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Quantum bit commitment has been known to be impossible by the independent proofs of Mayers,
and Lo and Chau, under the assumption that the whole quantum states right before the unveiling
phase are static to users. We here provide an unconditionally secure non-static quantum bit com-
mitment protocol with a trusted third party, which is not directly involved in any communications
between users and can be limited not to get any information of commitment without being detected
by users. We also prove that our quantum bit commitment protocol is not secure without the help of
the trusted third party. The proof is basically different from the Mayers-Lo-Chau’s no-go theorem,
because we do not assume the staticity of the finally shared quantum states between users.

PACS numbers: 03.67.Dd, 03.67.Hk, 03.67.Mn

I. INTRODUCTION

As one of the most basic and important cryptographic
primitives, a bit commitment (BC) scheme has a lot of
applications to crucial cryptographic protocols including
coin flipping, interactive zero-knowledge proof, oblivious
transfer, verifiable secret sharing, multiparty secure com-
putation, and so on [1, 2, 3, 4, 5, 6]. There have also
been several quantum approaches [7, 8] to guarantee the
unconditional security of BC protocols, as quantum key
distribution (QKD) protocols [9, 10] have done. Unfortu-
nately, in the middle of the 1990’s Mayers [11, 12], and in-
dependently Lo and Chau [13] (MLC) proved that quan-
tum principles cannot be helpful to construct an uncon-
ditionally secure BC protocol, in contrast to a brilliant
development of QKD protocols [14, 15, 16]. The im-
possibility of quantum bit commitment (QBC) is called
the MLC’s no-go theorem, which implies a severe draw-
back of quantum cryptography. Since then, there have
been several results about QBC protocols, some of which
are for the possibility through new schemes and the-
ories [17, 18, 19], others of which are for the trade-
off relations between the possibility and the impossibil-
ity [20, 21].

The most important assumption of the MLC’s no-go
theorem is that every QBC protocol results in a static

quantum state, and thus both users exactly know about
what it is before the unveiling time. For any initial states
of Alice and Bob, |χ〉A (χ = 0 or 1 ) and |ψ〉B, the finally
shared quantum state will be given as UAB(|χ〉A⊗|ψ〉B),
where UAB represents all the algorithms involved in the
protocol and is necessarily opened and known to all par-
ticipants. If the QBC protocol satisfies the perfect con-
cealment, then by the Gisin-Hughston-Jozsa-Wootters
(GHJW) theorem [22] there exists a local unitary op-
eration SA such that (SA ⊗ I)UAB(|0〉A ⊗ |ψ〉B) =
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UAB(|1〉A ⊗ |ψ〉B). By delaying the measurements and
applying SA to the local system, Alice is able to change
her committed bit surreptitiously without being detected
by Bob. This is the main stream of the MLC’s no-go the-
orem.

However, we focus on the fact that SA actually is given
depending on the Bob’s initial state |ψ〉B . So, it would
be better to denote the Alice’s strategy by SA(ψ) rather
than SA. Even though it is true that there exists an ex-
act operation SA(ψ) for each |ψ〉B whenever the protocol
is perfectly concealing, Alice could neither figure out nor
make use of SA(ψ) appropriately, if |ψ〉B is randomly
given and kept unknown to her. A QBC protocol to re-
alize the above situation is here called a non-static QBC
protocol.

In this paper, by investigating the possibility and the
impossibility of such non-static QBC protocols, we con-
struct an unconditionally secure QBC protocol with the
help of a trusted third party (TTP), and prove that our
non-static QBC protocol is not possible without the help
of a TTP. Although the existence of a TTP can be a weak
point as in general cryptographic primitives, the TTP in
our protocol plays only a little role to provide quantum
sources to carry classical bit information. Moreover, the
TTP is not actually involved in any communications be-
tween users, and cannot get any information about the
commitment without being detected by users.

