in the backwards direction, the site triggers the control
state to transition to instead of , resulting in · · · . . . . The state will sweep
leftwards in the reverse direction and eventually hit thesite resulting in · · · . . .
which will transition to · · · . . . , creating an illegal pair from item11.

Similarly, if there are too many sites, we will eventually transition backwards to a configuration
that looks like . . . · · · . This will transition to . . . · · · .
The state will sweep leftwards and eventually hit theresulting in . . . · · · .
This transitions backwards to . . . · · · which again creates an illegal pair from item
11. We need to handle the configuration . . . separately because the state does not have a
transition in the reverse direction. However, this configuration is disallowed because the pair is one of
the illegal states pairs in item11.

Now we will assume that the number of sites and sites are properly balanced. If we have too many
sites, we will eventually reach by forward transitions a configuration that looks like. . . . . .

(with potentially more sites). This configuration will evolve as follows:

This creates an illegal pair in item12. Next we consider what happens if the number ofsites and sites
are properly balanced and we have too manysites. We start with the case where there is a surplus of two
or more sites:

. . . . . .

. . . . . .

. . . . . .

. . . . . .

This creates an illegal pair from item12. Now if there is only one too many sites:
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. . . . . .

. . . . . .

. . . . . .

Once again, this creates an illegal pair from item12.
Finally, we handle the case where we have a double arrow instead of a single arrow (or vice versa). In

the up-arrow case, and are both illegal pairs, so the condition is checked locally.In the right-
arrow case, if there is a configuration with a and more than one , it will evolve by reverse transitions
to . . . which transitions to . . . which contains an illegal pair. Similarly, a state with one
and a control in state will transition in reverse to . . . which will go to . . . which contains
an illegal pair.

Lemma 2.10 If a state in the standard basis is bracketed and legal but notconsistent, it will evolve eventu-
ally (via forward or backwards rules) to a configuration which is not legal.

Proof: Since the state is bracketed, we know that if it is not balanced, then it will evolve to an illegal state,
so we can assume that the state is balanced by not consistent.This means that there must be a pair ofand

particles that don’t have the same qubit but should. Eventually, we will transition backwards to this pair:

. . .
0

. . . . . .
1

. . .

. . .
0

. . . . . .
1

. . .

. . .
0

. . . . . .
1

. . .
. . .

. . .
0 1

. . . . . . . . .

This creates a violation with one of the constraints in item13. The result would be similar if the control
states was or the differing bits were swapped.

Now that we have characterized the paths in the state graph that are composed of legal configurations,
we need to bound the spectral gap ofHtrans +Hlegal. We first need to bound the length of the paths.

Lemma 2.11 The length of any chain of semi-legal states in the state graph is at mostn2, wheren is the
number of particles in the chain.

Proof: We associate an ordered pair(x, y) with every semi-legal configuration, wherex is the number of
sites in a or a state. If the control site is in a state, or , theny = n. If the control state is in
state or , theny is the number of sites in state or that are to the left of the control state. If the
control state is in state , theny is the number of sites in state or that are to the right of the control
state. We define an ordering on these pairs by first comparing the first index. If the first index is the same, we
compare the second index. It can be easily verified that if a transition rule applies to a configuration in the
forward direction, the new configuration is associated witha pair of strictly greater value. Similarly, reverse
transitions take a configuration to a configuration associated with a pair of strictly lesser value. Since there
are at mostn2 possible pairs, the lemma follows.

Let Sp denote the space spanned by the basis states within a pathp. Note thatSp is closed underHtrans

andHlegal. Hlegal when restricted toSp and expressed in the standard basis is diagonal with non-negative
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integers along the diagonal.Htrans when restricted toSp and expressed in the standard basis has the form:
















1

2
-1

2
0 · · · 0

-1

2
1 -1

2
0

. . .
...

0 -1

2
1 -1

2
0

.. .
...

. . . . . . . .. . . . .. .
... 0 -1

2
1 - 1

2
0

0 -1

2
1 -1

2

0 · · · 0 - 1

2

1

2

















We can now invoke Lemma14.4 from [KSV02] to lower bound the energy of the overall Hamiltonian
for a subspaceSp corresponding to a path with at least one illegal state.

