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We present a simple scheme using two identical cross-phase modulation processes in decoherence
environment to generate superpositions of two coherent states with the opposite phases, which are
known as cat states. The scheme is shown to be robust against decoherence due to photon absorption
losses and other errors, and the design of its experimental setup is also discussed.

PACS numbers: 03.67.Mn, 42.50.Dv, 03.67.Lx

Schrödinger’s famous cat paradox can be realized by
optical coherent state superpositions in the form of
|CSS±(β)〉 = N± (|β〉 ± | − β〉) (| ± β〉 is coherent state

with the amplitude |β| and N± = (2±2 exp [−2|β|2])− 1
2 ).

|CSS+〉 (|CSS−〉) is called an even (odd) cat state, since
it is the superposition of even (odd) photon number
states. Cat states and other coherent state superposi-
tions have been proposed to implement various quantum
information tasks such as linear-optics quantum compu-
tation [1, 2] and quantum metrology [3, 4, 5]. Genera-
tion of these states is therefore under intensive research
recently (see [6] for a comprehensive review).

One line of research in the field is to generate cat
states through a cross-phase modulation (XPM) process
in Kerr medium [7, 8, 12]. Such an ideal process is de-

scribed by the Hamiltonian H = −h̄χâ†âb̂†b̂, where χ is
the nonlinear strength, and â and b̂ two coupling optical
modes. A simple approach of this kind is Gerry’s scheme
[8], where an input coherent state |α〉1 as the probe in
Fig. 1 interacts with one of the single photon modes,
|0, 1〉2,3 ≡ |0〉 and |1, 0〉2,3 ≡ |1〉, as the signal through
an XPM process, and the state of the coherent beam is
post-selected to a cat state by the detection of the single
photon mode D1 or D2 if the XPM phase θ could be π.
Simple though the scheme is, realizing a large θ is still
challenging with the current technology. Even with elec-
tromagnetically induced transparent (EIT) material [9],
the initially achieved phase shift θ at the single photon
level is only in the order of 10−5 [10]. Moreover, all Kerr
nonlinear materials carry a complex third order suscepti-
bility χ(3) = Reχ(3)+iImχ(3), necessitating the decays of
the coupling optical modes caused by the imaginary part.
Under the decoherence effect caused by such losses, the
XPM processes of the density matrix ρ of an involved
system are quantum operations (QOs) described by the
master equation

dρ

dt
= ih̄χ

∑

i,j

[â†
i âiâ

†
j âj , ρ] +

γ

2

∑

i

{[âiρ, â†
i ] + [âi, ρâ†

i ]}, (1)

rather than the ideal unitary transformations. The non-

FIG. 1: (color online) The setup of single XPM scheme,
where the input qubit and coherent state are in the state

2−
1
2 (|0〉 + |1〉)|α〉. An ideal XPM process inducing θ trans-

forms the input to 2−
1
2 |0〉|α〉 + 2−

1
2 |1〉|αe

iθ〉. The displace-
ment DS is necessary here for generating the coherent state
superpositions with a weak cross-Kerr nonlinearity. The XPM
process should be treated as a quantum operation if one con-
siders photon absorption losses.

linear strength χ and the damping rate γ of the coupling
optical modes âi are from the real and the imaginary
parts of χ(3), respectively.

To generate cat states with weak cross-Kerr nonlinear-
ity, Jeong proposed applying the idea of compensating
for a small θ with a large intensity of the input coherent
beam in [11] and obtained a post-selected mixed state
[12]

ρ±(t) ∼ |Aα〉〈Aα| ± C(t)|Aα〉〈Aαeiθ | ± C∗(t)|Aαeiθ〉〈Aα|
+ |Aαeiθ〉〈Aαeiθ |

=
1 + |C(t)|

2
|CG±〉〈CG±| +

1 − |C(t)|
2

|CG∓〉〈CG∓|(2)

under the decoherence effect, where |CG±〉 = |Aα〉 ±
{C∗(t)/|C(t)|}|Aαeiθ〉, A = e−

γ

2
t, and the closed form

of the complex coherence parameter C(t) is given in
[13]. After one performs a displacement D(x) such that
|Aα〉 → |β〉 and |Aαeiθ〉 → | − β〉, the pure state
components |CG±〉 will be transformed to |CG′

±〉 ∼
|β〉± eiargC∗

eiφD |−β〉 (φD is the relative phase from the
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FIG. 2: (color online) Improved setup for generating even
and odd cat states. Under the decoherence from photon ab-
sorption losses, two ideal unitary transformations of the XPM
processes should be substituted by the effective actions of two
quantum operations, which map the input to a mixture of
even and odd cat states conditioned on the detection of D1

or D2 mode.

displacement). Small θ can be therefore compensated by
a large |α| so that the amplitude |β| of the realized |CG′

±〉
could be big enough.