II. NON-STATIC QBC PROTOCOLS

Hereafter we consider a more generalized version of
QBC protocols which varies the resulting states accord-
ing to the initial state |ψ〉B generated by Bob (or a TTP),
and thus the strategy SA(ψ) ⊗ I by a dishonest Alice
might be also changed according to |ψ〉B. One possible
way to accomplish the above property is that Bob (or
a TTP), instead of Alice, prepares and sends an initial
quantum state |ψ〉B to Alice, where |ψ〉B should be kept
unknown to Alice. Then Alice applies an associate uni-
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tary operator to |ψ〉B to commit a bit χ.
For example, suppose that when χ = 0, Alice chooses

one of M and N randomly, and similarly when χ = 1,
one of J and K randomly, where M , N , J , and K are
defined as

M = I, N = −iσy

J =
1 − i

2
√

2
[I + i (σx − σy + σz)]

K =
1 + i

2
√

2
[I + i (σx + σy − σz)] , (1)

where σx, σy, and σz are the Pauli matrices. To guar-
antee the randomness, Alice prepares an auxiliary state

|+〉A =
|0〉

A
+|1〉

A√
2

, and then she applies a unitary op-

erator either |0〉A〈0| ⊗ M + |1〉A〈1| ⊗ N (if χ = 0) or
|0〉A〈0| ⊗ J + |1〉A〈1| ⊗ K (if χ = 1) to |+〉A ⊗ |ψ〉B so
that she finally obtains the following states

|Φ0(ψ)〉AB =
|0〉A ⊗M |ψ〉B + |1〉A ⊗N |ψ〉B√

2
and

|Φ1(ψ)〉AB =
|0〉A ⊗ J |ψ〉B + |1〉A ⊗K|ψ〉B√

2
. (2)

By performing the standard measurement on her local
system HA, Alice provides Bob with an uniformly dis-
tributed ensemble, either ξ0(ψ) = {M |ψ〉B, N |ψ〉B} or
ξ1(ψ) = {J |ψ〉B,K|ψ〉B} as shown in TABLE I.

TABLE I: The change of the initial states |ψ〉
B

= m|0〉
B

+
n|1〉

B
(|m|2 + |n|2 = 1): It shows how the initial states |ψ〉

B

are transformed by unitary operators M,N, J , and K ran-

domly chosen according to χ. (|±〉
B

denotes
|0〉

B
±|1〉

B√
2

.)

χ Operators |0〉
B

|1〉
B

|ψ〉
B

= m|0〉
B

+ n|1〉
B

0
M |0〉

B
|1〉

B
m|0〉

B
+ n|1〉

B

N |1〉
B

−|0〉
B

m|1〉
B
− n|0〉

B

1
J |+〉

B
i|−〉

B
m|+〉

B
+ in|−〉

B

K |−〉
B
i|+〉

B
m|−〉

B
+ in|+〉

B

Without an additional information about the ensem-
bles, Bob will regard them as a density operator, either
ρ0(ψ) = (M |ψ〉B〈ψ|M † + N |ψ〉B〈ψ|N †)/2 or ρ1(ψ) =
(J |ψ〉B〈ψ|J† +K|ψ〉B〈ψ|K†)/2, respectively.

Let us consider the cases that |ψ〉B = |0〉B and |ψ〉B =
|+〉B. It is very easy to show that ρ0(ψ = 0) = ρ1(ψ =
0) = ρ0(ψ = +) = ρ1(ψ = +) = I/2. However, we
can ask a question such as “Is there any proper strategy
SA to change not only |Φ0(ψ = 0)〉AB to |Φ1(ψ = 0)〉AB

but also |Φ0(ψ = +)〉AB to |Φ1(ψ = +)〉AB?” The answer
is NO. In fact, up to the left multiplication of diago-

nal matrices, SA(ψ = 0) should be
1√
2

(

1 1

1 −1

)

, while

SA(ψ = +) should be
1√
2

(

1 −i
i −1

)

. This means that

a certain fixed attack by Alice cannot be available for
all |ψ〉B, and therefore Alice should be able to choose a
strategy appropriate to an unknown |ψ〉B.

However, this example has a problem that the QBC
protocol is not perfectly concealing. If Bob prepares the

initial state as |ψ〉B =
|0〉

B
+i|1〉

B√
2

, then he can know Al-

ice’s commitment in advance, because ρ0 and ρ1 are ob-
viously different. To solve this problem, we employ a
TTP, and then investigate the securities of QBC proto-
cols with and without the help of the TTP in the next
two subsections.

A. Non-static QBC Protocol with a TTP

Alice and TTP previously share N maximally entan-
gled states |Ψ−〉TA = (|01〉TA − |10〉TA)/

√
2 satisfying

|Ψ−〉TA = (U ⊗ U)|Ψ−〉TA up to the global phase for all
unitary operators U .