Lemma 2.12 LetA1,A2 be nonnegative operators, andL1,L2 their null subspaces, whereL1∩L2 = {0}.
Suppose further that no nonzero eigenvalue ofA1 or A2 is smaller thanv. Then

A1 +A2 ≥ v · 2 sin2 θ/2,

whereθ = θ(L1, L2) is the angle betweenL1 andL2.

In our case,A1 is the propagation HamiltonianHtrans, and its null state, restricted toSp, is the equal
superposition over all states in the pathp. A2 is the HamiltonianHlegal, diagonal in the standard basis. Then
sin2 θ is the fraction of illegal states in the path. The minimum nonzero eigenvalue ofHlegal is 1, but (as
in [KSV02]) the minimum nonzero eigenvalue ofHtrans is Ω(1/K2). In our caseK, is the length of the
path which by Lemma 2.11 isO(n2). Thus, ifp is a path containing an illegal state, all states inSp have an
energy at leastΩ(1/K3) = Ω(1/n6).

Before we summarize the results of this section, we will define a set of states which we will use to
characterize the ground space ofHtrans +Hlegal. For eachx ∈ {0, 1, }m, we define|φx〉 to be the uniform
superposition of the states in the path that begin with the state in configuration

m m
whose qubit

values in the particles are set according tox.

Lemma 2.13 Consider the set of bracketed, semi-legal states. LetS be the space spanned by these states.
If n is even, then the ground energy of(Htrans +Hlegal)|S is Ω(1/n6). If n is odd, the ground energy is0,
the spectral gap isΩ(1/n6) and the null space is spanned be the|φx〉.

Proof: Consider a path in the configuration graph consisting of semi-legal, bracketed states.Htrans+Hlegal

is closed on the space spanned by the states in the path. If there is a state in the path which is balanced and
consistent, then by definitionn must be odd. Furthermore, we know by Lemma 2.8 that the initial state in
the path is a good start state and that the path contains no illegal states. The uniform superposition of all
states in this path is an eigenstate ofHtrans +Hlegal with zero energy.

If there is a state in the path which is either not balanced or not consistent, then by Lemmas 2.9 and
2.10, the path must contain an illegal state. Since the length of any path is at mostn2, the lowest eigenvalue
in the subspace spanned by the states in this path isΩ(1/n6).

2.1 Initializing Qubits

We now add another term to each of the particles which will force the ground state to be a highly entangled
state. This term is|U−〉〈U−|. Hinit is the Hamiltonian obtained from summing this term as applied to all
particles in the chain. Define

|φg〉 =
1

2
m

2

∑

x∈{0,1}m

|φx〉.
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Lemma 2.14 Consider a quantum system consisting of a chain ofn particles, wheren is odd. LetS be the
space spanned by semi-legal bracketed standard basis states.Htrans +Hlegal +Hinit restricted toS has a
spectral gap ofΩ(1/n6) and |φg〉 is its unique zero energy state.

Proof: SinceHinit is non-negative, any state inS outside the space spanned by the|φx〉 will have energy
at leastΩ(1/n6) by Lemma 2.13. The space spanned by the|φx〉 is also spanned by a different basis:|φa〉,
wherea ∈ {+,−}m and |φa〉 is the uniform superposition of all states in the path whose starting state is
the state in configuration

m m
with the qubits in the sites set according toa. The |φa〉 are

all zero eigenstates ofHtrans + Hlegal. Each|φa〉 is also an eigenstate ofHinit. The only|φa〉 for which
Hinit|φa〉 = 0 hasa = |+〉m (which is exactly|φg〉 ).

Now consider some|φa〉 with a 6= |+〉m. This state will violateHinit in at least one term for at least the
first state in the path. Since the path has length at mostn2, we know that〈φa|Hinit|φa〉 ≥ 1/n2. Thus, the
energy penalty ofHinit for |φa〉 is at least1/n2.