One problem in the scheme is the implementation of
the displacement D(x) on an intense coherent beam in
the state of Eq. (2). A displacement on a coherent state
can be approximated by a beam splitter of extremely
high transmissivity, which is fed by a very intense co-
herent beam at the second port [14]. However, if one
wants to displace the state by a very large |x| as in [12],
the intensity of the second beam would be beyond the
reasonable value.

The other problem is the difference of the generated
|CG′

±〉 from an even or odd cat state |CSS±〉 by a rel-
ative phase φ = argC∗ + φD arising from the decoher-
ence and the displacement. Directly changing the relative
phase φ requires some type of nonlinear interaction [6].
There are two ways to convert |CG′

±〉 to |CSS±〉 with
only linear optics: one is to prepare the state of the in-
put single photon qubit as |0〉+ e−iφ|1〉 to cancel that of
the coherent states; the other is to have two such states
|CG′

1,+〉 = |β〉+eiφ1 |−β〉 and |CG′
2,+〉 = |β〉+eiφ2 |−β〉

satisfying φ1 +φ2 = π, and transform them together by a
beam splitter to |

√
2β〉+ |−

√
2β〉 [15]. By these methods

the perfect match of the qubit and the coherent state rela-
tive phases (or two relative phases of the coherent states)
is necessary, so the scheme is sensitive to these indepen-

dently created phases in generating |CSS±〉. Moreover,
|1〉 component of the single photon picks up an extra
phase φE and a decay factor due to the different prop-
agation velocity from that of |0〉 component and its loss
in nonlinear medium, adding more consideration to the
experimental realization of the scheme.

Here we present a scheme of double XPM outlined in
Fig. 2 to overcome the above-mentioned shortcomings
in single XPM scheme (a similar scheme without consid-
ering the photon absorption losses in XPM processes is
given in [16]). By double XPM we mean two identical
XPM processes inducing the same phase θ. We choose
the single photon state as the superposition of two po-
larizations, 2−

1
2 (|H〉+ |V 〉) (H and V are horizontal and

vertical polarization, respectively), but the effect will be
the same if we use the single photon state of Fig. 1.
Separated by a 50/50 beam splitter BS1 and a polar-
ization beam-spltter (PBS), the coherent beam and the
single photon as the whole system will be in the following
input state

|Ψ〉in =
1√
2

(|H〉3 + |V 〉4) |α〉1|α〉2. (3)

To study its evolution determined by Eq. (1), we
should consider four modes corresponding to two coher-
ent beams and H/V polarization of the single photon,
and the first summation

∑

i,j in Eq. (1) will be over
the modes (1, 3) and (2, 4). We here use the following
operators

Kijρ = ih̄χ[â†
i âiâ

†
j âj , ρ],

Jiρ =
γ

2
[âiρ, â†

i ], Liρ =
γ

2
[âi, ρâ†

i ], (4)

for simplicity. By dividing the interaction time into in-
finitely many small periods, we express the QOs on the
input, ρ(t0) = |Ψ〉in〈Ψ|, from t0 to t as follows:

ρ(t) = lim
N→∞

N−1∏

k=1

(I +
∑

i

(Ji + Li)∆t)

︸ ︷︷ ︸

D(tk)

(I +
∑

i,j

Ki,j∆t)

︸ ︷︷ ︸

U(tk)

ρ(t0),

(5)

with ∆t = (t − t0)/N and tk = t0 + k∆t. The first small
step of operation D(t1)U(t1) maps ρ(t0) to (the mode
indexes are neglected)

ρ(t1) =
1

2
D(t1)U(t1){(|H〉 + |V 〉)(〈H | + 〈V |) ⊗ |α〉〈α| ⊗ |α〉〈α|}

=
1

2
D(t1)

(
|H〉|αeiχ∆t〉|α〉 + |V 〉|α〉|αeiχ∆t〉

) (
〈H |〈αeiχ∆t|〈α| + 〈V |〈α|〈αeiχ∆t|

)

