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Abstract

We introduce a parent action for component fields of N=1 supersymmetric U(1) gauge theory in
four dimensions which generates both the original and the (s-) dual supersymmetric actions. By using
the noncommutative and nonanticommutative deformations of this theory we propose the corresponding
parent actions as generalizations of the ordinary case. We then show that duality symmetry under the
interchange of fields with duals accompanied by the replacement of the noncommutativity and nonanti-
commutativity parameters in a suitable way.
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1. Introduction

Duality in QFT in general means the equivalence of two or more descriptions of the same theory. In
particular, (S—) duality transformations map strong coupling domains to weak coupling domains of gauge
theories. For pure U(1) gauge theory this duality can be shown, trivially, by rescaling its gauge fields.
However, it can also be studied in terms of parent action formalism[1] that permits to study more complicated
theories where this rescaling argument does not hold, such as noncommutative or nonanticommutative
extensions of U(1) gauge theory.

Roughly speaking a non-commutative quantum field theory (NC-QFT) is a QFT that is defined on a
space-time where the coordinates do not commute. The idea is quite old [2], however the subject became quite
popular in recent times due to the fact that it can be related to the string theory (see for instance [3]). The
above mentioned parent action formalism permits to introduce a dual formulation of the noncommutative
U(1) gauge theory[4].

On the other hand, when a supersymmetric gauge theory considered on a superspace, besides the ordinary
bosonic coordinate noncommutativity one can also introduce a non-anti-commutativity where the fermionic
coordinates do not anti-commute!.

In this talk I will try to summarize how to obtain the (S-) duals of these noncommutative and nonan-
ticommutative deformations of supersymmetric U(1) Gauge theories by using the aforementioned parent
action formalism. The details can be found in the original papers [11] and [12].

*Talk given at the 5th Workshop on QUANTIZATION, DUALITIES and INTEGRABLE SYSTEMS, 23 27 January 2006,
Pamukkale University, Denizli, Turkey.

INote that the formalism of superstring theory with pure spinors[5] in a graviphoton background[6] gives rise to a non-
anticommutative superspace[7],[8] which was introduced also in other contexts [9], [10].
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2. Duality and Parent Actions

Duality in QFT in general means the equivalence of two or more descriptions of the same theory. The
simplest example is Electric-Magnetic (EM) duality. Consider the Maxwell action :

1
I = / (=g T Fiw) (1)

where F,,, =0, A, — 0, A, is the field strength.
We compute the physical quantities as a path integral over all gauge potential configurations,

Z ~ /DAMe“M.

On the other hand, since F),, is the unique solution of the Bianchi identity, 0,F, + O, Fx, + OxF, = 0 the
above path integral can be rewritten as an integral over F},,, if we insert the Bianchi identity as a constraint

Zy ~ / DF,,DAp,e’’»
where Ap is a Lagrange multiplier one form enforcing the Bianchi id. in the action,
4 1 uv 1 UUAp
Ip = d LL'(—@F FPW + 514[)“6 6UF)\p). (2)

Note that performing the functional integral over Ap gives the original action (1) and the one over F, gives
the ”Dual Action” Ip for Ap

2
ID = /d4$(_gIFguFDuu) (3)

that is equivalent to the original action (1) when one replaces A with Ap and g with 1/g. In other words,
U(1) gauge theory is equivalent to another such theory with coupling 1/¢g and this duality invariance can be
formulated at the level of actions due to a Parent Action I, which generates both the original and the dual
actions.

3. Supersymmetry
Supersymmetry is, by definition, a symmetry between fermions and bosons.

0: Fermions — Bosons

Bosons — Fermions

A supersymmetric field theoretical model consists of a set of fields and of a Lagrangian such that the
latter possesses this kind of symmetry with a rigid anticommuting parameter. Let us briefly mention N=1
SUSY U(1) gauge theory. For details we refer to [13].

To supersymmetrize U(1) gauge theory (1) one should introduce chiral and anti chiral Weyl spinors
Ao Aq with a kinetic term ij\o“(?u)\ . However the off-shell degrees of freedom of the bosons A, and the
fermions A\, A4, are still not equal (i.e 3 # 4). Therefore, we introduce another scalar real field D without a
kinetic term (i.e an auxiliary field).

