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WHY THE HAMILTON OPERATOR ALONE IS NOT ENOUGH

I. SCHMELZER

Abstract. In the many worlds community there seems to exist a belief that
the physics of quantum theory is completely defined by it’s Hamilton operator
given in an abstract Hilbert space, especially that the position basis may be
derived from it as preferred using decoherence techniques.

We show, by an explicit example of non-uniqueness, taken from the theory
of the KdV equation, that the Hamilton operator alone is not sufficient to fix
the physics. We need the canonical operators p̂, q̂ as well. As a consequence,
it is not possible to derive a “preferred basis” from the Hamilton operator
alone, without postulating some additional structure like a “decomposition into
systems”. We argue that this makes such a derivation useless for fundamental
physics.

1. Introduction

Some quotes in the many worlds literature suggest a belief that one can derive
the canonical structure from the Hamilton operator taken alone, given as an ab-
stract linear operator in some Hilbert space, without any additional structure. For
example, Tegmark describes the construction of a “preferred basis” in many worlds:

“This elegant mechanism is now well-understood and rather uncon-
troversial [. . . ]. Essentially, the position basis gets singled out by
the dynamics because the field equations of physics are local in this
basis, not in any other basis.” [11]

This is (as indicated by the “essentially”) an oversimplification: The decoherence-
based construction considered there depends not only on the dynamics (the Hamil-
ton operator), but also on some “subdivision into systems” — a tensor product
structure — as can easily be seen in the quoted papers by Zurek:

“One more axiom should [be] added to postulates (i) - (v): (o) The
Universe consists of systems.” [15]

But some comments made by Zurek suggest that he shares the belief that physics
is completely defined by the Hamilton operator as well:

“Both the formulation of the measurement problem and its resolu-
tion through the appeal to decoherence require a Universe split into
systems. Yet, it is far from clear how one can define systems given
an overall Hilbert space of everything and the total Hamiltonian.”
[14]

“[A] compelling explanation of what are the systems — how to
define them given, say, the overall Hamiltonian in some suitably
large Hilbert space — would be undoubtedly most useful.” [14]

Indeed, the problem “how” to define these systems seems to assume, at least im-
plicitly, that these systems can be defined given the Hamiltonian. Then, based on
the decoherence technique, the preferred basis can be defined as well.

The following quote suggests that Vaidman shares this belief too:

Berlin, Germany.
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I believe that the decomposition of the Universe into sensible worlds
. . . is, essentially, unique. The decomposition, clearly, might dif-
fer due to coarse or fine graining, but to have essentially different
decompositions would mean having a multi-meaning Escher-type
picture of the whole Universe continuously evolving in time. [12]

If we interpret the “decomposition into sensible worlds” as something based on the
decoherence-constructed “preferred basis”, the uniqueness of this decomposition
implies the uniqueness of the “preferred basis” as well. Schlosshauer talks about

the physical definition of the preferred basis derived from the struc-
ture of the unmodified Hamiltonian as suggested by environment-
induced selection [9]

which also suggests that he shares the belief. Last but not least, let’s quote Brown
and Wallace [13]. They discuss the possible non-uniqueness of the “preferred basis”
picked out by decoherence:

“. . . granted that decoherence picks out a quasi-classical basis as
preferred, what is to say that it does not also pick out a multitude
of other bases – very alien with respect to the bases with which
we ordinarily work, perhaps, but just as ’preferred’ from the deco-
herence viewpoint. Such a discovery would seem to undermine the
objectivity of Everettian branching, leaving room for the Bohmian
corpuscle to restore that objectivity.” [13]

and present the following response as preferable:

“Granted that we cannot rule out the possibility that there might
be alternative decompositions, and that this would radically af-
fect the viability of the Everett interpretation – well, right now we
have no reason at all to suppose that there actually are such de-
compositions. Analogously, logically we can’t absolutely rule out
the possibility that there’s a completely different way of constru-
ing the meaning of all English words, such that they mostly mean
completely different things but such that speakers of English still
(mostly) make true and relevant utterances. Such a discovery would
radically transform linguistics and philosophy, but we don’t have
any reason to think it will actually happen, and we have much rea-
son to suppose that it will not. To discover one sort of higher-level
structure in microphysics (be it the microphysics of sound-waves
or the micro-physics of the wave-function) is pretty remarkable; to
discover several incompatible structures in the same bit of micro-
physics would verge on the miraculous.” [13]

