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Abstract
Five dimensional homogeneous anisotropic cosmological models in Barber’s second self creation the-
ory are constructed when the gravitational field is generated by a perfect fluid. Under the power law
dependence of the scale factors, the perfect fluid models degenerate Zeldovich fluid models. The physical
and geometrical features of these models are discussed.
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1. Introduction

In recent years cosmologists have come to be interested in theories with more than four spacetime
dimensions in which extra dimensions are contracted to a very small size, sizes beyond our present ability
of experimental detection [1]. Marciano [2] suggested that the experimental detection of time variation of
fundamental constants could provide strong evidence for the existence of extra dimensions. Chodos and
Detweller [3] proposed cosmological dimensional reduction process such that the five dimensional universe
naturally evolves into four-dimensional universe as a consequence of dimensional reduction. Various authors
[4-12] constructed higher dimensional cosmological models containing variety of matter fields.

Various cosmological problems are being studied by cosmologists to reveal the evolution of the universe.
Many authors have proposed various alternative theories by modifying Einstein’s general theory of relativity.
Barber [13] proposed two theories known as self-creation theories. His first theory is a modification of the
Brans and Dicke [14] theory and the second theory is a modification of the general theory of relativity. His
first theory is both inconsistent with experiment as well as internally inconsistent [15]. The second theory
of Barber is a modification of general relativity to a variable G theory and predicts local effects within
the observational limits. In view of the consistency of Barber’s second self creation theory of gravitation
many authors [16-26] investigated various aspects of different spacetime. Recently Venkateswarlu and Pavan
Kumar [27] studied the role of higher dimensional FRW models in Barber’s second self creation theory when
the source of gravitation is a perfect fluid.

In this paper we have constructed five-dimensional anisotropic cosmological models in second self creation
theory. The energy momentum tensor is assumed to be the simple extension of the usual four-dimensional
case and the isotropy of pressure is assumed in all directions, including the extra one as has been usually
done in the literature [5, 28, 29].
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2. Field Equations and Their Consequences

It is believed that the universe is anisotropic in its early stage of evolution. Therefore we consider the
five dimensional anisotropic and homogeneous spacetime described by a metric of the form

ds® = dt> — A%(da?® + dy?) — B2dz? — C?dy?, (1)

where A, B, C are functions of ¢ only.
The field equations in Barber’s second self creation theory are

1 8m
Gij = Rij — 5910 = —gTz‘j (2)
and
8
O¢ = %)\T, 3)
where O¢ = ;kk is the invariant D’Alembertian and T is the trace of energy momentum tensor which

describes all non-gravitational and non-scalar field matter and energy. Here, A is a coupling constant to be
evaluated from experiment and ¢ is the Barber’s scalar. The measurement of deflection of light restricts
the value of coupling to 0 < |[A| < 10~!. In the limit A — 0, this theory approaches the standard general
relativity theory in every respect. In this theory, the Newtonian gravitational parameter G is not a constant
but a function of ¢t and G = %

The energy momentum tensor for perfect fluid distribution is given by
T;j = (p + p)uiu; — pgij (4)
together with
gijuiuj =1, (5)

where p,p and u’ are energy density, isotropic pressure and velocity five vector of the fluid, respectively.
By adopting the co-moving coordinates system and using equations (4) and (5), field equations (2) and
(3) for the metric (1) are obtained as

il 2+2AIBI+2AICI+BICI_8_7T (6)
A AB " “TAC T BC T %°

AII BII CII AIBI AICI BICI B _87T

2 7
AT B T ot A Tac "B T4 F (™)

A" cr (AN _ACT -8«
27*?*(1) M ol ®)

A" B (AN A'B -8
27*?*(1) tiE T ©)

and
¢" + 2£+£j+g ¢’—§ A(p—4p) (10)
AT T o) T3 h
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where prime symbol denotes ordinary differentiation with respect to time ¢. The system of field equations
(6) — (10) is an under determined system having five equations involving six unknowns, viz. A, B,C,p,p
and ¢. In order to solve this system of equations we consider here the power law dependence of the scale
factors

C=DB", (11)
where nis a real number.
Subtracting equation (9) from equation (8) we get

C// B// A/C/ A/B/
c B T“AC ““AB

0. (12)

Substituting equation (11) in equation (12) we obtain

BI BII BI AI

Equation (13) is satisfied for the following cases:

Case I: n = 1. (14)
Case II: B = k (Constant) (15)
i ! I
Case III: 5 + nE + 2é =0. (16)

B’ B A

3. Solutions

In this section we intend to derive explicit exact solutions of the field equations for each of the above
cases.

3.1. Casel

Using equation (14) in equation (11) we find

B=C.

In this case the behavior of the scale factors of Z co-ordinates and fifth co-ordinates are same. But
the physical situations demand that when the space co-ordinates expand the extra dimensions contract and
become unobservable. So this case is not physically realistic.