2.2 Boundary Conditions

We now want to add an energy term that will penalize states that are not bracketed. If we can put a position-
dependent term on the first and the last particles in our chain, we could simply add the term(I − | 〉〈 | −
| 〉〈 |) to the first and last particle in the chain. This would add a penalty of at least one to any semi-legal
state which is not bracketed. The resulting Hamiltonian is frustration free. Although there are position
dependent terms, each of the terms in the Hamiltonian is independent ofn.

Alternatively, we can add the following position-independent term to our Hamiltonian which will penal-
ize each particle for not being in one of the bracketed states: (2/n)I − | 〉〈 | − | 〉〈 |. Hbracket is the
Hamiltonian obtained from summing this term as applied to all particles in the chain. In order to do this, we
need to weightHtrans +Hlegal +Hinit to ensure that the overall Hamiltonian is non-negative and we don’t
have endmarkers occurring in the middle of the chain.

Lemma 2.15 LetH = n(Htrans +Hlegal +Hinit) +Hbracket, the unique ground state ofH is |φg〉 and its
spectral gap isΩ(1/n7).

Proof: LetS be the space spanned by the set of states in the standard basisthat are semi-legal and bracketed.
H is closed onS. First we consider standard basis states outside ofS. If the state is not semi-legal, it will
have energy at leastn from thenHlegal term. The energy fromHbracket is at least2/n− 1 for each particle
giving an overall energy of2 − n for theHbracket terms. SinceHtrans andHinit are both non-negative, the
energy is at least2 for any standard basis state that is not semi-legal. If a standard basis state is semi-legal
but not bracketed, it will have at most oneor site. This comes from our characterization of semi-legal
states in Lemma 2.2. Thus,Hbracket will have energy2/n on all but at most one particles and energy2/n−1
on the remaining particle. This results in an overall energyof at least1.

Any state inS is an eigenstate ofHbracket with eigenvalue0. Thus, the ground state ofH is still |φg〉
and any other state inS has energy that isΩ(1/n5) from then(Htrans + Hlegal + Hinit) term. Note that
‖H‖ isO(n2). This comes from the observation thatH has energyO(n) for each particle or pair of particles
and there aren − 1 neighboring pairs in the system.H can then be normalized so that‖H‖ isO(1) which
will give a spectral gap ofΩ(1/n7).

2.3 Entropy of Entanglement

We will use the following lemma several times in our discussion of the entanglement in the finite chain in
this section and the discussion of the cycle in the next section.

14



Lemma 2.16 Let |ψi〉 for 1 ≤ i ≤ r be a set of states of a quantum system ofn particles. LetA be a
subset of the particles and letB be the complement ofA. For each state|ψi〉, let Si be the set of standard
basis states in the support of|ψi〉 and letSA

i be the resulting set when each state inSi is traced down to
the particles inA. SB

i is the set resulting from tracing down the states inSi to the particles inB. ρi is the
density matrix for|ψi〉 andρA

i is the resulting state whenρi is traced down to the particles inA. Define a
new state|ψ〉 =

∑r
i=1

αi|ψi〉. If all theSA
i are mutually disjoint or all theSB

i are mutually disjoint, then

S(ρA) ≥
r∑

i=1

|αi|2S(ρA
i ).

Proof: Let’s assume first that theSB
i sets are mutually disjoint. We will establish thatρA =

∑r
i=1

|αi|2ρA
i .

The lemma then follows from the fact that the entropy is concave.

ρ =
r∑

i=1

r∑

j=1

α∗
jαi|ψj〉〈ψi| =

r∑

i=1

|αi|2ρi +
∑

i6=j

α∗
jαi|ψj〉〈ψi|.

The last sum consists of terms which are in turn sums over terms of the formc|x〉〈y|, wherec is a complex
number,x ∈ Sj andy ∈ Si for i 6= j. We can expressx asaxbx whereax ∈ SA

j andbx ∈ SB
j . Similarly, we

can expressy asayby whereay ∈ SA
i andby ∈ SB

i . When we trace out the particles inB, the termc|x〉〈y|
becomesc|ax〉〈ay |〈bx|by〉. By assumtion,bx 6= by, so all of the terms in|ψj〉〈ψi| go to zero wheni 6= j.