The aim of this paper is to show that this miracle happens — the theory of the
Korteweg - de Vries (KdV) equation gives nice counterexamples for this thesis: If

a potential V (q, s) is a solution of the KdV equation, then the operators ĥ(s) =

−∂2

q + V (q, s) for different s appear to be unitarily equivalent, despite defining
different physics. Thus, the physics of canonical quantum theories is not completely
defined by the Hamilton operator alone.

This fact seems fatal for the idea to derive a preferred basis, using decoher-
ence techniques, from the Hamilton operator taken alone. One needs an additional
structure — be it the tensor product structure related with the “decomposition into
systems” or whatever else — which has to be postulated. We consider the ques-
tion if this construction could be, nonetheless, used as a foundation of quantum
theory, as a replacement for simply postulating the configuration space. We argue
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that this construction of the preferred basis combines the disadvantages of postu-
lated structures (lack of explanatory power) and emergent structures (uncertainty,
dependence from other structures, especially dynamics), and, therefore, should be
rejected in favour of the canonical way to postulate the configuration space as a
non-dynamical structure, as done in canonical quantum theories as well as pilot
wave theories.

Thus, the “derivation” of the “preferred basis” based on decoherence techniques
seems useless in the domain of fundamental physics. It has it’s useful applications
in situations where we already have (as in the Copenhagen interpretation or in pilot
wave theories) a classical part, which defines the decomposition into systems which
one needs to derive a decoherence-preferred basis.

2. Why one can think that the Hamilton operator is sufficient

Some clarification of how we interpret this belief seems useful.
Canonical quantum theories are defined in a more or less standard way: First, one

defines the kinematics by defining some Hilbert space H with some set of canonical
operators p̂i, q̂

i with commutation relation [p̂i, q̂
j ] = −i~δj

i on H, or, equivalently,
to postulate some configuration space Q with coordinates qi so that H ∼= L2(Q,C)
and pi = i~∂i. Then, in a second step, one defines the dynamics by postulating the
Schrödinger equation

(1) i~∂tψ(t) = ĥψ(t), ψ ∈ H
for some Hamilton operator ĥ, usually of the form

(2) ĥ = ĥ(p̂i, q̂
i) =

∑

i

1

2mi

p̂2i + V (q̂i).

Implicit part of the definition of the canonical operators p̂i, q̂
i is their identification

with classical observables. It is hard to press this part of the definition into some
formal property — it depends on the particular theory. The point is that the
definition is only complete if we know what it means to measure the configuration
Q — it is some procedure, usually known from the corresponding classical theory.
The details of this procedure do not matter in a general discussion. But in order to
apply the theory to make concrete predictions, one has to know how to measure the
qi and pi. Without this additional information the physical definition of the theory
is not complete. The quantum theory predicts the result of this measurement for a
state ψ(q) ∈ L2(Q,C) as |ψ(q)|2. But this information would be useless if we don’t
know how to measure Q.

Given this physical meaning of Q, it seems, at a first look, completely unreason-
able to think that the physics is completely defined by the Hamilton operator alone.

Nobody would apply, for example, some unitary transformation U to ĥ→ UĥU−1

and ψ → Uψ, but not to p̂i, and q̂i, but nonetheless claim that the physics remain
unchanged. Everybody knows that one has to apply the same unitary transforma-
tion to p̂i → Up̂iU