The off-shell N=1 SUSY algebra is ;

2

{Q, Q} = —2ic"9,
{Q,Q}=0={Q,Q}. (4)

2Instead of introducing a chiral and a antichiral spinor field we could equivalently introduce a Majarona field.
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where Q. , Q4 are generators of chiral and antichiral SUSY transformations. It is clear that Q. , Qs maps
mass dimension d fields to mass dimension d+1/2 fields. Therefore, we introduce anti-commutative param-
eters &, , &q, to define § = £Q + £Q, and assume that the SUSY transformation acts linearly on the fields to
get

beA, = oM A+ ifot, (5)
SeA = OMEF,, +itD, (6)
5D = E'Dy A\ — €t DA (7)

with the help of the algebra (4).
There is a unique action which is invariant under 9,

_ 1 4 1 uv _ Y 1 2
I—g2/dx[ 1F" B — DA+ 5 D). (8)

Note that these component fields form a vector multiplet (A4, A, A, D)3.

On the other hand, although it is possible to construct supersymmetric Lagrangeans directly from the
components of a supermultiplet, there are advantages to construct these theories in superspace/superfield
formalism. Superspace is a 4+4 dimensional coset space (superPoincare group/Lorentz group) that is param-
eterised by (2, 0, 0s). Here,d,, 0 are constant anticommuting Weyl spinors. This coset space is commonly
known as N=1 rigid superspace.

A superfield is defined as a function in superspace. It is obvious that a superfield, ®(z, 6, #), has a finite
series expansion in terms of f, , 04,

O(2,0,0) = () + 0 + O + ... + 0000F + 0

since % = 63 = 0 identically. Note that, (¢,%,..., F') are components of the superfield that belong to the
same supermultiplet.
A motion in superspace (i.e the parameter space (x,,0a, fs)) is generated by the differential operators
Qo Qe ;
. _ 9 s [ o ). 9 ale )
Qo = 300 —ioh 090, , 1Qs = ~ 55 +i0%0", . 0, (9)
These operators satisfy the SUSY algebra (4). The SUSY transformations (5-7) can then be found by
applying these differential operators on the superfield ®(z, 6, 6).
To write an action functional I[®] that is invariant under SUSY, let us introduce superspace covariant
derivatives,

9] - _ 9]
= — 3 M. o = —— — 10% M. . 1
D, 500 +i0h:,0°0, , Ds 555 i0%ch .0, (10)

that anticommutes with @ and Q.

The members of the vector multiplet of N=1 U(1) gauge theory, (A,, Aa, A4, D) can then be written in
superspace as a vector superfield V in Wess-Zumino gauge as,

V = (00" 8) A, + 009X — 090X + 0090, (11)

Note that V is a real superfield VI = V. Moreover, from V one can construct chiral and antichiral superfields*
by using the covariant derivatives

1= - 1 5=
W, = 5D2Dav. , Wy = 5D2de.
W, can be found in terms of the component fields as

Wal(y) = —ida(y) + 0o D(y) — iok” P05 Fyu (y) + 000450,0° (y)

3Note that, fields in the same supermultiplet always have the same mass and the coupling constant.
4ie Dg® =0, Dq® = 0 respectively.
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after a variable redefinition y,, = x, + i60,0.
It is easy then to show that the action (8) can be written as :

4 2 2 2 01A72
= —_— . 1
=15 d:c(/d oW +/d ow?) (12)

4. Parent Action For Supersymmetric U(1) Gauge Theory

Just as in the ordinary case for supersymmetric U(1) gauge theory®, duality can be formulated at the
level of actions due to a parent action which generates both the original and the dual actions in terms of
superfields [14].