3.2. Case II

Using equation (15) in equation (11), we obtain

C =k (17)

Substituting (15) and (17) in equation (6) — (10) we get
AN 8«
(5) =% 1)
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AT 8w

A BP
A A2 87
2 (3) -5

and

!’

A 8
¢ +25¢ = 2T\ (0 — 4p).

Subtracting (19) from (20) we find

AI AII AI
Z(ﬁ+z>:“

which yields following two sub cases:

Sub case I: A =1 (Constant of Integration)

AII AI
Sub case II: ya + a= 0

3.2.1. Sub casel
Substituting (22) in (18) and (19) we obtain

p=p=0,

which reveals that the perfect fluid does not survive in this case and the spacetime becomes Minkowskian.

The Barber scalar is obtained as
¢ =mt + mo,

where mand myq are constants of integration.

3.2.2. Sub case II

Solving equation (23), we get

where a1 and as are constants of integration.
Using (24) in (18) and (19) we find

¢ _ af

p:p:%(alt—i—ag)?'

Thus in this case the general fluid degenerates the Zeldovich fluid.
With the help of equations (24) and (25), equation (21) reduces to

2
Aaj

(a1t+ag)2¢"+a1(a1t+a2) (bl-i- 1
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Solving (26) we obtain

¢ = my cos {log(alt + az)@} -+ ma sin {log(alt + ag)g} . (27)
Now equation (25) gives the physical parameter pressure with density as
2
p=p= m [ml cos {log(alt + az)@} + mg sin {log(alt + ag)4 H . (28)

In this case the five dimensional cosmological model for the Zeldovich universe in Barber’s second self creation
theory is given by

ds® = dt* — (a1t + az)(d2® + dy®) — k*dz* — k*"dy?®. (29)
3.2.3. Case III
Equation (16) yields
BII BI AI
g"rng = —2A(— k1) (30)

where kqis an arbitrary constant.
From (30) we obtain

—(k1t+k2)

A=e 2z (31)
and
B = (biek1t + by) 7, (32)
where ko, b and by are constants of integration.
Using equation (32) in equation (11) we get
C = (byeMt 4 by) 71, (33)

With the help of equations (31)-(33), equations (9) and (6) yield

é nbike?k1t 3k?
p=3g- 211kt i (34)
8 \ (n+1)2(brekrt + by) 4
and
k2 k2b eklt nk2b262k1t
p= L (F = + L 5 ). (35)
8t \ 4 (ble 1t bg) (n + 1) (ble 1t bz)
Substituting equations (31) — (35) in equation (10) we find
A (13k3 k3byekrt 3nkibiet
" — kibog’ — = L— L1 - e ¢ =0. (36)
3\ 4 (hiePt4by)  (n+1)2(biekrt 4 by)?

From equation (36) it is difficult to obtain a general solution of ¢. Therefore for a particular solution we
take k1 = 0 in equation (30).Thus we find

A=dy (37)

B = (dit + do) 7T (38)
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and
C = (dit + do) 7T, (39)

where dy, d; and dy are constants of integration.
Thus equations (6) and (9) yield

8T 8T nd3

P p="p= ) 40
67T 8 T A D)2(dit + do)? (40)
The Barber scalar ¢ is obtained from equation (10) as
¢ = my cos {log(dlt + dz)% } + mg sin {log(dlt + dz)% } . (41)
Now from equation (40) the physical parameters pressure and density are given by
nd3 [ml cos {log(dlt + dz)% } + mo sin {log(dlt + da) i H

8m(n + 1)2(dyt + dz2)?

In this case the five dimensional Zeldovich model in Barber’s second self creation theory is obtained as

2

ds? = a3(dz? + dy?) — (dat + do) 7T dz? — (dyt + dg) 7T dep?. (43)

4. Some physical and geometrical nature of the models

(a) Equation (29) represents five dimensional Zeldovich fluid universe in Barber’s second self creation
theory. The model is free from initial singularity i.e. at t = ;—‘12 but exhibits singularity at infinite time.
The energy density with pressure p(= p)in the model (29) is given by equation (28). It is evident that
p(=p) — 0 ast — oco. The scalar of expansion 6 calculated as

3@1
ait + as ’

from which it is observed that the universe is expanding with increase of time but the rate of expansion

becomes slow as time increases.
The shear scalar o2 for the model (29) is

2
2 ai ai

2
T At +a2)?  3(art + as) * 9’

2 —as

h and 02 — 0 as t — oo, the shape of the model changes uniformly in z and y
directions only and the rate of change of shape of the universe becomes slow with increase of time. It is
2
observed thattlim 7z 7 0, which indicates that the universe remains anisotropic throughout the evolution.
— 00

Since 0 — o0 ast —

The spatial volume is obtained as V = k"*1 (a1t + ay). Here, V. — 0 as t — =2 and V — oo ast — oo.
This indicates that the model is corresponding to open model. The deceleration parameter ¢ vanishes in
this model.

