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Abstract

We present the effective field equations obtained from a generalized gravity action with Euler-Poincaré

term and a cosmological constant in a D dimensional bulk space-time. A class of plane-symmetric

solutions that describe a 3-brane world embedded in a D = 5 dimensional bulk space-time are given.

1. Introduction

Brane-world theories that receive a lot of interest recently are strictly motivated by string models [1].
They were mainly proposed to provide new solutions to the hierarchy problem and compactification of extra
dimensions [2],[3]. The main content of the brane-world idea is that we live in a four dimensional world
embedded in a higher dimensional bulk space-time. According to the brane-world scenarios, the gauge fields,
fermions and scalar fields of the Standard Model should be localised on a 3-brane, while gravity may freely
propagate into the higher dimensional bulk.

In our previous work [4] we derived covariant gravitational field equations on a 3-brane embedded in a
five-dimensional bulk space-time with Z2 symmetry in a generalization that included a dilaton scalar as well
as the second order Euler-Poincaré density in the action. We introduced a general ADM-type coordinate
setting to show that the effective gravitational field equations on the 3-brane remain unchanged, however,
the evolution equations off the brane are significantly modified due to the acceleration of normals to the
brane surface in the non-geodesic, ADM slicing of space-time.

In the second part of this paper, using the language of differential forms, we present the field equations
of a generalized gravity model with a dilaton 0-form and an axion 3-form in Einstein frame from an action
that includes the second order Euler-Poincaré term and a cosmological constant in a D-dimensional bulk
space-time. In the third part, we present some plane-symmetric solutions that generalize the well-known
domain-wall solution [5].
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2. Model

We consider a D-dimensional bulk space-time manifoldM equipped with a metric g and a torsion-free,
metric compatible connection ∇. We determine our gravitational field equations by a variational principle
from aD-dimensional action that includes the second order Euler-Poincarè term and a cosmological constant

I[e, ω, φ,H ] =
∫

M

L (1)

where in the Einstein frame the Lagrangian density D-form [6]

L =
1
2
Rab ∧ ∗(ea ∧ eb)−

α

2
dφ ∧ ∗dφ+ β

2
e−β2φH ∧ ∗H + Λe−β1φ ∗ 1

+
η

4
Rab ∧Rcd ∧ ∗(ea ∧ eb ∧ ec ∧ ed)

+(dea + ωa
b ∧ eb) ∧ λa + (dH − ε

2
Rab ∧Rab) ∧ µ . (2)

Here λa and µ are Lagrange multiplier forms that upon variation impose the zero-torsion and anomaly-
freedom constraints.

The final form of the variational field equations to be solved are the Einstein field equations

1
2
Rab ∧ ∗(ea ∧ eb ∧ ec) = −α

2
τc[φ] +

β

2
e−β2φτc[H ]− Λe−β1φ ∗ ec

−η
4
Rab ∧Rdg ∧ ∗(ea ∧ eb ∧ ed ∧ eg ∧ ec)

−2εβD(e−β2φιb(Rb
c ∧ ∗H))− εβ

2
ec ∧D(e−β2φιsιl(Rls ∧ ∗H)), (3)

where the dilaton stress-energy forms

τa[φ] = ιadφ ∗ dφ+ dφ∧ ιa ∗ dφ

and the axion stress-energy forms

τa[H ] = ιaH ∧ ∗H +H ∧ ιa ∗H ,

the dilaton scalar field equation

αd(∗dφ) = β2β

2
e−β2φH ∧ ∗H +Λβ1e

−β1φ ∗ 1, (4)

and the axion field equations

dH =
ε

2
Rab ∧Rab , d(e−β2φ ∗H) = 0. (5)

3. Plane symmetric solutions in D = 5

We investigate below a class of plane symmetric solutions in 5-dimensions. We consider the metric

g = −f2(t, ω)dt2 + u2(t, ω)dω2 + g2(t, ω)

(
dx2 + dy2 + dz2(

1 + kr2

4

)2
)
, (6)

the dilaton scalar field

φ = φ(t, ω) (7)
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and 3-form gauge field

H = h(t, ω)
dx ∧ dy ∧ dz(
1 + kr2

4

)3 (8)

in terms of local coordinates

xM :
{
x0 = t, x5 = ω, x1 = x, x2 = y, x3 = z

}
.

