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Regular and chaotic Bose-Einstein condensate in an accelerated Wannier-Stark lattice
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We investigate a Bose-Einstein condensate held in a quasi-one-dimensional Wannier-Stark lattice
which is a combination of linear potential with an accelerated optical lattice. It is demonstrated
that the system can be reduced to a periodically driven Gross-Pitaevskii one, in which we find
the first exact analytical solution and the regular and chaotic numerical solutions with accelerated
atomic flow densities. The results suggest an experimental scheme for generating and controlling
the accelerating regular and chaotic matter-waves.
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I. INTRODUCTION

Recently, experimental investigation on the Bose-
Einstein condensates (BECs) in a Wannier-Stark (WS)
system have attracted much attention [1]. In some ex-
periments, a BEC of rubidium atoms was created, which
then was loaded into the optical lattice potential of a
standing laser light [2] and was adopted to observe the
collective tunneling effects [1]. The optical potentials
have been used in many theoretical and experimental
studies of quantum dynamics, for example, the coherent
pulse output from BECs in WS system [3], the observa-
tion of Bloch oscillations both with single atoms and with
a BEC in an accelerated standing wave [2, 4], the stud-
ies of WS ladders for the accelerated optical potential
[5]. An atomic-scale analog of the kicked rotor is real-
ized by placing laser-cooled atoms in a pulsed standing
wave [6]. Very recently, M. Glück et al. investigated the
properties of a coherent superposition of WS resonances
[3] and gave the lifetime of WS states [7]. Chaotic be-
haviors have also been found in the WS systems without
acceleration [6, 8, 9, 10]. It is a natural motivation for us
to demonstrate the chaotic and regular features for the
BEC in an accelerated WS lattice.

On the other hand, it is well-known that the BEC
governed by a Gross-Pitaevskii equation (GPE) without
external potential is an integrable system and the inte-
grability could be easily broken by external potentials
of different forms [11]. So previously, only few analyti-
cal works concern exact solutions of the system, where
one-dimensional (1D) stationary systems with some sim-
ple potentials are treated, such as the infinite or finite
square-wells [12, 13, 14, 15], the step-potentials [16], δ
or δ comb potentials [17, 18, 19], linear ramp potential
[20, 21] and optical lattice potentials [22, 23]. Under
some rigorous conditions on the interaction intensities
or external potentials, several exact nonstationary-state
solutions were constructed [24, 25], including the exact
soliton solutions [26, 27, 28, 29, 30]. It is worth not-
ing that the balance between nonlinearity and dispersion
was found in the seminal work of soliton [31], and the new
balances between the atom-atom interaction and the ex-
ternal potentials are demonstrated recently [25, 32, 33].

By using the balance conditions, although some exact so-
lutions have been constructed for the GPE with periodic
potential, however, any exact solution in the noninte-
grable WS system with a combination of the linear and
periodic potentials has not been reported yet.

The aim of this paper is to present the first exact an-
alytical solution with balance condition and to illustrate
the regular and chaotic numerical solutions of the accel-
erated WS system. The corresponding atomic flow densi-
ties accelerated by the constant force are demonstrated.
Based on the relations between the system parameters
and the solution behaviors, we suggest an experimental
method for controlling the regular and chaotic states by
applying the accelerated optical potential and adjusting
the system parameters.

II. SIMPLIFICATION OF THE

WANNIER-STARK SYSTEM

The mean-field theory is a successful one for describ-
ing the BECs. In this theory, the dynamical behaviors
are governed by the GPE [34, 35], which provides us a
nonlinear macroscopic quantum system. Let us consider
a BEC trapped in one-dimensional tilted optical lattice
potential

V (x′, t′) = V0 cos(2kLξ
′) + Fx′, ξ′ = x′ +

1

2
at′2; (1)

here x′ and t′ are spatial and time coordinates,
V0 cos(2kLξ

′) is the accelerating optical potential [5, 8]
with strength V0, wave vector kL and acceleration a, and
F = ma is a constant force [8] with m being the atomic
mass. Due to this force, a “tilted” potential is produced
that leads the atoms to accelerate in x direction with lin-
early increasing flow density and makes the atoms tunnel
out of the optical traps. The corresponding dimension-
less GPE reads as

i
∂ψ

∂t
= −∂

2ψ

∂x2
+ [V0 cos(2ξ) + αx + g1d|ψ|2]ψ, (2)

ξ = kLξ
′ = x+ αt2, α =

1

2
kLa~

2/E2
r ,
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where the dimensionless spatial and time coordinates
are x = kLx

′ and t = Ert
′/~. The wave function ψ

has been normalized in units of the radical
√
kL, the

potential depth V0 is normalized by the recoil energy
Er = ~

2k2
L/(2m). The constant force is rescaled by the

unit kLEr, so all variables and parameters in equation
(3) are dimensionless. In such units, the interatomic in-
teraction intensity related to the s-wave scattering length
as is in the form g1d = 4as/(kLl

2
r) with lr =

√

~/(mωr)
being the radial length of harmonic oscillator.