(b) Equation (43) represents five dimensional anisotropic homogeneous Zeldovich universe in second self
creation theory. At the initial epoch t = _d‘f? the model is free from singularity. As time tincreases the
model expands along z directions and the extra dimension contracts for -1< n <(0. At infinite time the extra
dimension becomes unobservable and reduces to the model obtained earlier by Mohanty et al. (2000).

In the model (43) the physical nature of the scalar expansionf, spatial volume V and the deceleration
parameter ¢ coincides with the corresponding results of model (29) studied earlier in case (a). In this model

the shear scalar o2 is calculated as
o2 — (n® + 1)d? _ dy n 2
2(n 4+ 1)2(dit +d2)?  3(dit +dy) 9

2 —da

—ooast — and 02 — 0 as t — oo, the shape of the model changes uniformly in zdirection

Since o
only and the rate of change of shape of the universe becomes slow with increase of time.
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4. Conclusion

In this paper we have constructed two five dimensional Zeldovich models given by (29) and (43) in
Barber’s second self creation theory for the spacetime (1). The models (29) and (43) start with the initial
epoch t = _a‘j? and t = rm respectively. In the model (29) the extra dimension remains constant throughout
the evolution whereas in the model (43) it contracts for -1< n < 0. Further it is interesting to note that
when the Barber’s coupling constantA — 0, the corresponding Barber’s scalar ¢ tends to constant in both

the models. Subsequently the model (29) and (43) degenerates Zeldovich fluid models in Einstein theory.

Acknowledgements

Authors are very much thankful to the honorable referee for his constructive comments.

References

[1] K. D. Krori and M. Barua, Phys. Letters A, 123, (1987), 379.

[2] W. J. Marciano, Phys. Rev. Letters, 52, (1984), 489.

[3] A. Chodos and S. Detweller, Phys. Rev., 21, (1980), 2167.

[4] W. H. Huang, Phys. Letters A, 136, (1988), 21.

[5] A. Banerjee, B. Bhui and S. Chatterjee, Astrophys. J., 358, (1990), 23.
[6] S. Chatterjee, Gen. Rel. Grav., 25, (1993), 1079.

[7] R. Venkateswarlu and D. R. K. Reddy, Astrophys. Space Sci., 202, (1993), 57.

[8] F. Rahaman, FIZIKA B, 11, (2002), 223.

[9] F. Rahaman, S. Chakraborty, S. Das, M. Hossain and J. Bera, Pramana J. Phys., 60, (2003a), 453.
[10] F. Rahaman , S. Das, N. Begum and M. Hossain, Pramana J. Phys., 61, (2003b), 153.
[11] G. P. Singh, R. V. Deshpande and T. Singh, Pramana J. Phys., 63, (2004), 937.

[12] G. P. Singh and S. Kotambkar, Pramana J. Phys., 65, (2005), 35.

[13] G. A. Barber, Gen. Rel. Grav. 14, (1982), 117.

[14] C. Brans and R.H. Dicke, Phys. Rev., 124, (1961), 925.

[15] C. Brans, Gen. Rel. Grav., 19, (1987), 949.

[16] L. O. Pimentel, Astrophys. Space Sci., 116, (1985), 395.

[17] H. H. Soleng, Astrophys. Space Sci., 139, (1987a), 13.

[18] H. H. Soleng, Astrophys. Space Sci., 102, (1987b), 67.

[19] D. R. K. Reddy and R. Venkateswarlu, Astrophys. Space Sci., 155, (1989), 135.
[20] R. Venkateswarlu and D. R. K. Reddy, Astrophys. Space Sci., 168, (1990), 193.

[21] K. Shanti and V. U. M. Rao, Astrophys. Space Sci., 179, (1991), 147.

[22] J. C. Carvalho, Int. J. Theo. Phys., 35, (1996), 2019.

305



MOHANTY, MAHANTA

[23] Shri Ram and C. P. Singh, Astrophys. Space Sci., 257, (1998), 123.

[24] G. Mohanty, B. Mishra and Reeta Das, Bull. Inst. Math. Academia Sinica, 28, (2000), 43.
[25] G. Mohanty, U. K. Panigrahi and R. C. Sahu, Astrophys. Space Sci., 281, (2002), 633.
[26] G. Mohanty, R. C. Sahu and U. K. Panigrahi, Astrophys. Space Sci., 284, (2003), 1055.
[27] R. Venkateswarlu and K. Pavan Kumar, Astrophys. Space Sci., 301, (2006), 73.

[28] E. Alvarez and M. B. Gavela, Phys. Rev. Lett., 51, (1983), 931.

[29] You Gen Shen et al., Phys. Lett. A, 137, (1989), 96.

306