−1 and q̂i → Uq̂iU−1 as well to preserve physics.
Now, with our interpretation of the quotes, we are in no way suggesting that

the authors do not recognize this. The idea that the Hamilton operator alone is
sufficient is a different one. Given the very special form of the Hamilton operator
(2), one can imagine that it may be possible to reconstruct the configuration spaceQ

more or less uniquely given ĥ as an abstract operator on some abstract Hilbert space
H. Last but not least, the straightforward ideas to construct counterexamples fail:
One can apply coordinate transformations qi′ = qi′(qi), but these do not change
the physics, and leave the abstract configuration space Q unchanged. One can
consider a canonical rotation p̂→ q̂, q̂ → −p̂, but this gives a very strange nonlocal
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operator of type ĥ = q̂2 + V (i∂q), which forbids a physical interpretation of the
new q̂ in terms of a configuration. Therefore, one can conclude that there are only
few sufficiently nice choices of q̂i which allow a meaningful interpretation of the q̂i

as configuration space coordinates, and one could hope or expect that these few
choices lead, at least approximately, to physically equivalent theories. In this case,

it would be indeed the Hamilton operator taken alone, as an abstract operator ĥ
on a Hilbert space H, which would be sufficient to define the physics completely.

But this expectation is false, as we will show below.

3. What we can learn from the Korteweg - de Vries equation

A really beautiful one-dimensional example of different representations follows
from the theory of solutions of the Korteweg-de Vries (KdV) equation:

Theorem 1. If the function V (q, s) is a solution of the Korteweg-de Vries equation

(3) ∂sV (q, s) = −∂3

qV (q, s) + 6V (q, s)∂qV (q, s),

then the operators

(4) ĥ(s) = −∂2

q + V (q, s)

for different s are unitarily equivalent.

Indeed, as has been found by Lax ([7]), the KdV equation is equivalent to the
operator equation

(5) i∂sĥ(s) = [â(s), ĥ(s)].

for the self-adjoint operator

(6) â(s) = i(−4∂3

q + 6V (q, s)∂q + 3(∂qV (q, s))),

as one can easily check. But this type of operator equations defines, for a self-adjoint

operator â(s), a unitary evolution of ĥ(s). Indeed, this is simply the analogon of

the Heisenberg equation for the “Hamilton operator” â(s), applied to ĥ(s). The
unitary transformation we need is defined by the equation

(7) i∂sU(s) = â(s)U(s), U(0) = 1.

For results about the existence of solutions of the KdV equation see, for example,
[6].

This representation leaves p̂ and q̂ invariant but changes ĥ(s) and ψ(t, s) by

ĥ(s) = U(s)ĥ(0)U(s)−1 resp. ψ(t, s) = U(s)ψ(t, 0). This is not yet exactly our
point. But, given the unitary operators U(s), we can also consider another equiva-
lent representation:

Theorem 2. For a given Hamilton operator ĥ = −∂2

q + V (q, 0), with V as defined

by (3), there exist canonical operators q̂(s), p̂(s), so that the representation of ĥin
terms of q̂(s), p̂(s) is given by (4).

Indeed, it is sufficient to define the operators q̂(s), p̂(s) by q̂(s) = U(s)−1q̂U(s)

and p̂(s) = U(s)−1p̂U(s). In this case, the unitary transformation Ô →
U(s)ÔU(s)−1, applied to the operators Ô ∈ {ĥ, q̂(s), p̂(s)}, gives {ĥ(s), q̂, p̂}, thus,

the representation of ĥ in terms of q̂(s), p̂(s) is ĥ(s).

It is worth to note that the Hamiltonian ĥ in this theorem does not depend on
s. Only the operators q̂(s), p̂(s) depend on s. This has the consequence that the

representation ĥ = ĥ(p̂(s), q̂(s)) in terms of these s-depending operators depends

on s too. But ĥ is, nonetheless, the same for all s.
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Figure 1. Two-soliton-solution u(q) = −V (q, s) of the KdV
equation for different values of the evolution parameter s. Pic-
ture taken from [10]

Thus, given the operator ĥ alone, we cannot reconstruct the operators p̂, q̂
uniquely. The operators p̂(s), q̂(s) give equally nice candidates for canonical vari-

ables for ĥ: The representation of ĥ in these operators has the same canonical form

ĥ = −∂2

q + V (q), and the potential functions V (q) = V (q, s) in this standard form
are as nice and well-behaved as the original V (q) = V (q, 0).