∼ |H〉〈H | ⊗ |αe(− γ

2
+iχ)∆t, αe−

γ

2
∆t〉〈αe(− γ

2
+iχ)∆t, αe−

γ

2
∆t| + |V 〉〈V | ⊗ |αe−

γ

2
∆t, αe(− γ

2
+iχ)∆t〉〈αe−

γ

2
∆t, αe(− γ

2
+iχ)∆t|
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+ C1|H〉〈V | ⊗ |αe(− γ

2
+iχ)∆t, αe−

γ

2
∆t〉〈αe−

γ

2
∆t, αe(− γ

2
+iχ)∆t|

+ C1|V 〉〈H | ⊗ |αe−
γ
2
∆t, αe(− γ

2
+iχ)∆t〉〈αe(− γ

2
+iχ)∆t, αe−

γ
2
∆t|, (6)

where C1 = exp{−(1−e−γ∆t)|αeiχ∆t−α|2}. Two identi-
cal unitary operations between the modes (1, 3) and (2, 4)
in U(t1) create a symmetric form of the coherent states
on the second line of Eq. (6), and then the phases gained
from D(t1) for the off-diagonal qubit terms, |H〉〈V | and
|V 〉〈H |, can be canceled to obtain a real number C1. The
approximation on the third line of Eq. (6) is the negli-
gence of a common decay factor for all four qubit terms
from the symmetric XPM processes. The k-th step op-
eration D(tk)U(tk) contributes a similar coefficient Ck.
The QOs of the XPM processes therefore map ρ(t0) to
ρ(t), which can be decomposed to

ρ(t) ∼ 1 + C(t)

2
|CS+〉〈CS+| +

1 − C(t)

2
|CS−〉〈CS−|, (7)

where

|CS±〉 = |H〉|e(− γ
2
+iχ)tα〉|e− γ

2
tα〉

± |V 〉|e− γ

2
tα〉|e(− γ

2
+iχ)tα〉. (8)

The coherence parameter

C(t) = lim
N→∞

C1C2 · · ·CN−1

= exp{−2|α|2( χ2

γ2 + χ2
− e−γt +

γ2

γ2 + χ2
e−γt cosχt

− γχ

γ2 + χ2
e−γt sinχt)} (9)

is shown in Fig. 3. Two 50/50 beam splitters BS2 and
BS3 are applied to transform the coherent and the single
photon modes in Eq. (8) to the proper forms. If one
detects the single photon mode D1 or D2 in Fig. 2, the
generated state will be the mixture of an even and an
odd cat state |CSS±(β)〉, with its size given as

|β|2 = 2e−γt sin2 χt

2
|α|2, (10)

and fidelity as F = (1 + C(t))/2. Another in-
teresting thing is that a pure coherent state |γ〉 =

| e−
γ
2

t+iχt+e
−

γ
2

t

√
2

α〉 outputs from the other port in Fig. 2,

as long as the two XPM processes are symmetric.
There are two primary advantages in the scheme: (1)

the precise displacement of the strong coherent beam in
Fig. 1 is replaced by two XPM processes, which could be
easier to implement; (2) the coherence parameter C(t) is
real instead of the complex one in [12], so it is unneces-
sary to apply other procedures to convert the output to
an even or odd cat state. The essential point is that we
let two groups of the input optical modes, {|α〉1, |H〉} and
{|α〉2, |V 〉}, undergo the same physical process in nonlin-
ear Kerr medium, so the photon absorption decoherence

FIG. 3: The coherent parameter C(τ ) vs dimensionless time
τ for |α| = 200. The solid, dotted and dashed line represent
the cases of Γ = 0.5, 1 and 1.5, respectively.

on both of the groups and the phases gained by two co-
herent states and two single photon components should
be identical. To achieve the target, we should have a well
stabilized setup to process the inputs.