(i) [Pre-Commitment] TTP performs random orthogo-
nal measurements Mi = {|φi〉T 〈φi|T ,

∣

∣φ⊥i
〉

T

〈

φ⊥i
∣

∣

T
} (1 ≤

i ≤ N ) on his side of |Ψ−〉TA’s. Then Alice and TTP
always have the opposite state, that is, if TTP’s result
is |φi〉T (

∣

∣φ⊥i
〉

T
), then Alice must have |ψi〉A =

∣

∣φ⊥i
〉

A

(|φi〉A). However, Alice does not know what |ψi〉A’s are
actually, because TTP keeps Mi unknown to her.

(ii) [Commitment] To commit a bit χ, Alice encodes χ
into |ψi〉A by applying an operator Pi randomly chosen
from M , N , J , and K as follows. If Alice wants to com-
mit 0, then she sends Bob M |ψi〉A or N |ψi〉A at random,
and if she wants to commit 1, then she sends J |ψi〉A and
K|ψi〉A randomly.

(iii) [Holding Phase] It proceeds without doing any-
thing for a certain period which users agreed with at the
beginning stage of the protocol.

(iv) [Unveiling Phase] At a specific later time, Alice
publicly announces all Pi’s and then TTP all Mi’s and
measurement outcomes. Then Bob verifies the commit-
ment by checking whether the measurement outcomes
are always opposite or not, when he performs Mi’s on

P †
i Pi|ψi〉A. If Alice is honest, then the measurement out-

comes should be opposite for all i.
In step (ii), as noticed previously, by using the an-

cillary state |+〉A′ and the non-local unitary operations
such as |0〉A〈0| ⊗ M + |1〉A〈1| ⊗ N and |0〉A〈0| ⊗ J +
|1〉A〈1| ⊗ K according to χ, Alice obtains |Φ0〉A′A =

(|0〉A′ ⊗M |ψ〉A + |1〉A′ ⊗N |ψ〉A) /
√

2 and |Φ1〉A′A =

(|0〉A′ ⊗ J |ψ〉A + |1〉A′ ⊗K|ψ〉A) /
√

2. However, due to
the randomness of |ψ〉A, |Φχ〉A′A

will be changed every
time. These states can come to not only product states
but also maximally entangled state. So, Alice could not
control the relation between |Φ0〉A′A and |Φ1〉A′A as she
wants, without the knowledge of |ψ〉A’s (actually Mi’s).

Of course, we need to calculate the success probabil-
ity of the delayed measurement attack proposed in the
MLC’s no-go theorem, which can be measured with the
fidelity F (|ψ〉, |φ〉) = |〈ψ|φ〉|2. Suppose that, to change
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the committed bit from 0 to 1, Alice applies a local uni-

tary operation

(

a b

c d

)

. The success probability is

F =
1

2
{F (aM |ψ〉A + bN |ψ〉A, J |φ〉A)

+F (cM |ψ〉A + dN |ψ〉A,K|φ〉A)}, (3)

and therefore, in the Bloch representation, |ψ〉A =
cos(θ/2)|0〉A + eiφ sin(θ/2)|1〉A (0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π),
the expected success probability is

1

4π

∫ 2π

0

∫ π

0

F sin θ dθdφ

=
|a|2 + |b|2 + |c|2 + |d|2

4
+
Re(ab− cd)

6

=
1

2
+

2Re(ab)

6
≤ 1

2
+

|ab|
3

≤ 2

3
, (4)

where z is the complex conjugate of a given complex
number z. Since the protocol is repeated N times, Al-
ice’s attack is detected with the probability greater than
1−(2/3)N which goes to 1 as N → ∞. That is, this QBC
protocol satisfies the asymptotic bindingness, where the
level of security follows as noticed in [20].

We should also consider the concealment. One of the
assumptions of our protocol is that Alice and TTP previ-
ously share the singlet states. This means that Bob has
no way to interrupt the quantum channel between them
to get some information. That is to say, Bob should gain
information about the commitment from only quantum
states given by Alice. Another assumption is that TTP
should choose Mi’s at true random. So, the finally en-
coded states will appear to Bob as I/2, which guarantees
the perfect concealment.

To transmit only digital information through classical
channels, TTP can choose the bases of Mi’s in a dis-
cretized subset of the Bloch space. For instance, TTP
can select finite points uniformly dividing the sub-circle
spanned by |0〉, |1〉, |+〉 and |−〉. Since our protocol sat-
isfies the perfect concealment for all initial states |ψ〉A
such that mn ∈ R, so do all points in the sub-circle. Of
course, the success probability will be changed a little
bit but less than 1, and therefore this protocol still sat-
isfies the bindingness. Such a restriction on the domain
of initial states gives us one more advantage, which pro-
hibits TTP from generating the initial states such that
mn /∈ R and knowing Alice’s commitment in advance.
TTP should always announce Bob the right information
about his measurements, because if TTP announces dis-
honestly, then the measurements in the wrong bases will
make a disturbance on the correlation between Alice and
Bob, and thus the dishonest behavior will be detected by
users.