Working in 4 dimensional Minkowski space-time and the N = 1 superspace (z,,60a, 6%) we consider a
general chiral superfield (not a supersymmetric field strength) W, and a real (dual) vector field Vp to write
the parent action

1

b

~ _ =2 1 ~ _ =
d%(/ d2oW? +/d29W )+ §/d4xd49(VDDW — VpDW) (13)
where D, is the supercovariant derivative (we use notations of [13]). B
Equation of motion with respect to Vp leads to the supersymmetric Bianchi identityﬁDW — DW|W =0

whose solution is the supersymmetric field strength W, = %D2DQV. Replacement of W, W with this solution
in the parent action®, leads to

_ 1 4 297772 /2**2
=17 dw(/dQW—i— d>aW?). (14)

This is the action of supersymmetric U(1) gauge theory.

On the other hand, when solutions of the equations of motion with respect to W, and w" following
from I, are plugged into we get the dual action

2
Ip = %/d%(/ d2OW? +/d29W§,) (15)

where Wp is the dual superfield strength Wp, = %D2DQVD.
The original and the dual actions and are in the same form when g is replaced with 1/g as expected.
On the other hand, one is forced to deal with the component field formalism in particular when calcula-
tions on non-trivial backgrounds are considered. Therefore, instead of superfields, we would like to consider
duality transformations in terms of component fields [11]. For this purpose we introduce a general chiral

superfield” W, that does not satisfy the condition DW — DW|W =0,
Wa(y) = —ida(y) +0aD(y) — ioh” P05 F, (y) + 0007, 0,0 (y)

where y,, =z, + iﬁoué. Here, A and ¢ are two independent Weyl spinors, F| wv 1s a antisymmetric field and
D is a complex scalar field.
Since the Lagrange multiplier Vp is a real vector superfield we have

_ __ __ 1 __
Vp = —(00"0) Ap,, + i090Ap — 000D + 50990 (16)

in terms of dual fields. Therefore, by using the action (6) and the above definitions we propose [11],

SP = SO[X] + Sl[Xv XD]? (17)

5See for instance the text book [13]
6Note that this is equivalent to perform the path integral over Vp in its partition function
"This choice is not unique, one can also choose F as a complex two form that also yields similar results. For details see [11].
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as the parent action, where

1

So
442

/ d*x[—F"F,, — 2iAa" 0,1 — 2iAa"d,1p + D? + D], (18)

and the Legendre transformation part

1 o o .
S = 5/d4:c[5“””"FW6pADU+)\Do“8,ﬂp+)\D6“8M)\—)\Do“ﬁu)\—)\Da“ﬁuw—i—iDD(D—DT)]. (19)

We can now proceed as before to derive supersymmetric U(1) gauge theory in terms of the component
fields from the parent action (17): The solutions of the equations of motions with respect to the dual fields

=0, (20)

ST, Fy =0 (D—DT)D ,

oh o0 — b 0 A =0, GRYOF A, — 50" e = 0, (21)

yield F,, = 9,A, — 0,4, where A, is the usual U(1) gauge field and D = D, A, ~ 9, and \¥ ~ 9%,
When these solutions are plugged in the parent action (17) we obtain the supersymmetric U(1) gauge theory
action

1 1 A S |
I==— [ d&[-=F"F, — =A§\ — =\d\ + =D?]. 22
5 [ Al R = 0IA = 130+ D (22)

in terms of component fields.
On the other hand, the equations of motions with respect to the fields
FW,)\,w,)\,D,w,DJr are

1 1 -~ 1 -
—— " 4+ e 9,Ap, =0 , —D'—iDp =0, 5D +iDp =0, (23)
g g g
P . . :
Uf’idau(—g—zw“ +Ap)=0 , 6‘““%(—?% —Apa) =0, (24)
au(—%& + Apa)Fhie =0 au(—éxx +A%)ot = 0. (25)

Substituting solutions of these equations in the parent action yield the dual of action of N=1 supersymmetric
U(1) gauge theory in terms of the component fields,

1 .. 1 < i< 2 1
Ip =g [ d'sl=1FE Fo = 500030 — 33090 + Db (26)
where FDuu = (9MAD,, — 6UADM-

Therefore one may say that supersymmetric parent action (17) generates supersymmetric U(1) gauge
theory and its dual in terms of component fields [11].