In order to get a simple description and better under-
standing of BEC dynamics, we let the wave function be
in the form

ψ(x, t) = u(ξ, t) exp
[

− i
(

αxt+
1

3
α2t3

)]

, (3)

where undetermined function u(ξ, t) may be real or com-
plex, which is normalized to the total number of atoms,
∫

u2(ξ, t)dx = N . Given Eq. (2), we perform the calcu-
lations

i
∂ψ

∂t
= i

(∂u

∂t
+ 2αt

∂u

∂ξ

)

e−i(αxt+ 1

3
α2t3) + (αx + α2t2)ψ,

∂2ψ

∂x2
=

(∂2u

∂ξ2
− i2αt

∂u

∂ξ

)

e−i(αxt+ 1

3
α2t3) − α2t2ψ. (4)

Substituting Eq. (4) into Eq. (2) yields

i
∂u

∂t
= −∂

2u

∂ξ2
+ [V0 cos(2ξ) + g1d|u|2]u (5)

in which the linear potential is removed and its effect is
included in the parameter α. When the optical potential
is switched off, V0 = 0, Eq. (5) becomes a standard non-
linear Schrödinger equation (NLSE), whose single-soliton
and multisoliton solutions are well-known for us. It is
worth noting that in the transformation x→ x+ nπ for
n = 0, 1, 2, · · · , Eq. (5) and its solution u(ξ, t) are kept
such that Eq. (3) gives n solutions

ψn(x, t) = ψ(x+ nπ, t) = ψ(x, t)e−iαnπt. (6)

The solutions with different n possess the different phases
and the same amplitude.

III. EXACT PERIODIC WAVE WITH

ACCELERATED FLOW

We are interested in the exact analytical solution and
regular and chaotic numerical solutions of Eq. (5). Notic-
ing that ξ and t in Eq. (5) are two independent variables,
we can rewrite the function u(ξ, t) in the separation form
of variables

u(ξ, t) = φ(ξ)e−iµt, (7)

and transform Eq. (5) to the ordinary differential equa-
tion

µφ = −d
2φ

dξ2
+ [V0 cos(2ξ) + g1d|φ|2]φ, (8)

where µ is a constant adjusted by the normalization con-
dition and can be call the chemical potential. By using
the balance technique, we establish the balance condition
[25, 33]

g1d|φ|2 + V0 cos(2ξ) = µ− 1, (9)

and then reduce Eq. (7) to the linear Schrödinger equa-
tion

d2φ

dξ2
= −φ. (10)

The exact solution of Eq. (8) must obey Eqs. (9) and
(10) simultaneously. General solution of the complex
equation (10) can be written as

φ = (A+ iC) cos ξ + (B + iD) sin ξ, (11)

where A,B,C and D are real constants which are de-
termined partly by the balance condition (9). From Eq.
(11) we construct the quadratic norm

|φ|2 = A2 + C2 + (B2 +D2 − A2 − C2) sin2 ξ

+ (AB + CD) sin(2ξ). (12)

Comparing Eq. (9) with Eq. (12) and noticing cos(2ξ) =
1 − 2 sin2 ξ produce the algebraical equations

g1d(A
2 + C2) = µ− V0 − 1, AB + CD = 0,

g1d(B
2 +D2 −A2 − C2) = V0, (13)

which denote a group of indefinite equations with infinite
numbers of solutions.

The existence of multiple solutions of Eq. (13) implies
that phase of the exact solution

arctan
(C cos ξ +D sin ξ)

(A cos ξ +B sin ξ)
, (14)

has some arbitrariness. However, quadratic norm of
the solution (7) is determined uniquely by Eq. (9),
|φ|2 = [µ − 1 − V0 cos(2ξ)]/g1d. This means that un-
der the exact state the atomic density profile shapes the
periodic wave-packets which propagate with acceleration
a. Therefore, we can achieve the accelerated transport of
BEC, through the considered exact solution. Application
of the normalization integral yields the average number
of condensed atoms per well [22]

N ′ = (π)−1

∫ π

0

|φ(x)|2dx = (µ− 1)/g1d, (15)

which determines the chemical potential as µ = g1dN
′+1.