4. Different canonical structures define different physics

Let’s clarify if the different potentials V (q̂, s) really define different physics. This
seems obvious, if one looks at particular examples, like in fig. 1. The two sharply
localized part of the solutions in the first and last picture of figure 1 are so-called
solitons, special solutions, which, taken alone, have the exact form

(8) V (q) = −λ
2

cosh−2

(

1

2

√
λ(q − λs− q0)

)

and move with velocity λ. Their spectrum is defined by a single eigenvalue E(λ),
with an eigenfunction ψλ(q) localized in the same domain. Some superpositions of
the two eigenstates would be, in one case (first and last picture), clearly delocalized,
in another one (upper right picture) they are all localized in the same region.

We can also consider the scattering matrix. The inverse scattering method (de-
veloped by [5], see [1]) for solving the KdV equation gives the following explicit
result for the one-dimensional scattering matrix: One of the two coefficients of
the scattering matrix, namely a(k), appears to be an integral of motion of the
KdV equation. Instead, the reflection coefficient b(k) depends explicitly on s. To
construct an experiment which allows the measurement of such differences is not
difficult (see fig. 2). If not a different scattering matrix, what else defines different
physics?

5. The non-uniqueness of the tensor product structure

The example we have given is one-dimensional. One can consider a straightfor-
ward generalization to higher dimension by considering Hamilton operators of the
form

(9) ĥ(s) =
∑ 1

2mi

∂2

i + Vi(q
i, si)

with different one-dimensional potentials Vi(q
i, si). But all we obtain in this way

are only non-interacting degrees of freedom. This seems to leave some hope for the
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Figure 2. An experiment which would allow us to measure a
phase difference between the reflection coefficients b(k) of the hor-
izontal and vertical mirrors. For reflection angles close enough to
90o, only the one-dimensional reflection coefficient in orthogonal
direction matters. Thus, we can put the different one-dimensional
potentials for different s into the mirrors, extended trivially in the
other direction, say, a localized one at the bottom, and one with
two solitons on the right.

case of non-trivially interacting Hamiltonians in higher dimension. The interactions
between different degrees of freedom could, possibly, allow the choice of a preferred
basis.

This is, essentially, the way used in the decoherence-based approach for the
construction of a preferred basis. One starts with a “decomposition into systems”:

(o) The Universe consists of systems.[15]

that means, a tensor product structure

(10) H ∼= H1 ⊗H2 ⊗ . . . =
⊗

i

Hi

on the Hilbert space of everything H. In general, each factor Hi interacts with it’s

environment HE
∼=

⊗

j 6=i Hj . In particular, if ĥ has the standard form

(11) ĥ =
∑ 1

2mi

p̂2

i + V (q̂)

the interaction Hamiltonian is V (q̂). The preferred basis is, in a simplified version,
1 the one which is measured by the interaction Hamiltonian. In case of V (q̂) as

1 In general, the situation is more complex, because one has to take into account also the
self-Hamiltonian HS of the system:

In the more general circumstances the states which commute with HSE at
one instant will be rotated (into their superpositions) at a later instant with

the evolution generated by the self-Hamiltonian HS . . . . An example of this
situation is afforded by a harmonic oscillator, where the dynamical evolution
periodically swaps the state vector between its position and momentum repre-
sentation, and the two representations are related to each other by a Fourier
transformation. In that case the states which are most immune to decoherence
in the long run turn out to be the fixed points of the map defined by the Fourier
transformation. Gaussians are the fixed points of the Fourier transformation
(they remain Gaussian). Hence, coherent states which are unchanged by the
Fourier transform are favored by decoherence. [14]
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the interaction Hamiltonian between Hi and its environment HE , it is q̂i which is
measured by the environment.

Thus, we can recover the operator q̂i on Hi by taking into account the inter-
action with the environment. The one-dimensional counterexample, as well as the
straightforward non-interacting examples, could be interpreted as irrelevant excep-
tions, which play no role in the multi-dimensional interacting case.

