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Abstract

We give two distinct infinite-Hamiltonian representations for the Riemann equation. One with first
order Hamiltonian operators and another with third order-first order Hamiltonian operators. Both rep-
resentations contain an arbitrary function of the dynamical variable. We prove that all the Hamiltonian
operators of the Riemann equation are mutually compatible.
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1. Introduction

The standard bi-Hamiltonian theory of integrability requires an evolution equation to be a member
of a hierarchy of equations all of which can be written in Hamiltonian form by two distinct compatible
Hamiltonian operators in the same set of dependent and independent variables [1, 2]. Le if H and K are
two Hamiltonian (skew-adjoint, Jacobi identity satisfying) operators which are compatible; meaning that
‘H + oK is also Hamiltonian for any a € R, then the hierarchy of evolution equations

uy, = Fplul = HE(H,) = KE(H,-1), n=0,1,2,3,---

are completely (bi-Hamiltonian) integrable provided (technically) that for all n, H,, exits. Here, H,, are
the densities of the Hamiltonian functionals H,, = f H,dz, E is the Euler or functional derivative and
u = u(ty,, z) is the dynamical variable dependent on a spatial variable x and evolution parameters t,.

Almost all of the known bi-Hamiltonian hierarchies conform to the above given standart description of
the theory. However, there are exceptional examples of hierarchies where the Hamiltonian operators (by
which the hierarchies are written) are reported to be incompatible [3, 4, 5].

The bi-Hamiltonian integrability is the minimum in terms of the number of distinct Hamiltonian operators
involved in writing the hierarchies. There are examples of multi-Hamiltonian hierarchies where the equations
are written in Hamiltonian form by more than two distinct Hamiltonian operators with both nontrivial
[4, 6, 7, 8] and trivially related Hamiltonian operators [9, 10, 11, 12].

The Riemann equation

Up = Ully, (1)

occupies a special place in the literature because of both the number of Hamiltonian representations given
for it and as an example of equations some of whose Hamiltonian operators are reported to be incompatible.
There are four distinct Hamiltonian representations given for it with the Hamiltonian operators [4]

1 1
K:O = D, K:l = \/ED\/E, ICQ = uDu, K:3 = D—D—D,
u,

uIE xX
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where D™ = d"/dz™, n € N. It is mentioned, however, that the operator K5 is compatible only with Ky but
not with the other two operators Ky and Ky [4].

In the present work we show explicitly that the Riemann equation can be written in Hamiltonian form
by first order Hamiltonian operators in infinitely many different ways. And also by third order-first order
compatible Hamiltonian operators again in infinitely many different ways. In the Hamiltonian representations
given here, both the Hamiltonian operators and the corresponding hierarchies of symmetries and densities
contain arbitrary functions of u. We also show that all of the newly given Hamiltonian operators and the
ones given earlier are compatible operators.

2. Hierarchies from the First Order Hamiltonian Operators
It is well known [2] that for any arbitrary function f of w,
Jf = fDf = f*D + [ fuus (2)
is a Hamiltonian operator. Obviously, any two such operators J; and J, are compatible Hamiltonian

operators. Irrespective of what the functions f and g explicitly are, the following two way hierarchy can be
easily constructed by the operators J; and Jj.

Ur_, = %(g)uuw = JyE( %du) = JE(J Wdu)
vy = Sue = TE( fpdw = (]
w= 0 —gE(Taw = 7 ®
uy = (e = JeE(f jdu) = TrE([ Fwdu)
Uty = giz(%)uuw = j{]E(f %du) = jfE(f ;"L:du)

Any third Hamiltonian operator J, of form (2) can be trivially related to the operators J, and Jr as
Ih = ijq_ljfv

only when f/g = constant. In case of which, however, the operators J,, and Jy are constant multiples of
the operator J,. Therefore, each specific pair of functions f and g which are not proportional, generate
formally a different hierarchy.