If we know that theSA
i sets are mutually disjoint, we can apply the result to the setB and use the fact

thatS(ρA
j ) = S(ρB

j ) for all j andS(ρA) = S(ρB).

Now we need to determine the entropy of entanglement for the ground state|φg〉. We start by calculating
the number of configurations in a path that begins with a good start state. We define aniteration to be the
sequence of configurations beginning with the control particle in state or until it transitions to again.
The first configuration in the path has a control state and the last has ancontrol state. If there arem
particles in state at the beginning of an iteration, the iteration takes4m + 1 transitions.m ranges from
(n−3)/2 down to1 which gives(n−3)2/2+3(n−3)/2 transitions andT = (n−3)2/2+3(n−3)/2+1
configurations in the path.

We will need to divide the path into two parts since only the latter part of the path has high entanglement.
We break the path at the point when the state has(n − 3)/4 + 1 particles in state . Let T1 denote the
number of configurations in the first part of the path andT2 the number of configurations in the second
part of the path. The second part of the path corresponds to the last(n − 3)/4 iterations and soT2 =
(n− 3)2/8 + 3(n− 3)/4 + 1. For everyn ≥ 5, there is some constantc ≥ 1/4 such thatcT2 = T . Let |φ1〉
denote a uniform superposition of the firstT1 configurations in the path and|φ2〉 the lastT2 configurations
in the path. Recall that each configuration corresponds to a state which is a superposition of the2m basis
states corresponding to the2m ways of setting the qubits in the 2 dimensional subsystems. Even if there are
more thanm particles in states that can hold a qubit, we know that there are only2m ways to set the values
of the qubits since we are guaranteed that the state is consistent (i.e. entangled pairs are really entangled).
We have that

|φg〉 =
√

(1 − c)|φ1〉 +
√
c|φ2〉,

where〈φ1|φ2〉 = 0. All of the configurations in|φ2〉 start with
s+1

. . ., wheres = (n − 3)/4. The
configurations in the support of|φ1〉 have at mosts particles in state . This means that when we trace out
at mostn − s − 2 particles on the right end of the chain, we can invoke Lemma 2.16. Thus, we can lower
bound the entropy of entanglement for|φ2〉 which will serve to lower bound the entropy of entanglement
for |φg〉 to within a constant factor. Note that ifs < (n− 3)/4 and we trace outn− s− 2 particles, we need
to break the path at the place where there ares+ 1 particles in state , but the latter portion of the path will
be larger and this will only serve to increase the value ofc.
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|φ2〉 is a uniform superposition of states in the standard basis. We can organize these into2s equal sized
sets corresponding to the value of the qubits in the firsts particles in state . Since these firsts qubits are
entangled with qubits on the right end of the chain, if we taketwo standard basis states from two different
sets, these states must also differ somewhere in their lasts sites. Thus if we trace outt particles on the right
end of the chain for anyt ∈ {s+2, n−s−2}, the resulting reduced density matrix expressed in the standard
basis will be block diagonal with2s blocks each of which has a trace of2−s. The entropy of the reduced
density matrix is therefore at leasts.

3 Cycles and the Infinite Chain

We now describe how to extend the construction for finite chains to cycles and the infinite chain. The
parametern is no longer the number of particles in the system but just a parameter of the Hamiltonian that
determines the spectral gap and a bound on the entanglement entropy in the ground state. We will assume
throughout this section thatn is odd and that the number of particles in the cycle will bent for any t ≥ 2.
We will show bounds on the spectral gap and the entanglement entropy that are independent oft, so ast
goes towards infinity, the bounds will still hold which implies that they also hold for the infinite chain. The
ground state is degenerate but any state in the ground space will exhibit entanglement entropy that is linear
in n. As before, we describe a single two-particle term and applythat term to every neighboring pair on the
cycle.

Htrans remains unchanged, but we make several small changes to the HamiltonianHlegal. The first
change is that we allow the pair . For a particular state, we will refer to a sequence of sites extending
from a site through the next site as asegment. The set of legal and semi-legal states is exactly the
same as it was for the finite chain except that we can now have more than one segment around the cycle. For
example, we could have the following state wrapped around a cycle:

︸ ︷︷ ︸

Segment1
︸ ︷︷ ︸

Segment2
︸ ︷︷ ︸

Segment3

.