Given the chemical potential, the exact atomic density
reads

|φ|2 = R2 = N ′ − V0

g1d

cos(2ξ). (16)

The result is accurately adjusted by the experimental
parameters N ′, V0, g1d, and wave vector kL and accel-
eration a implied in ξ.
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Clearly, Eq. (8) is a periodically driven GPE of the
spatiotemporal evolution in which the well-known Smale-
horseshoe chaos exists for a certain parameter region [36].
Writing the solution φ in the form of φ = R(ξ) exp[iθ(ξ)]
and inserting it into Eq. (8) lead to two couple equations

d2R

dξ2
= R

(dθ

dξ

)2

+ g1dR
3 + [V0 cos(2ξ) − µ]R, (17)

d2θ

dξ2
+ 2θξ

Rξ

R
= 0. (18)

The square of the modulus |ψ|2 = |φ|2 = R2 denotes
atomic number density and the total phase reads

Θ(x, t) = θ(ξ) − (µ+ αnπ)t− (αxt +
1

3
α2t3). (19)

The both are associated with the velocity field v and
flow density J , through the formulas v = ~Θx/m and
J = vR2. Integrating Eq. (18) yields the part phase

θ =

∫

J0

R2
dξ. (20)

So the velocity field and flow density become

v(ξ, t) =
~kL

m
(θξ − αt) =

~kL

m

[ J0

R2(ξ)
− αt

]

,

J(ξ, t) =
~kL

m
[J0 − αR2(ξ)t], (21)

where J0 = θξ(ξ0)R
2(ξ0) denotes an integration constant

determined by the flow density at the point ξ0 = x0 +αt20
for the initial time t0 and boundary coordinate x0. Sub-
stituting Eq. (16) into Eq. (21) produces the exact flow
velocity and flow density. The linear term of time in flow
velocity implies the BEC superfluid being accelerated.

IV. REGULAR AND CHAOTIC NUMERICAL

SOLUTIONS

In general, the balance condition (9) cannot be satisfied
such that we have to solve Eq. (17) for the modulus R.
Applying θξ = J0/R

2 of Eq. (20) to Eq. (17), we arrive
at the decoupled equation

d2R

dξ2
=
J2

0

R3
+ g1dR

3 + [V0 cos(2ξ) − µ]R. (22)

This is a real equation on the accelerated reference frame,
which can be reduced to the parametrically driven Duff-
ing equation [37, 38] for the case J0 = 0. The Smale-
horseshoe chaos in J0 = 0 case has been widely inves-
tigated. Generally, J0 6= 0, the system becomes more
complicated and the chaotic property may be kept. Un-
der balance condition (9) we can prove directly that Eq.
(16) is an exact special solution of Eq. (22) for a particu-
lar integral constant. When the periodic driving is weak

enough, the chaotic perturbed solution has been con-
structed for the system without linear potential [36, 39].
For most of parameters and initial data Eq. (22) is not
analytically solvable, which necessitates the numerical so-
lutions.

At the initial and boundary point ξ0, the values of the
velocity field and number density can’t be determined ex-
actly in experiment due to the fluctuation of the atomic
thermal cloud, we can randomly choose some possible
values to perform the numerical calculations. In order
to explore the analytically insolvable system (22), we nu-
merically solve it by using the MATHEMATICA code

T = π; e[{Rnew−, vnew−}] := {R[T ], v[T ]}/.F latten
[NDSolve[{R′[ξ] == v[ξ], v′[ξ] == g1dR[ξ]3 − µR[ξ]

+J2
0/R[ξ]3 + V0Cos[2ξ] ∗R[ξ], R[0] == Rnew,

v[0] == vnew}, {R, v}, {ξ, 0, T }]];Do[pici = ListP lot

[Drop[Nestlist[e, {Random[Real, {−0.5, 0.5}],
Random[Real, {−0.5, 0.5}]}, 5100], 100], {i, 1, 10}]

to make 10 groups of orbits on the Poincaré section of
the equivalent phase space (R,Rξ) for the random initial
conditions {R(ξ0) ∈ [−0.5, 0.5], Rξ(ξ0) ∈ [−0.5, 0.5]} and
different parameter sets. Each of the groups contains 10
orbits, which corresponds to one of the following cases:

Case 1. For the parameter set g1d = −1, µ =
−0.5, J0 = 0.01, V0 = 0.05 all the 10 orbits are reg-
ular, whose 3 typical profiles are shown in Fig. 1.