We choose our co-frame 1-forms as

e0 = f(t, ω)dt, e5 = u(t, ω)dω, ei = g(t, ω)
dxi(

1 + kr2

4

) , i = 1, 2, 3. (9)

Then we calculate the Levi-Civita connection 1-forms

ω0
i =

gt

fg
ei, ωi

j =
k

2g
(xiej − xjei), (10)

ω0
5 =

ut

fu
e5 +

fω

fu
e0, ωi

5 =
gω

ug
ei. (11)

and the corresponding curvature 2-forms

Rij =
1
g2

{
k +

(
gt

f

)2

−
(gω

u

)2
}
ei ∧ ej, (12)

R05 =
1
fu

{(
fω

u

)
ω

−
(
ut

f

)
t

}
e5 ∧ e0, (13)

R0i =
1
fg

{(
gt

f

)
t

− fωgω

u2

}
e0 ∧ ei + 1

ug

{(
gt

f

)
ω

− utgω

fu

}
e5 ∧ ei, (14)

Ri5 =
1
fg

{
fωgt

fu
−
(gω

u

)
t

}
ei ∧ e0 + 1

ug

{(gω

u

)
ω
− gtut

f2

}
e5 ∧ ei. (15)

From these expressions we note that Rab ∧Rab = 0. Therefore dH = 0 implying that

H =
Q

g3
e1 ∧ e2 ∧ e3 (16)

where Q may be identified as a magnetic charge. Now, for simplicity, we let k = 0 and take the functions g,
f and u independent of time. Then we obtain the following system of coupled ordinary differential equations
(′ denotes derivative with respect to ω):

2G− 2C − B −A = −η(2CG− AB) − α

2

(
φ′

u

)2

−β
2
Q2

g6
e−β1φ +Λe−β2φ, (17)

3A− 3G = 3ηGA+
α

2

(
φ′

u

)2

− β

2
Q2

g6
e−β2φ − Λe−β1φ, (18)
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3C + 3A = −3ηCA− α

2

(
φ′

u

)2

− β

2
Q2

g6
e−β2φ − Λe−β1φ, (19)

α

(
φ′fg3

u

)′ 1
g3fu

=
β2β

2
e−β2φQ

2

g6
+ Λβ1e

−β1φ. (20)

where

A = −
(
g′

g

)2 1
u2

B = −
(
f ′

u

)′ 1
fu
, (21)

C = − f ′g′

u2fg
G =

(
g′

u

)′ 1
ug
. (22)

We will give below some special classes of solutions:

Case: φ = constant, H = 0 and η = 0.

Here the Euler-Poincaré term is absent, H = 0 and the dilaton scalar is constant. We obtain the AdS
solution in 5-dimensions that is also known as Randall-Sundrum model [3]:

g = dω2 + e∓2pω(−dt2 + dx2 + dy2 + dz2). (23)

where p2 = Λ
6
.

Case: φ = constant, H = 0.

Here H = 0 and the dilaton scalar is constant. Solutions are given by the metric

g = dω2 + e∓2sω(−dt2 + dx2 + dy2 + dz2) (24)

where

s2 =
1 +

√
1− ηΛ

3

η
(25)

provided that Λη ≤ 3. When ηΛ = 3, the solution may alternatively be given in AdS form as

g = −4 cosh2(lω)dt2 + dω2 + 4 sinh2(lω)(dx2 + dy2 + dz2) (26)

where l2 = 1
η .

Case: η = 0, H = 0.

Here the Euler-Poincaré term is absent and H = 0. We obtain the following solution:

g = e
16α
3β1

φ(ω)
dω2 + e

4α
3β1

φ(ω)(−dt2 + dx2 + dy2 + dz2) (27)

with

φ(ω) =
1(

β1
2 − 8α

3β1

) ln
∣∣∣∣∣∣∣
√√√√ 2β1Λ(

16α
3β1

− β1

)
α

(
β1

2
− 8α

3β1

)
ω +C0

∣∣∣∣∣∣∣ (28)
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where C0 is an integration constant. When β1 = 2, it reduces to a supersymmetric domain wall solution
presented in [5].

Case: η = 0.

In this case the solution possesses a magnetic charge. It is given by

g = e
4(β1−β2)

3 φ(ω)dω2 + e
(β1−β2)

3 φ(ω)(−dt2 + dx2 + dy2 + dz2) (29)

with

φ(ω) =
6

4β2 − β1
ln

∣∣∣∣∣∣∣
(
4β2 − β1

6

)√√√√6
(

β2β
2 Q2 + Λβ1

)
(β1 − 4β2)α

ω + C

∣∣∣∣∣∣∣ (30)

provided that the constants satisfy

(β1 − β2)
(
βQ2β2

2
+ β1Λ

)
=
(
βQ2

2
+ 4Λ

)
α. (31)

C is an integration constant. H is given by

H = Qe
(β2−β1)

2 φ(ω)e1 ∧ e2 ∧ e3 (32)

We note that when Q = 0 and the constants β1 and β2 satisfy β1 − β2 = 4α
β1
, the solutions reduce to (27)

and (28).
We also note that an electric dual of solutions (29) and (30) may be given by defining a 2-form field

F = eβ2φ ∗H. (33)

Then the solutions are identified as electrically charged solutions.

4. Conclusion

We have given a class of solutions to the variational field equations of a generalized theory of gravity in
a D dimensional bulk space-time derived from an action that includes the second-order Euler-Poincaré
term and a cosmological constant. The theory describes a heterotic type first order effective string model
in D dimensions in the Einstein frame. The special class of plane-symmetric solutions of this model in
5-dimensions we gave refer to a 3-brane world also called a domain wall solution in the literature [5].
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