Note that it would be possible to replace the pair by a single delimiting symbol, but it will be convenient
to use the same notation we have developed in the previous section.

We will also add some additional illegal pairs. These are and anything of the form X for any
stateX not equal to or . These additional illegal pairs serve to disallow segmentsof length two
or three because a sequence of the formX or will contain an illegal pair. (The pair is
already disallowed in the original list of illegal pairs in item4.) They have no effect on the ground state of
Htrans +Hlegal for larger chains or segments since they never appear in the ground state configurations.

We will fix a set of locations for the pairs in the cycle, which will then determine the segments. Let
S be the subspace spanned by all semi-legal states in the standard basis that have these segments.Htrans is
closed overS as it was for the chain. The HamiltonianH will be the sum ofHtrans and a set of terms which
are all diagonal in the standard basis which means thatS will also be closed underH. We will characterize
the eigenstates and corresponding eigenvalues ofH in S.

DefineHchain = Htrans +Hlegal +Hinit. These are the terms that we borrow from the previous section
on 1D chains (with the changes toHlegal mentioned above). We will add in another HamiltonianHsize that
will be designed to be energetically favorable to segments of sizen. The final HamiltonianH will have the
form p(n)Hchain +Hsize for some polynomial inn.

Since all two-particle terms are zero on the pair , we can omit the two-particle terms which span two
segments when consideringH|S . NowH can be divided into a sum of terms, each of which acts on particles
entirely within a segment. LetH i be the terms which act on particles within segmenti. We can defineH i

size

andH i
chain similarly. An eigenstate ofH in S is then a tensor product of eigenstates of eachH i acting
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on the particles in segementi. The energy is the sum of the energies of eachH i on their corresponding
eigenstate.

ConsiderHtrans +Hlegal +Hinit from the previous section restricted to the subspace spanned by the set
of all semi-legal bracketed states acting on a chain of length l. This is exactly the same operator asH i

chain

restricted to subspaceS, acting on the particles in segmenti of lengthl (with all other particles traced out).
From Lemma 2.14, we know that ifl is odd, the spectral gap isΩ(1/l6) and there is a unique zero eigenstate
|φl

g〉 (with an additional parameterl now denoting the length of the chain). Ifl is even, then the minimum
energy isΩ(1/l6). Note that in the case of the chain, we did not have otherand sites in the middle of
the chain because they were ruled out by the illegal pairs. Inthe case of the cycle, we allow pairs in
the middle of the cycle, but we are not handling them for now because we are choosing to focus on a single
segment.

We are now ready to define the final component ofH. Recall thatTn is the length of the path in the state
graph corresponding to|φn

g 〉. In other words,Tn is the number of configurations in the support of|φn
g 〉. In

Section 2.3, we determined thatTn = (n − 3)2/2 + 3(n− 3)/2 + 1.

Hsize =
1

n
I − 2| 〉〈 | + Tn

n− 2

(
| 〉〈 | + | 〉〈 | + | 〉〈 |

)
.

We will analyze the ground energy of a segment as a function ofits length. We will need to use the Projection
Lemma from [KKR06] which will allow us to focus on the ground space ofH i

chain.

Lemma 3.1 LetH = H1 +H2 be the sum of two Hamiltonians acting on a Hilbert spaceH = T + T ⊥.
The HamiltonianH2 is such thatT is a zero eigenspace forH2 and the eigenvectors inT ⊥ have value at
leastJ > 2‖H1‖. Then

λ(H1|T ) − ‖H1‖2

J − 2‖H1‖
≤ λ(H) ≤ λ(H1|T ).

Corollary 3.2 There is a polynomialp(n) such thatp(n) isO(n10) and for any segment of size at most2n
andH i = p(n)H i

chain +H i
size,

λ(H i|S) ≥ 〈φg|H i
size|φg〉 − 1/2n2.