Case 2. By increasing the strength of lattice potential
to V0 = 0.2 and keeping the other parameters as in case
1, we observe 3 regular orbits of Fig. 1 and 7 chaotic
orbits, whose 2 typical profiles are shown in Fig. 2.

Case 3. After further increasing the strength of lattice
potential to V0 = 0.5, all the orbits become chaotic.

Case 4. By increasing the flow density to J0 = 0.16
and keeping the other parameters as in case 3, we find
that all the orbits become regular.

Case 5. By increasing the strength to V0 = 3 and
keeping the other parameters as in case 4, we observe 4
regular and 6 chaotic orbits.

Case 6. After further increasing the strength to V0 = 5,
all the orbits become chaotic.

Case 7. For the parameter set g1d = −1, µ = 0.5, J0 =
0.16, V0 = 0.5 with positive chemical potential µ all the
chaotic orbits in case 3 are transformed to regular ones.

Case 8. By increasing the strength to V0 = 2 and
keeping the other parameters as in case 7, we observe 2
regular and 8 chaotic orbits.

Case 9. After further increasing the strength to V0 = 4
and keeping the other parameters as in case 8, all the
orbits become chaotic.

Case 10. For the different parameter sets with posi-
tive interaction g1d we make many regular orbits and no
chaotic orbit is found.

The above results imply that for the attractive inter-
action and negative chemical potential increasing the lat-
tice strength can strengthen chaoticity of the system.
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FIG. 1: Typical regular orbits on the Poincaré sections of the dimensionless ‘phase space’ (R, Rξ) for ten different initial
conditions and/or parameter sets. Here the phase orbits evolve in a finite region and display the regular state distributions.
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FIG. 2: Typical chaotic orbits on the Poincaré sections of the dimensionless ‘phase space’ (R, Rξ) for ten different initial
conditions and/or parameter sets. Here the phase orbits evolve in a finite region and exhibit the confused state distributions.

Conversely, increasing the flow density can weaken the
chaoticity. On the other hand, after changing the chem-
ical potential from negative to positive, the chaoticity is
weakened effectively. Finally, for the positive interaction
g1d we have not found the chaotic orbits. The 4 typi-
cal regular orbits and 4 typical chaotic orbits among the
10 × 10 = 100 orbits are shown in Fig. 1 and Fig. 2
respectively. They are associated with different initial
conditions and/or parameter sets. As the examples of
densities of atomic number we plot their spatiotemporal
evolutions for the parameters of Case 2 and two fixed ini-
tial conditions as in Fig. 3. Figure 3(a) corresponds to
the first closed orbit of Fig. 1 and describes a quasiperi-
odic evolution thereby. Figure 3(b) is associated with the
first chaotic orbit of Fig. 2, which possesses obvious ape-
riodicity. From Eq. (21) the corresponding flow densities
can be easily illustrated. They will increase linearly in
time that leads the condensed atoms to tunnel out of the
optical traps. These results reveal the relations between
the system parameters and the solution behaviors, and
suggest a method for controlling the regular and chaotic
states.

V. CONCLUSIONS

In summary, we have investigated a BEC interacting
with an accelerated WS potential. Using the mean-field
method and the macroscopic one-body wave function, we
seek the exact analytical solution and the regular and
chaotic numerical solutions of the system. It is demon-
strated that after the linear potential being removed by a
function transformation, the governing equation becomes
a periodically driven GPE on the accelerated reference
frame. With the help of the balance condition, we estab-
lish the first exact analytical solution of the WS system,
which is accurately controlled by the experimental pa-
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FIG. 3: Spatiotemporal evolutions of the densities of atomic
number for the parameters of Case 2 and the initial conditions
(a) R2(0) = −0.07793183579, R2

ξ(0) = −0.199975080313, (b)

R2(0) = −0.48451144892, R2

ξ(0) = 0.31792019031.

rameters. Further writing the solution of GPE in the ex-
ponential form, we obtain the equation of modulus, which
contains the parametrically driven Duffing equation. The
well-known Smale-horseshoe chaos and quasiperiodic or-
bits on the Poincaré sections of the dimensionless ‘phase
space’ are shown numerically for different initial condi-
tions and parameter regions of different chaoticity. The
accelerated atomic flow densities are demonstrated for
both the regular and chaotic states.

It is well known that chaos could emerge in the proces-
sions of BEC collapsing and may play a destructive role
for the BEC system. Therefore, predicting and control-
ling chaos are quite important for the creation and appli-
cation of BEC. Our analytical and numerical results have
supplied a method for controlling the regular and chaotic



5

states, through the application of accelerated optical po-
tential and the adjustments of system parameters.
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