All of the members of the symmetry hierarchy (3) above are first order partial differential equations
(PDEs). Since all first order PDEs are transformable to each other up to the contact transformations [13],
as a rule, one can take any specific one of the symmetries and transform it (and accordingly the other
quantities) to the Riemann equation in the form (1) or to any desired other first order equation. Thus,
the above hierarchy can viewed as a Riemann hierarchy which is written in a rather superficially general
form: two arbitrary functions in each of the arbitrary coefficients of the u, terms in the symmetry hierarchy.
Therefore, we proceed with relating the arbitrary functions f and ¢ in such a way that the symmetry
ut, = g(g9/ f)utiz in (3) is the Riemann equation in the form (1). I.e we restrict

g<§>u — . (4)

Then, in terms of a new arbitrary function r = r(u), introduction of which is only for convenience, f and g
becomes f = u/rr, and g = u/r,. Consequently, J; and J, reduce to

u u u u
Ji=—D—, Jp= —D—,

Tru TTy Tu Tu
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respectively. Here rr, # 0 is assumed. As a result, we get the following hierarchy

u_, = —3ruu, = BHBE([f —ST;Z” du) = JEBE([f Y5l+du)
u = —rBuu, = RE([ %du) = JE([ Zedu)
Ut, = 0 = sz(f %du) = ._71E(f TT“d )
U, = Uy = JE([ "?“du) = JE([ r T“ du)
Up, = Sriuu, = JhE f 5he du) JE([ 2 T“ du)

It is clear from the above hierarchy that the Riemann equation can be written in Hamiltonian form in
infinitely many ways because of the arbitrariness of the function r. Associated with each specific r there
exist a hierarchy of Hamiltonian densities in involution. Therefore, such zeroth order (in z-derivatives of
u) hierarchies of Hamiltonian densities are infinitely many. In other words, the Riemann equation admits
any desired function of u as a zeroth order density. A fact which was noted in [4] even though only the
polynomial zeroth order densities of the Riemann equation were explicitly written in the multi-Hamiltonian
hierarchies given there.

Obviously, the above choice of the symmetry to be restricted is only one of the other infinitely many
possibilities. One can consider another symmetry in the hierarchy (3), take its u dependent arbitrary
coefficient, restrict it to v and do the rest as above. The result is again a Riemann hierarchy containing the
Riemann equation in the form (1).

Moreover, the above construction can also be used to directly obtain the infinite-Hamiltonian represen-
tations of the first order PDEs other than the Riemann equation. For example, if instead of the restriction
(4), we were chosen

we would directly arrive at the infinite-Hamiltonian hierarchy of the equation
Ut = Ug.-

The above construction is not the only construction where the Riemann equation is infinite-Hamiltonian.
There exist others constituting the subject of the next section.

3. Hierarchies from the Third order-First Order Hamiltonian Op-
erators

The multi-Hamiltonian construction given in this section is based on the following theorem.
Theorem 1:Let u = u(t, z) denote the dependent variable of an evolution equation, and h be any arbitrary
function of w. Then

J=DLpLtDp 4 ViDVE (5)
Uy  Ug
18 a Hamiltonian operator.

For the Proof, one needs to show that J is skew-adjoint and satisfies the Jacobi identity. The operator J
is manifestly skew-adjoint. The proof of the Jacobi identity is, however, too lengthy to be given in all details
here. Therefore, we give only the necessary steps of the proof by the functional multi-vectors technique
[14]. According to the technique, a skew-adjoint operator J satisfies the Jacobi identity if and only if the
functional tri-vector

U= [{0 AprVze(T) A0O}da, (6)
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where prVzy is the prolongation of the differential function J(6), vanishes. Starting from the right normal
form of the operator (5)

1
J = u;2D3 — 3u;3umD2 — (u;%mw — 3u;4uim —h)D + §huu$, (7)

and using the usual properties of wedge product one obtains

U= f { _U;S oA 9;5 A emmm;ﬂww - 3u;5 oA emm A emmmmw - 2u;5 0N em;v;v A emm;ﬂ;ﬂ
+15u, Sty O A Oy A Oppzze + 30Uy Susy O A Opy A Oy
+(19u Suppe — 102u; w2, — huy3) OAOp A Orrss
+(19u; Suppe — 102u; w2, — huy3) OA Ope A Opss
+(12u5 SUprre — 17TUL UppUpra
+6huy Yugy + 366u; Sud, + %huu;2) ONOy AOyrn
+(3uy SUprrrr — 5TUL UppUppre — 39Uy U2, + 489u; Su2 tUyrs