Proof: We use the projection lemma withH2 = p(n)H i
chain andH1 = H i

size. Note thatH1 need not be
positive, although it does need to be positive onT in order to yield a non-trivial lower bound.T , the ground
space forH i

chain, is just the state|φg〉. We need to establish that‖H i
size‖ = O(n). Sincel ≤ 2n, the first

term isO(n). The Hilbert spaceS is the set of all semi-legal, bracketed states for that segement, so there
can be at most one site in , or and at most one site in . Thus the second two terms inH i

size are
at most1 + Tn/n for any state inS which is alsoO(n). The spectral gap ofH i

chain is Ω(1/n6), so we
can choosep(n) so thatp(n) isO(n10) andJ > 2n2‖H1‖2 + 2‖H1‖ which will lower boundλ(H i|S) by
〈φg|H i

size|φg〉 − 1/2n2.

Note that we are not able to use the projection lemma for very largel because theΩ(1/l6) gap will
not be large enough. In the lemma below, we determine the ground energy of a segment as a function of
its length. Largel (greater than2n) are dealt with separately with an argument that does not require the
projection lemma.

Lemma 3.3 The operatorH i acting on thel particles of segmenti restricted to semi-legal bracketed states
will have ground energy0 if l = n and ground energy at least1/2n2 for any other value ofl.

Proof: Any sequence X will have an illegal pair. is also illegal. Therefore, we can assume that
l ≥ 4. We consider four different cases based on the size of the segmentl.
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l = n:

Consider the state|φn
g 〉. 〈φn

g |Hchain|φn
g 〉 = 0. Recall that|φg〉 is a uniform superposition of states.

There areTn distinct configurations represented in the support of|φg〉 each of which as2m states
for m = (n − 3)/2. Each configuration has one has asite and the number of configurations that
contain a , or state isn− 2. Therefore

〈φn
g |H i

size|φn
g 〉 =

n

n
− 2 +

Tn

(n− 2)

(n − 2)

Tn
= 0.

l > 2n:

Let ψ be a state in the standard basis that is semi-legal, bracketed and has lengthl. We will only
lower bound〈ψ|H i

size|ψ〉. SinceH i
chain is non-negative, the lower bound will hold for all ofH i.

Furthermore, we will omit the last term inHsize because this only adds to the energy. Every standard
basis state in a bracketed semi-legal segment of lengthl has exactly one occurrence of. Therefore
the energy of a segment of lengthl will be at leastl/n− 2. Sincel > 2n+ 1, this will be at least1/n.

2n ≥ l > n:

We will first handle the case thatl is even. From Lemma 2.13, we know that the lowest eigenvalue of
Htrans + Hlegal on a chain of lengthl is Ω(1/l6) which is in turnΩ(1/n6). The other terms inH i

are positive and theHtrans +Hlegal are weighted by a factor ofp(n) which bring the lowest energy
to Ω(1).

Since we can assume thatl andn are both odd, we know thatl ≥ n + 2. We will use the projection
lemma for this case and show that〈φl

g|H i
size|φl

g〉 ≥ 1/n2 which by Corollary 3.2 will be enough to
lower boundλ(H i) by 1/2n2. We osberve that

Tn =
(n− 3)2

2
+

3(n − 3)

2
+ 1 =

(n − 1)(n− 2)

2
,

soTn/(n− 2) = (n − 1)/2, and

〈φl
g|H i

size|φl
g〉 =

l

n
− 2 +

(
Tn

n− 2

)(
l − 2

Tl

)

=
l

n
− 2 +

n− 1

l − 1

=
l − n

n
+
n− l

l − 1

≥ (l − n)

(
1

n
− 1

l − 1

)

≥ (l − n)

(
1

n
− 1

n+ 1

)

≥ 2

n(n+ 1)
≥ 1

n2

l < n:

We can use the same reasoning as in the previous case to assumethat l is odd. Since bothl andn
are odd, we know thatl ≤ n− 2. Now we will use the projection lemma for this case and show that
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〈φl
g|H i

size|φl
g〉 ≥ 1/n2 which will be enough to lower boundλ(H) by 1/2n2.