In result, the quantum entanglement shared between
Alice and TTP guarantees not only the non-staticity, but
therefore also the unconditional security of our protocol,
which cannot be realized by the classical cryptographic
theories.

B. Non-static QBC Protocol without a TTP

We here deal with a self-enforcing QBC protocol (with-
out a TTP), which is slightly modified from our previous
QBC protocol like that Bob, instead of TTP, generates
initial quantum states |ψ〉B and Alice applies unitary op-
erators to |ψ〉B to commit χ.

The following lemma is a necessary and sufficient con-
dition for our self-enforcing QBC protocol to be perfectly
concealing against Bob using any kind of quantum entan-
gled state |Ψ〉BB′ on the extended system HB ⊗HB′ .

Lemma 1. A non-static QBC protocol is perfectly con-

cealing for all qubits |ψ〉B and all entangled state |Ψ〉BB′

if and only if M , N , J , and K should satisfy the following

equations

M |0〉B〈0|M † +N |0〉B〈0|N † = J |0〉B〈0|J† +K|0〉B〈0|K†,

M |1〉B〈1|M † +N |1〉B〈1|N † = J |1〉B〈1|J† +K|1〉B〈1|K†,

and (5)

M |0〉B〈1|M † +N |0〉B〈1|N † = J |0〉B〈1|J† +K|0〉B〈1|K†.

Proof. By a direct calculation, we first prove that the
above condition is a necessary and sufficient condition
for ρ0(ψ) = ρ1(ψ) for all qubits |ψ〉B = m|0〉B + n|1〉B.
It is very clear that if M , N , J , and K satisfy Eq. (5),
then ρ0(ψ) = ρ1(ψ). Conversely, we should show that
all M , N , J , and K such that ρ0(ψ) = ρ1(ψ) sat-
isfy Eq. (5). The first two equations of Eq. (5) can be
easily derived from the cases that m 6= 0, n = 0 and
m = 0, n 6= 0. Therefore, M , N , J , and K should even-
tually satisfy Re

(

mn(M |0〉B〈1|M † +N |0〉B〈1|N †)
)

=

Re
(

mn(J |0〉B〈1|J† +K|0〉B〈1|K†)
)

, for all m and n.
Considering the cases that m = n = 1 and m = 1, n = i,
we can obtain the third equation of Eq. (5). It is triv-
ial to extend the necessary and sufficient condition to all
bipartite entangled states |Ψ〉BB′ on HB ⊗ HB′ , where
dimHB = 2 and dimHB′ is arbitrary, because |Ψ〉BB′

has the Schmidt decomposition [23] and we can regard
|0〉B and |1〉B as eigenvectors of the density operator
trB′(|Ψ〉BB′〈Ψ|).

In addition, we also figure out what kind of unitary
operators M , N , J , and K are able to satisfy the perfect
concealment, that is, the necessary and sufficient condi-
tion given in Lemma 1. Unfortunately, Theorem 2 tells
us that there is a strategy for Alice to cheat the commit-
ment freely, regardless of whether she knows the initial
quantum states or not.

Theorem 2. If a non-static QBC protocol is per-

fectly concealing, then there exists a local unitary op-

erator SA =

(

a b

c d

)

such that J = aM + bN and

K = cM + dN .

Proof. Considering the orthogonality and the GHJW the-
orem for the perfect concealment, we can let M , N , J ,
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TABLE II: The parametrization for the unitary operators
M,N, J , and K satisfying that ρ0(ψ) = ρ1(ψ) for all |ψ〉

B
:

|x|2 + |y|2 = 1 (y 6= 0), |α| = 1,

 

a b

c d

!

,

 

s t

u v

!