Unfortunately, this construction depends on the predefined tensor product struc-
ture. And this tensor product structure is not unique:

Theorem 3. There exists a Hamilton operator ĥ in a Hilbert space H such that

there exist different tensor product structures H ∼= H1s ⊗H2s with canonical vari-

ables q̂1s, p̂1s and q̂2s, p̂2s on the factor spaces H1s resp. H2s so that ĥ has in all of

them the standard canonical form

(12) ĥ = p̂21s + p̂2

2s + V (q̂1s, q̂2s, s),

with a non-trivial interaction potential V (q̂1s, q̂2s, s), which depends non-trivially

on s.

This can be easily seen in a minor variant of the straightforward multidimen-
sional extension of the KdV example. Let’s start with a simple degenerated two-
dimensional Hamilton operator

(13) ĥ = p̂2

x + p̂2

y + V (q̂x, 0) + V (q̂y, s).

Similar to theorem 2, we choose ĥ as well as q̂x, p̂x as fixed, but q̂y = q̂y(s), p̂y =
p̂y(s) as depending on s. Now, we define the tensor product structure we need by

q̂1s =
1√
2
(q̂x + q̂y(s)); p̂1s =

1√
2
(p̂x + p̂y(s);

q̂2s =
1√
2
(q̂x − q̂y(s)); p̂2s =

1√
2
(p̂x − p̂y(s)).

(14)

In these variables, the interaction potential is already nontrivial. But, it has yet
the same nice standard canonical form, and as in theorem 2, the resulting potential

(15) V (q̂1s, q̂2s, s) = V (q̂x, 0) + V (q̂y, s)

is of comparable nice quality for different s. The tensor product structure depends
on s. A nice implicit way to see this is to use the fact that the simplified version
of decoherence already allows the unique derivation of the positions q̂1s, q̂2s as the
decoherence-preferred observables, for the given tensor product structure H1s⊗H2s.
But, on the other hand, the result is obviously not unique. This contradiction
disappears once we recognize that the tensor product structure is not unique. But
the s-dependence of the tensor product structure can be seen directly as well: If
the tensor product structure would be the same for different s, we would be able to
express q̂1s as a function q̂1s = F (q̂10, p̂10). But an attempt to express q̂1s in this
way fails for a general U(s) — there is no chance to get rid of the dependence on
q̂20:

(16) q̂1s =
1

2

(

(q̂10 + q̂20) + U(s)−1(q̂10 − q̂20)U(s)
)

6= F (q̂10, p̂10)

Let’s emphasize again that the operator ĥ does not depend on s. Only the

operators p̂is, q̂is depend on s. Therefore, also the representation of ĥ in terms

But for the purpose of this section — to prove the non-uniqueness of a tensor product structure
with sufficiently nice properties — this simplified version is sufficient. Last but not least, if the
nice tensor product structure is unique, nobody can forbid us to apply the simplified version to
construct a unique configuration space. But this is what seems to be impossible.
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of these operators depends on s. But the operator ĥ itself has not only the same
spectrum, but is simply the same for different s.

As a consequence, one should give up the hope expressed by Zurek:

“[A] compelling explanation of what are the systems — how to
define them given, say, the overall Hamiltonian in some suitably
large Hilbert space — would be undoubtedly most useful.” [14]

Already in the two-dimensional case there is no unique way to reconstruct a phys-
ically reasonable, nice tensor product structure, or “decomposition into systems”,
from a given Hamilton operator taken alone.

6. Can the decoherence-based construction replace the

configuration space?

But, maybe the decoherence-based reconstruction of the configuration space ba-
sis is, nonetheless, worth something? Last but not least, even if it depends on some
other structure — doesn’t it, nonetheless, explain something important about the
fundamental nature of the configuration space? We don’t think so, and the aim of
this section is to explain why.

Note that we do not want to question at all that there are lot’s of useful non-
fundamental applications of this construction — applications where a subdivision
into systems is defined by the application. The systems in these applications will be
various measurement instruments and state preparation devices, various parts of the
environment, and the quantum system which is interesting in the particular appli-
cation. The preferred basis, constructed in this way, is also application-dependent.
While it may be very important to find such a basis for a particular application,
these constructions seem irrelevant in considerations of the foundations of physics.