5. Noncommutative Generalization of Supersymmetric U(1) Gauge
Theory

Noncommutativity is introduced through the star product
Z'e/'“j — — — —
* = exp —— (auau—auau), (27)
for an antisymmetric and constant real parameter 6#” . Here, x,, are space-time coordinates and satisfy the

Moyal bracket
at g’ — ¥ =0, (28)
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We get the noncommutative (NC) supersymmetric theory® simply by replacing all the products with the
*_ d t9 .
product”:
1 1~ =~ PN -~ ~ ~ =~ ~
Snc = 57 d4w[—§F‘“’FW — iAo D, * X — iXo" D, * A+ DDJ, (29)
where ﬁu N = BMX + z(gu N — A% EM) and ﬁuu = BWZU - BUEM + z(gu * 1/4.\,} - 1/4.\,} * EM) is the NC field
strength.
The action (29) is invariant under the (NC) supersymmetry transformations

SeA, = i€oMA+ iGN, (30)
SeA = oMEF,, +itD, (31)
5D = é&“ﬁu * A — fo“ﬁu £\ (32)

where £ is a fermionic constant spinor parameter. N
It is possible to find an explicit map (Seiberg-Witten map) from the NC vector potential A, and to a
conventional vector potential A,,,[3]

~

AL (A) + 00 AL(A) = A, (A+6rA)

where A = K(A, A) is the gauge parameter.
Similarly for the supersymmetric U (1) case we can find a supersymmetric Seiberg-Witten Map!® [11] :

~ 1
Ay = Au— §®UP(AV6PAM + AvFpp), (33)

X=A—0"9,0, , A = A-0“9, A, , D=D-0",DA,. (34)

where we get the NC fields in terms of the ordinary ones at the first order in ©+.
With help of SW map (33) we can write the action (29) in terms of the ordinary component fields

1 1
SnclF, A\, D,0] = /d%{_@(FWFW + 20" F, ,FP7 Fyy — 59“”FWFPUFUP)

1< 1< 1< 1 _
—%[5)\6“6“)\ + 0" (FAT O NEp + FX67 DNELy) + A0 DA

1 _ 1 - 1 1
+OM (ZAGPOpAF + = AdPOAF, )] + = (D* + —©O" D?*F,,)} (35)

4 2 2g? 2

The SUSY transformations that are found after performing the SW map (33),
- - 1 1 1 < -

0¢A, = o+ il N — 07" (Eop\ + fap)\)(§F,w + 5(9,“41”) — iep”§(§opau)\ +£0,0u\) Ak, (36)
SeX = 0MEF,, +iED + OP O N(i€o A\ + G, A) + O ot EF,  Fy (37)
§¢D = EG"OuN — ETMOUN —iOPF (Ea N+ E5,N) D D + O EaH F 0 A — OPFEGH F,, 00\ (38)

leaves the action (35) invariant.

6. Dual of NC Supersymmetric Gauge Theory

We generalize the parent action (17) of the ordinary supersymmetric gauge theory to the noncommutative
case

1 ~ =~ i o~ o~ i~ o~ 21 A
Sone = [ d*z[——F"F,, — —X\e"D — — "D —_DDH. 39
vo = [ el PRy = 55300 Dy = 530Dy x U 55 DD (39)

8 Although we deal with Euclidean R4, we use Minkowski space notation and follow the conventions of [13]. For detailed,
discussion of we refer to [10]
9We assume that surface terms are vanishing, so that [d'zf(z) * g(z) = [d*zf(z)g(z) and [d*zf(z) * g(z) * h(z) =
[ dba(f(x) * g(@)h(z) = [ daf(@)(9(x) * h(z)).
10For other approaches see Ref.[15, 16].
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and through the supersymmetric Seiberg—Witten map (33) we write,
Sonc[Fy A, ¢, D] = /d4:c 12 (FM Fp + 20" F, ,FPFy, — —9“”F,,MFWF” )
- B 1 B
—;?(Aaﬂa,ﬂp + O A ObFyy + 5O NG D F )

—QL(AaHa,ﬂE + O AP D, OF,, + %eﬂuapapww)

1 v
+4—2[D2 + D+ 561(D? + D) Fu)]}. (40)

Similarly, we can define the parent action as,
Sp = Sonc[X] + Si[X, Xp] (41)

where S is the Legendre transformation term (19) as before.