In setting up the circuit in Fig. 2, one could meet with
the asymmetry of two XPM processes. As the result, the
symmetric pure state components in Eq. (8) will become

|CS′
±〉 = |H〉|e(− γ

2
+iχ)t1α〉|e− γ

2
t2α〉

± eiφ′

E |V 〉|e−γ
2

t1α〉|e(− γ
2
+iχ)t2α〉, (11)

with the different interaction times t1 and t2 for the two
groups of optical modes, which also give rise to a rela-
tive phase φ′

E in the above equation. The resilience of a
double XPM scheme to such asymmetry is estimated in
[16]: for a deviation of θ1 = χt1 and θ2 = χt2 as large as
10%, the fidelity of the output is still larger than 0.95.
Here we propose a direct way to test how good the sym-
metry in circuit is. We just prepare a coherent state |γ〉,
which is identical with that output from the other port
in Fig. 2 in case of symmetry, according to the target cat
state size, and then compare it with the coherent state
components output from the second port by means of a
50/50 beam splitter and a simple photodiode as in [17].
The difference of two coherent states |γ〉 and |γ′〉 due to
the asymmetry can be well identified with an efficiency
of 1 − exp (− 1

2 |γ − γ′|2).
We now look at the design of the setup to generate a

cat state with a fidelity F = (1+C)/2 and an amplitude
|β|. From Eqs. (9) and (10) we obtain a relation

|β|2G(τ) = |β|2
1 − Γ2

1+Γ2 eτ − 1
1+Γ2 cos Γτ + Γ

1+Γ2 sinΓτ

sin2 Γτ
2

= ln(2F − 1), (12)
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FIG. 4: Function G(τ ) vs dimensionless time for three values
of Γ = 0.01, 5 and 10, which are represented by solid, dashed
and dotted lines, respectively.

where τ = γt and Γ = χ/γ. For any value of Γ, G(τ)
ranges from −∞ to 0, as demonstrated with the repre-
sentative Γ values in Fig. 4. From Eq. (12) we can
definitely find a dimensionless interaction time τint for
coherent beam and single photon if we specify any fi-
delity F and any size |β|2 for the generated cat state.
For a sufficiently high fidelity F = 1 − x (0 < x ≪ 0.1),
this dimensionless interaction time τint is simply deter-
mined by G(τint) = −2x/|β|2, and should be very small
if |β| is also large enough. We thus draw a conclusion:
the only way to create cat states of high fidelity and large
size through XPM is coupling a sufficiently strong coher-
ent beam to a single photon within a limited time in Kerr
medium. This is valid to any cross-Kerr nonlinearity and
to single XPM scheme [12] as well.

For the example of the generated cat state with an
amplitude |β| = 1.6 and a fidelity F = 0.99, we provide
the following table of τint and input beam intensity |α|2:

Γ 0.01 1 25 50 100

τint 0.0116846 0.011685 0.011652 0.011555 0.011196

|α|2 1.2 × 1012 1.2 × 108 2.0 × 105 5.1 × 104 1.4 × 104

The Γ values range from that of normal silica core fiber to
those achievable in EIT materials. The necessary input
coherent beam intensity drops quickly with the increased
Γ, and the τint values are very close because the G(τ)
curves for the different Γ values stick together near the
origin as shown in Fig. 4.

The data in the table also reflects the trade-off be-
tween the necessary nonlinear strength and the required
coherent beam intensity similar to that in [11]. For a
realistic system, however, the intensity of the coherent
beam can not be boundlessly large because a very strong
beam might also cause other effects. Good candidates for
weak cross-Kerr nonlinearity without self-phase modula-
tion effect are atomic systems working under EIT condi-
tions. The Γ parameters of EIT or double EIT systems
are the ratio of the signal field detuning to the decay rate

of the excited state [18, 19] (or to a quantity related to
this decay rate for light-storage XPM approach [20]). To
create EIT condition in hot atoms, e.g., the probe beam
should be weak enough (at the µW level) while the cou-
pling beam is strong (at the mW level). By choosing
a proper detuning, we could use a probe beam of the
intensity 2|α|2 consistent with such requirement in EIT
systems to implement the scheme. The other issues, such
as controlling the interaction time tint = τint/γ in optical
cavity or by other methods, still await further research.

In summary, we have studied a double XPM scheme
to generate cat states in decoherence environment. We
show that this scheme is robust against photon absorp-
tion losses and other errors. The results obtained here
are also applicable to the design of other quantum non-
demolition detection (QND) setups based on XPM pro-
cess.

B. H. thanks Dr. W.-Z. Tang, Prof. I. A. Yu for dis-
cussions on experimental requirement for XPM process
in EIT materials; M. N. is sponsored by IRSIP project of
HEC Pakistan; the authors also thank Prof. M. S. Kim
for reminding them of the scheme in [16].
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