A variant is to start from a tensor product decomposition given by the fundamen-
tal, postulated configuration space Q ∼=

∏

iQi. The resulting decoherence-preferred
basis may be different from the position basis and better suited for the considera-
tion of the classical limit. But this would be a non-fundamental application as well,
with no relevance for the foundations of quantum theory, which is, in this variant,
postulated in the usual way.

The only variant which seems relevant for fundamental physics is to replace the
a-priori definition of the configuration space in canonical quantum theories as well
as pilot wave theories by the decoherence-based construction of the preferred basis,
based on some fundamental tensor product structure.

To evaluate this replacement, we have to compare it with the standard alternative
— to postulate the configuration space Q as a predefined, non-dynamical structure.

First, the above competitors depend on predefined, non-dynamical structures,
which are introduced into the theory in an axiomatic way. The standard approach
postulates the configuration space Q itself, and the decoherence-based construction
postulates a tensor product structure. In this sense, they are on equal footing.

But the resulting structure — the configuration space Q — is, in the standard
approach, a predefined, non-dynamical object. Instead, in the decoherence-based
construction, it depends on dynamics. This dependence of Q on dynamics has
at least one obvious disadvantage: We can no longer define the dynamics in the
canonical way as

(17) ĥ = ∆ + V (q),

which uses simple and natural structures on Q — the Laplace operator ∆ on Q, as
well as the special subclass of multiplication operators in L2(Q,C), and, in addition,

some special function V (q) like 1/|q1 − q2|. Indeed, such a definition of ĥ in terms
of Q would become circular. Thus, we loose a nice and simple way to define the
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dynamics of the theory. We would have to define the dynamics in some other way.
We can expect that this other way is more complex, and less beautiful.

Thus, for the emergent, derived character of Q we have to pay. In itself, this is
not untypical for emergent objects: We have to pay some costs for the possibility
to explain them. In a previous theory, they have been postulated as fundamental,
simple, independent objects, with some nice, well-defined properties. In the new
theory, which derives them as emergent objects, they become more complex, of-
ten with uncertain boundaries, and they depend on other objects and structures.
Nonetheless, the special character of the loss in our case seems untypical even for
emergent objects. Usually, the structures which depend on the objects which now
become emergent, are or of some higher, emergent level already in the previous
theory, or they become emergent together with these objects in the new theory. I
don’t know of an example of an object which depends on another object in the old
theory, and then the other object becomes emergent, but the object itself remains

fundamental, as it would be the case for ĥ. (Of course, this could happen, but it
would indicate that the dependencies were wrong already in the old theory.) Thus,
I would characterize the costs related with the dependence of Q on the dynamics
as higher than usual for emergent objects.

Let’s consider now what we gain. Usually, if an object becomes emergent which
was previously fundamental, our gain is explanatory power. Do we have such
a gain in our case? Here, we have to take into account that we need another,
postulated structure — the tensor product structure — to construct Q. Thus, we
can “explain” the configuration space Q only in a relative sense, in comparison
with the unexplained, postulated tensor product structure. Now, explaning one
structure in terms of another may also give large explanatory power. Last but not
least, in some sense all our more fundamental theories are of this type — they
explain the previously postulated objects and structures in terms of some more
fundamental, but also postulated, objects and structures.

But we would talk about explanatory power only if the new, more fundamental
structure has some advantages in simplicity, beauty, generality, or whatever else.
What is the situation in our case? At least I cannot see any advantage. Instead, I
see a lot of disadvantages:

First, we have simple examples of quantum theories which have natural con-
figuration spaces but do not have a (similarly natural) tensor product structure:
For example, finite-dimensional quantum theories with prime dimension do not
have nontrivial tensor product structures. Indeed, from (10) follows dimH =
dimH1 ·dimH2 · . . ., thus the only possible tensor product structure for a space with
prime dimensnion is the trivial one, which is worthless because it does not allow
the start of the decoherence procedure. Then we have spaces of identical particles,
which are factor spaces of a tensor product, but do not have their own natural 2 ten-
sor product structure. Last but not least, for topologically sufficiently non-trivial
manifolds Q, starting with S2, there exists no decomposition Q ∼= Q1 × Q2 × . . .
into factor-manifolds Qi, and therefore no natural tensor product structure. But
for all these Hilbert spaces we have natural configuration spaces.