: unitary

Operators |0〉
B

|1〉
B

M |0〉
B

|1〉
B

N x|0〉
B

+ y|1〉
B

α(y|0〉
B
− x|1〉

B
)

J (a+ bx)|0〉
B

+ by|1〉
B

tαy|0〉
B

+ (s− tαx)|1〉
B

K (c+ dx)|0〉
B

+ dy|1〉
B
vαy|0〉

B
+ (u− vαx)|1〉

B

and K be unitary matrices as shown in TABLE II, with-
out loss of generality. In this case, it is obvious that M ,
N , J , and K satisfy the first two equations of Eq. (5). By
the third equation of Eq. (5), all parameters in TABLE
II should follow that

αxy = (a+ bx)tαy + (c+ dx)vαy,

−yαx = by(s− tαx) + dy(u− vαx),

1 − αx2 = (a+ bx)(s− tαx) + (c+ dx)(u − vαx),

αy2 = by2tα+ dy2vα. (6)

We first consider the case that ρ0(ψ = 0) is invertible (of
rank 2), that is, y 6= 0. Eq. (6) can be rewritten as

1 = as+ cu,

0 = bs+ du,

0 = at+ cv, and

1 = bt+ dv. (7)

This means that

(

s t

u v

)(

a b

c d

)

=

(

1 0

0 1

)

, that is,

(

a b

c d

)

=

(

s t

u v

)

. Therefore, there exists a unitary op-

erator

(

a b

c d

)

such that J = aM+bN andK = cM+dN .

Let us consider the case that the rank of ρ0(ψ = 0) is 1,
that is y = 0, where we can reparameterizeM , N , J , and
K as shown in TABLE III. For the perfect concealment,
the parameters should satisfy

jk + lm = αβ + γδ. (8)

If jk+ lm 6= 0, then jk = αβ, lm = γδ or jk = γδ, lm =
αβ, because of the unity of parameters. This property
means that the matrices have the relations such as M ∝
J , N ∝ K or M ∝ K, N ∝ J , where A ∝ B denotes
A = cB for a constant c. Therefore, the commitments
according to χ’s are actually same and thus make no
sense. If jk+lm = 0, under the assumption that jk 6= lm
(Otherwise, for all quantum states |ψ〉B, rank(ρ0(ψ)) =
rank(ρ1(ψ)) = 1, and thus M ∝ N ∝ J ∝ K, which

TABLE III: The reparametrization of TABLE II for the uni-
tary operators M,N, J , and K satisfying that rank(ρ0(ψ =
0)) = 1:

|j| = |k| = |l| = |m| = 1, |α| = |β| = |γ| = |δ| = 1

Operators |0〉
B

|1〉
B

M j|0〉
B

k|1〉
B

N l|0〉
B
m|1〉

B

J α|0〉
B
β|1〉

B

K γ|0〉
B

δ|1〉
B

is meaningless.), we can find a unitary operator

(

a b

c d

)

such that J = aM + bN and K = cM + dN , where a, b,
c, and d are given as

a =
lβ −mα

lk −mj
, b =

kα− jβ

lk −mj
, c =

lδ −mγ

lk −mj
, and

d =
kγ − jδ

lk −mj
.

This completes the proof.

By using SA⊗ I, Alice can freely exchange unitary op-
eratorsM and N with J and K so that she can cheat her
committed bit with certainty without being detected by
Bob. Therefore, we can find out that, even though dis-
honest Bob makes use of arbitrary dimensional ancillary
system, if Alice and Bob communicate through the only
two-dimensional channel, then any non-static QBC pro-
tocols we propose are not secure, and in fact, the perfect
concealment makes the non-static QBC protocol static
without the help of a TTP.

III. CONCLUSION

We have dealt with a new QBC scheme which can be
not static so that the final quantum states are determined
randomly and kept unknown to all participants until the
unveiling phase. However, we would like to emphasize
that our QBC scheme does not oppose the MLC’s no-go
theorem, but ensures its security only by enforcing Alice
to change the attack strategy according to the unknown
initial quantum information.

We have shown that it is possible to construct an un-
conditionally secure QBC protocol with the help of a
TTP, where the role of the TTP can be limited not to
get any information of the committed bit in advance and
actually users can perceive any dishonest behaviors of
the TTP. Unfortunately, we have also proved that the
non-static QBC protocol is not secure without the help
of the TTP. In a self-enforcing non-static QBC protocol,
the necessary and sufficient condition for the perfect con-
cealment eventually makes the QBC protocol static. It
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would be important to check if we can extend the impos-
sibility of the self-enforcing QBC protocols to the cases
with no limits on the dimension of quantum channels and
the number of the quantum states in ensembles.
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[7] G. Brassard and C. Crépeau, in Advances in Cryptol-

ogy: Proceedings of Crypto’90, Lecture Notes in Com-
puter Science Vol. 537 (Springer-Verlag, Berlin, 1991),
p. 49–61.
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