+3hug Maze — 12hug®uZ, — 576u;%ul, + Shyuzt) 0 A0y A by, bde,

for (6) with (7). After various integration by parts and evaluation of boundary terms to zero, one obtains
the following equalities for any functional Glu| of the dynamical variable u

JGON Oy N Orppooedr = [(GONOyzz A Opogs — 3G D0y A Oy A Oy (9)

JGONOpy N Oppwodr = [(=GO N Opzz A O +2G PO, A Oy A Oy

GO N Oy A ), (10)

JGONOLNOppredr = [(GOL A Oy A Opyze +2GDON Oy A Oy
_G®0 A, A By)d, (11)
JGONOL N Opppedr = [(GDONO, AOry — GONOyy A Oryy)da, (12)
JGONONOppedr = [(=GDON O, Abyy)dz, (13)

where G™ = d™G/dz™, m € N. When the equalities (9)-(13) are used in (8) with the appropriate
coefficients of the tri-vectors in (8) replacing G’s in (9)-(13), one obtains zero as the coefficients of all the
basis tri-vectors 0 A Oppo A Opzray Op N Oz A Oppw, @ A Oy A Orer and 0 A 0, A 6, without any restriction on
the function h. This proves the theorem.

As a consequence of the above theorem we can consider the following Hamiltonian operators

11 11
J,=D—D—D +pDp, J,= ng,

Uy  Ug

where p = p(u) and ¢ = ¢g(u) # 0 are arbitrary functions. These operators are compatible since J, + aJy,
a € R, is of form (5) with h = p? + a/¢?. The first member (succeeding the trivial symmetry u;, = 0) of
the hierarchy is

Ut, = (Quuu +p2Qu + qppu)u;v = jpE(H—l) = qu(H0)7 (14)

where H_; (the Casimir of J,) and Hy are the first two members of the infinite sequence of Hamiltonian
densities
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H = fqu»
Ho=  [(quud® — 3¢2q + $¢°p?)du
Hi = [{quuuutd® + 2¢uuuqud® + 3¢2.6* — 30uu@2@* + 3quud*p?

+Puud®p + 2qha + 2a2°p? + Squpud’p + P2 + 2¢°p*du,
f{ 6+9 5+12 5+33 24+7 6,.2

FPuwund P + 3020’ + 24quunGundnd® + 3quuudo @ + 21quuuqud®p?

+14Guuupud®p + 14Puuuqud® + Puwupad” + 363.,0" — L2020 + a2 ,a°p*
+21quupund®p + R quuded® + F quuaiq*p? + 105¢uuqupud® + 21quup?e®

+32 0uug®p* 4 302,47 + 22puudq®p + 42puuqupud® + 3puad’p® — SdSq + Balep?
+PGpud'p + PGP+ TR 0P + Fupad®’ +5p5a"p? + 1547p° Hdu,

F
I

As in the previous section, if we restrict the coefficient of u, in (14) as

Guuu + P*qu + qppu = u,

and introduce, for convenience, a new arbitrary function s = s(u), s, # 0, the former arbitrary functions p
and ¢ can be written as

after the restriction. Let us call the restricted forms of 7, and J, as J3 and J4 respectively. The final result
is the following Riemann hierarchy which starts from the Casimir | 2udu of Jy.

uy, = 0=TE(f 2:du)
U, uuy = BE([ 22du) = JE([ 2xdu)
U, [3us + %(susuuu +2s2,) — u—lsusuu + %si] Uy
3 4
= B[ frdu) = ZE([ (3 4+ 2% - )

4. Conclusions

As a first order PDE, integrability of the Riemann equation is not of much concern since all first or-
der equations are transformable to each other by at most contact transformations. Moreover, although
a bi-Hamiltonian representation is sufficient for the integrability of an equation, there are four distinct
Hamiltonian representations of the Riemann equation already given. Therefore, with so many Hamiltonian
structures, the Riemann equation was one of the richest of the completely integrable equations. Now it is
even more richer. It has two different infinite-Hamiltonian structures.

We have also shown here that all of the formerly given Hamiltonian operators of the Riemann equation and
the ones added in this work are mutually compatible operators. Therefore, among the Riemann hierarchies
there is not an exception to the standart multi-Hamiltonian theory which requires compatibility of the
Hamiltonian operators.
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