The equations of motions with respect to the dual fields are the same for the commuting case (20) and
when the solutions are used in the parent action we get the one of the NC supersymmetric U(1) gauge theory
(35).

On the other hand equations of motion with respect to the other fields are more complicated,

1 v 1 v]o 1 o 1 v o 1 o v
__FM _g_@p[uF] Fap__@p Fa[uFu +_@u FpUFP _i_@@p FpaF“

72 lp

—g(GP“Ao — O \e") 0,0 — —9“"( FP ) — —(@p“)\o — O Ad")0,1

——29“”Aaﬂap1ﬁ + L9“"(D2 + D1?) — et 9,Ap, =0, (42)
—2é O — —eﬂ”oﬂaprW — #@“UapaulﬁFup + %UMBMXD =0, (43)
_2_é25ua,ﬂp - @@uuapapwsz, - #@Muapauw}?up N %(—,uau)\D _o, (44)
—BM(LXW - Lep”Xaf‘Fpu — 2%29“”5\6PFW — %S\D@) =0, (45)
au(—%)\a“ — —@p”)\o“F — #QMUAOﬁFup + %)\Do“) =0, (46)
2; D+ —9‘“’DF,W + ZDD =0, (47)
gDT + —9“”DTFW — %DD =0. (48)

We can solve these equations for F, ), A, D and plug the solutions into the parent action to obtain the
dual action [11]

2
v A\ UV lod 1~ v o
SNep = / d%[—%(Fg Fpuy + 20" Fp, ) F5 Fpoy — 59“ FpuuFppe FP7P)

1 - 1- 1=~ _
—ig2(§)\DUM6M)\D + 5)\[)6’“(9“)\[) + Z@““)\DUMBP)\DFDPU)

1

1~ - 1 -
+Z®“”)\D6M6PADFDW) + 5(D%, + 59‘“’D2DFDW)],

where

or = g26’“’p09p0, (49)

When the fermionic and auxiliary fields Ap, Dp set equal to zero one obtains the result of [4]: There is
a duality symmetry under the replacement of A* with A}, and ©,, with ©,,.
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Unfortunately, this symmetry accompanied by the replacement of A\, D with Ap, Dp, cease to exist
between the noncommutative supersymmetric action and its dual. However, by inspecting the terms which
obstruct the duality symmetry it is still possible to define an action

£(O. F AN D) = Sne = = / 220" (Ao, 03 + 36,07 N) Fyp,

which can be obtained from the parent action
i

“p=5r -5

d*zOM (Y0 ,0P X + 5 ,0°\ + X\, 0P + A5,0°Y) Frpw, (50)
when the solutions of equations of motion with respect to dual fields Ap, Ap, Dp are plugged into it. Now,
the dual theory can be shown to have the same form with the action (50):

Yp = ¢*%(0, Fp, Ap, Ap, Dp). (51)

The action (50) is gauge invariant and possesses the duality symmetry when the original fields are
substituted by the dual ones and the noncommutativity parameter © is replaced with ©. However, whether
the action X is supersymmetric or not is an open question [11].

7. Dual of Non-anticommutative
_ 1 :
N = 5 Supersymmetric U(1) Gauge Theory
One can introduce nonanticommutativity in 4 dimensional superspace N = 1 superspace (z,6,6) by
taking the Grassmann odd coordinates of one-chirality, i.e. the chiral one 6,, not to anticommute with itself
(7] :
{0%,0°} = C*P, (52)

where C? are constant deformation parameters. It is clear that this theory should be defined in Euclidean
space since in R? chiral and antichiral fermions are not related with complex conjugation.The deformation
(52) breaks half of the supersymmetry. As in the noncommutative case, where the space-time coordinates
2, do not commute, Moyal products are employed to interpose non-anticommutativity between the coordi-
nates. Vector superfields taking values in this deformed superspace utilized to define a non—anticommutative
supersymmetric Yang-Mills gauge theory. However, due to a change of variables one deals with the standard
gauge transformations and component fields[7].