Then, the tensor product structure is often less symmetric in comparison with
the configuration space. The simplest example is the tensor product structure of
L2(R3) of one-particle theory, which destroys rotational symmetry. In addition, the
tensor product structure based on points in field theory requires an identification of
points in different time slices, if considered as fixed over time, destroying Galilean
or relativistic symmetry.

2 In the infinite-dimensional case one can always construct artificial tensor product structures,
for example by applying Cantor’s diagonal construction N ∼= N × N to an arbitrary basis ψi of H.
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These arguments seem sufficient to argue that a tensor product structure, as a
fundamental object, is worse than a configuration space. Thus, an explanation of Q
in terms of a more fundamental tensor product structure has no explanatory power
at all. The gain which we usually want to reach by deriving structures previously
considered to be fundamental, namely explanatory power, cannot be reached in this
approach.

Moreover, this cannot be hailed in some way, say, by deriving the tensor product
structure from something else. The Hamilton operator alone is not sufficient, as
shown by our counterexample. Thus, one needs some additional structure anyway.
Therefore, the main line of our argumentation remains intact. The construction
combines only disadvantages: the lack of explanatory power of postulated objects,
with the uncertainty and dependency of emergent objects. What remains intact is
also the dependence of Q on the dynamics, and therefore the very special loss of
the possibility to define the dynamics as ∆ + V (q) on Q. What also remains is the
simplicity and the general and very natural character of postulating a configuration
space Q. Therefore, whatever the new additional structure, we cannot expect a
large gain in explanatory power.

Given this situation, there seem to be no gains but only losses, in a construc-
tion which constructs the configuration space Q postulated in canonical quantum
theories and pilot wave theories using decoherence techniques, starting from a fun-
damental tensor product structure (or some replacement).

7. Discussion

We have shown that it is not the Hamilton operator alone which defines the
physics of quantum theories. In addition, one needs the canonical configuration
space Q, or some similar structure, which connects this Hamilton operator with
observable configurations.

As a consequence, hopes to derive the configuration space basis using decoher-
ence techniques from a Hamilton operator taken alone have to be given up. Such
constructions necessarily depend on some additional structure, like a “subdivision
into systems”, which have to be postulated. The derivation of the configuration
space basis from such additional structures combines the disadvantages of prede-
fined structures (lack of explanatory power) and emergent structures (dependence
on dynamics) without giving any advantages thus loses in comparison with a simply
postulated configuration space.

If these arguments against a decoherence-based construction of the preferred
basis are of any relevance for Everettians is a completely different question. They
may also completely ignore the non-uniqueness and follow some reasoning like this:

Suppose that there were several such decompositions, each support-
ing information-processing systems. Then the fact that we observe
one rather than another is a fact of purely local signicance: we hap-
pen to be information-processing systems in one set of decoherent
histories rather than another. [13]

Indeed, once one introduces many worlds anyway, some more of them do not matter
anymore. All what I can say about this is to recommend a further “improvement”
in this direction — to assign reality not only to the state vector of our multiverse,
but to all other states as well, and to be consequent, to all Hamilton operators as
well.

Another possibility would be to throw away the “solution of the preferred basis
problem” and instead to use the same predefined configuration space as used in
canonical quantization and pilot wave theories. Given the arguments in section 6,
this would be an improvement.
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For pilot wave interpretations [2, 3], the clarification that the configuration space
is necessary to fix the physics of a canonical quantum theory is clearly helpful. It
weakens a quite common argument that the choice of the configuration space in
pilot wave interpretations is artificial, like

. . . the artificial asymmetry introduced in the treatment of the two
variables of a canonically conjugated pair characterizes this form of
theory as artificial metaphysics. ([8], as quoted by [4]),

“. . . the Bohmian corpuscle picks out by fiat a preferred basis
(position) . . . ” [13]

Instead, recognizing that the configuration space is part of the definition of the
physics gives more power to an old argument in favour of the pilot wave approach,
made already by de Broglie at the Solvay conference 1927:

“It seems a little paradoxical to construct a configuration space
with the coordinates of points which do not exist.” [2].
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