〈φl
g|H i

size|φl
g〉 =

l − n

n
+
n− l

l − 1

≥ (n − l)

(
1

l − 1
− 1

n

)

≥ (n − l)

(
1

n− 3
− 1

n

)

≥ 2

n(n− 3)
≥ 1

n2

As a result of Lemma 3.3, we know that if the number of particles in the chain isnt, a multiple ofn, and if
n is odd, then the ground energy ofH is zero and the ground space is spanned by the states that consist of t
copies of|φn

g 〉 tensored together. There are actuallyn such states, which can be obtained by taking one and
rotating it by one positionn times along the cycle. We will call these|ψ0〉, . . . , |ψn−1〉. Any eigenstate of
H that has a segment which is not equal ton will have energy at leastΩ(1/n2) while the norm of a single
term inH which acts on a pair of neighboring states is at mostO(n10). This means the final spectral gap
is O(n12). We still need to handle the case where there is a configuration which is semi-legal but has no
segments. This would just correspond to a configuration of all lower case states or all upper case states.
Hchain would evaluate to zero on such a state butHsize would bent/(n − 2) which would be at least1/2
for anyt ≥ 1. Since these bounds are independent oft and hold for arbitrarily larget, they hold ast tends
towards infinity.

3.1 Entropy of Entanglement

Consider the cycle withnt particles, a basis state|ψi〉 and a setA of contiguous particles in the cycle. We
say that a particle inA is goodfor |ψi〉 if it is the pth particle in a some segmentj where2 ≤ p ≤ n/4 or
3n/4 ≤ p ≤ n− 1 and the(n− p)th particle in that segment is not inA.

Lemma 3.4 Consider a state|ψi〉 and a contiguous setA of r particles on the cycle. We assume that
r ≤ nt− n. When|ψi〉 is traced down to the particles inA, the entropy of the resulting state is at least the
number of particles inA that are good for|ψi〉 divided by4.

Proof: The segments in|ψi〉 are fixed and we shall number them from1 to t. |ψi〉 is a tensor product of
states|ψj

i 〉, where|ψj
i 〉 is the ground state for a finite chain of lengthn for segmentj. The set of good

particles can only come from two different segments. This isbecause if a segment contains a good particle,
one of the endpoints inAmust be contained in that segment. We will arbitrarily call these segmentsj andk.
LetAj be the set of good particles inj andAk be the set of good particles ink. The state|ψi〉 can be written
as|ψi〉 = |ψj

i 〉 ⊗ |ψk
i 〉 ⊗ |ψR

i 〉. Where|ψR
i 〉 is the state for the rest of the cycle (all sites not in segmentj or

k).
The support of|ψj

i 〉 can be partioned into two sets depending on whether the good particles are all in
an entangled state ( or ) or whether there is a good particle that is not in an entangled state. Let|φj

i 〉
be the uniform superposition of the states in which all the good particles are entangled and|φ̂j

i 〉 be uniform
superposition of the states for which there is a good site that is not in an entangled state.

Since the good particles are all either in the firstn/4 or lastn/4 particles in the chain, we can use the
same argument used in Section 2.3 to determine that there is aconstantcj ≥ 1/4 such that a fraction ofcj
of the states in the support of|ψi〉 are in the support of|φj

i 〉. We can write|ψj
i 〉 =

√
cj|φj

i 〉 +
√

1 − cj |φ̂j
i 〉

and|ψk
i 〉 =

√
ck|φk

i 〉 +
√

1 − ck|φ̂k
i 〉. ck is also at least1/4 although not necessarily equal tocj.
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|ψi〉 =

(√

(1 − cj)(1 − ck)|φ̂j
i 〉|φ̂k

i 〉 +
√

cj(1 − ck)|φj
i 〉|φ̂k

i 〉 +
√

(1 − cj)ck|φ̂j
i 〉|φk

i 〉 +
√
cjck|φj

i 〉|φk
i 〉

)

⊗ |ψR
i 〉.