After aforementioned change of variables, the N = % supersymmetric Yang-Mills theory action[7] is found
to be

1 4 1 v . \ 1 2 i v ) |C|2 YY)\2
_[1/2 = ? /d LL'TT(—ZGM GPW — Z)\@)\ + §D — 50“ GPW()\)\) + T()\)\) ), (53)

where C* = C%Peg, a7 and D, is the covariant derivative. Gauge transformations possess the usual
form. G, is the non—-Abelian field strength related to the gauge field A,. A, X are independent fermionic
fields and D is auxiliary bosonic field.

The surviving part of the N = 1 supersymmetry acts on the standard component fields as
XN =ieD + o e(Gpw + %CWS\S\)
§A, = —i\g,e, 6D = —ea" D\, A =0, (54)
where € is a constant Grassmann parameter.

Note that the action (53) can also be obtained by applying the supersymmetry generator ) defined by
§ = €@, to the lower dimensional field monomial TrA\ as [12]

1
Lijp = 8—92Q2 / d*zTr(AN), (55)
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up to total derivatives, similar to the usual N = 1 super Yang-Mills theory [17].
We propose the followmg parent action in terms of component fields
X= (Fuuv ar AY Ya, w D, D2) and Xp = (AD;,H ADas )‘D7 DD) [ ]

Iy = Io[X] + Li[X, Xp] (56)
where I is
4 v VST 1 o 1 5 0 . S
== [dz e Fuu_§)‘!ﬁ)\—§¢@¢+ZD1+ZD2 —1¢" Fuy (AN + 1) (57)
and I; is defined as in (19).

When one plugs the solutions of the equations of motion of dual fields in terms of A\, A, D, into the
parent action, the NAC N = 2 supersymmetric U(1) gauge theory action follows!?!

1 - 1 ] —
== /d4 { ~ 1(0uA — 9,407 — iNA+ 5D? %C“”(&MAU - 6,,AM))\)\}. (58)
On the other hand, the equations of motion with respect to other fields are
i /L pv N —
29 F c (AN +9Pp) — 2e ONAp, =0,

X +ig2;ZMD =0 , P—ig?Pp=0,
PN+ CHFu A +ig?PAp =0 , P+ C*"E) —ig?dAp =0,

Dy +ig?Dp =0 , Ds—ig?’Dp =0 (59)
When we substitute the solutions of these equations in the parent action we obtain the dual non—
anticommutative N = = supersymmetrlc U(1) gauge theory action :
Ip=¢*[d* L puv p ApPAp + 2D + L2 ARC,, Py ApA 60
D=4 x _ZD Duv — 1 D@D+§ D+de purv L' DAXKADAD ¢ - ( )
One can observe that the non—anticommutative N = = supersymmetrlc U(1) gauge theory action and
its dual possess the same form and
1
g — -
g
1
cr - CY = 5926‘“”\”CM = ig?CH (61)

is the duality transformation [12].

8. Appendix

We use Wess-Bagger conventions [13]:

N = —diag(—1,1,1,1)

Mp = Xy 5 o = €apt?, & = Py
M= Xat)® s Yo = Edgwﬁ , P = Edﬁ.%

2
I Note that, since we deal with U (1) gauge group, the term quadratic in the deformation parameter, % (A2, of the action
vanishes.
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€21 = —€12 = 612 = —621 =1
6’0 — 0,0 , 6,1,2,3 — _0,1,2,3 (62)
Uljxd — eaﬁedgﬁ“ B8 , Fh o EdBEQBU%B (63)

1 . .
U;g/ﬁ — _( B gabv _ U;daaﬁ u)

ac
e = l(afm Po¥ . — gVt )
8 aB of
where p,v,...=0,1,2,3,4 are Lorentz indices a..., &... = 1,2 are spinor indices; A, are Chiral Weyl spinors;

A are Anti-chiral Weyl spinors. -
The integration over anticommuting coordinates 6, 6 are defined as follows:

d68 _._d, .
5 — — B dg. = _B _ ¢
/deae = 2 §a,/d9 95_d6d 5.

Note also that then a integral of a integrated superfield can be written as

/d4x/d9a<1> = /d%% = /d‘*wa@,

up to a boundary term since the superspace covariant derivative D, contains a x-space derivative explicitly
(10).
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