Furthermore, the four states in the above sum satisfy the conditions for for Lemma 2.16 for the setA.
|φ̂j

i 〉|φk
i 〉|ψR

i 〉 has|Ak| entangled pairs betweenA and the rest of the cycle. Similarly,|φj
i 〉|φ̂k

i 〉|ψR
i 〉 has|Aj |

entangled pairs and|φj
i 〉|φk

i 〉|ψR
i 〉 has|Aj | + |Ak| entangled pairs betweenA and the rest of the cycle. We

then have

S(ρA
i ) ≥ cj(1 − ck)(|Ai|) + (1 − cj)ck(|Ak|) + cjck(|Aj | + |Ak|) ≥

1

4
(|Aj | + |Ak|).

In the next lemma, we extend the lower bound on the entanglement to an arbitrary superposition of the
|ψi〉.

Lemma 3.5 Consider a cycle withnt particles. Let|ψ〉 =
∑n−1

i=0
αi|ψi〉. For any fixedr ≤ (n− 1)t, pick a

random setA of r contiguous particles in the cycle. The expected entropy of entanglement of|ψ〉 when the
state|ψ〉 is traced down toA is at least(min{r, n/4} − 2)/16.

Proof: Consider a particular|ψi〉. With probability1/4, the left end of the segment will fall in the lastn/4
particles in a segment. Ifr ≤ n/4, this means that all but two of the particles are good (the exceptions are
the sites in state and ). If n/4 < r ≤ n/2, thenn/4 − 2 of the particles are good. With probability
1/4, the left end will fall in the rangen/2 + 1 to 3n/4. If r > n/2, then the number of good particles is at
leastn/4− 1 becauseA will contain all of the particles in the last quarter of the segment. Sincer < nl−n,
it can not wrap around and contain any of the particles in the first quarter of that segment. Thus, with
probability at least1/4, there are at leastmin{r, n/4} − 2 good particles inA for |ψi〉. Using Lemma 3.4,
E[S(ρA

i )] ≥ (min{r, n/4} − 2)/16.
LetB be the complement ofA andSB

i be the set of standard basis states in|ψi〉 traced down to the set
B. If A has at mostnt − n particles then every state in everySB

i contains a site. Furthermore, for the
states within a singleSB

i , the sites are the same and they are all different from thesites for the states
in aSB

j for i 6= j. Thus, theSB
i ’s are all mutually disjoint and we can apply Lemma 2.16 and linearity of

expectations to get

E[S(ρA)] ≥
r∑

i=1

|αi|2E[S(ρA
i )] ≥ min{r, n/4} − 2

16
.

Since the random variable denoting the entropy of entanglement for a randomly chosenA of sizer is in
the range0 to log(21)r, we can apply Markov’s inequality to determine that with constant probability the
entanglement entropy of a randomly chosenA is Ω(min{r, n}).

Finally consider the translationally invariant state|Φ〉 =
∑n−1

i=0
(1/

√
n)|ψi〉. For any fixed setA, A will

have at leastmin{r, n/4} good particles for at leastn/4 of the|ψi〉. Applying Lemmas 2.16 and 3.4 to these
states, we get that the entanglement entropy ofA for |Φ〉 is at least(min{r, n/4}− 2)/16 = Ω(min{r, n}).

4 Open Questions

There still remains an exponential difference in the dependence on1/∆ between Hastings’ area law and the
lower bound presented here and that in [GH08]. Resolving this discrepancy may involve strengthening the
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upper bound given in the area law. There are also issues related to the translationally invariant construction
given here that would be worthwhile to clarify. For example,is it possible to obtain a construction on the
infinite chain that achieves the same entanglement entropy but with a unique ground state? Can one obtain
a lower bound ofΩ(min{m,n}) for the entanglement entropy on all regions of sizem instead of a constant
fraction of the regions? Is there a 1D Hamiltonian for which the entanglement is linear in the region size
simultaneously for all region sizes? The latter property could only be achieved on a gapless system because
the 1D area law indicates that any non-zero spectral gap willimply a finite upper bound on the entanglement
entropy for any region. It is not known whether this can be achieved even for a Hamiltonian with position-
dependent terms. Finally, how robust are the entanglement properties in the ground state to small fluctuations
in the terms of the Hamiltonian? It seems likely that the construction presented here will break with small
errors in the transition rules. Is it possible to obtain a fault-tolerant version of this construction?
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