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Abstract

We introduce a parent action for component fields of N=1 supersymmetric U(1) gauge theory in
four dimensions which generates both the original and the (s-) dual supersymmetric actions. By using
the noncommutative and nonanticommutative deformations of this theory we propose the corresponding
parent actions as generalizations of the ordinary case. We then show that duality symmetry under the
interchange of fields with duals accompanied by the replacement of the noncommutativity and nonanti-
commutativity parameters in a suitable way.
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1. Introduction

Duality in QFT in general means the equivalence of two or more descriptions of the same theory. In
particular, (S–) duality transformations map strong coupling domains to weak coupling domains of gauge
theories. For pure U(1) gauge theory this duality can be shown, trivially, by rescaling its gauge fields.
However, it can also be studied in terms of parent action formalism[1] that permits to study more complicated
theories where this rescaling argument does not hold, such as noncommutative or nonanticommutative
extensions of U(1) gauge theory.

Roughly speaking a non-commutative quantum field theory (NC-QFT) is a QFT that is defined on a
space-time where the coordinates do not commute. The idea is quite old [2], however the subject became quite
popular in recent times due to the fact that it can be related to the string theory (see for instance [3]). The
above mentioned parent action formalism permits to introduce a dual formulation of the noncommutative
U(1) gauge theory[4].

On the other hand, when a supersymmetric gauge theory considered on a superspace, besides the ordinary
bosonic coordinate noncommutativity one can also introduce a non-anti-commutativity where the fermionic
coordinates do not anti-commute1.

In this talk I will try to summarize how to obtain the (S-) duals of these noncommutative and nonan-
ticommutative deformations of supersymmetric U(1) Gauge theories by using the aforementioned parent
action formalism. The details can be found in the original papers [11] and [12].

∗Talk given at the 5th Workshop on QUANTIZATION, DUALITIES and INTEGRABLE SYSTEMS, 23 27 January 2006,
Pamukkale University, Denizli, Turkey.

1Note that the formalism of superstring theory with pure spinors[5] in a graviphoton background[6] gives rise to a non-
anticommutative superspace[7],[8] which was introduced also in other contexts [9], [10].
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2. Duality and Parent Actions

Duality in QFT in general means the equivalence of two or more descriptions of the same theory. The
simplest example is Electric-Magnetic (EM) duality. Consider the Maxwell action :

IM =
∫

d4x(− 1
4g2

F µνFµν) (1)

where Fµν = ∂µAν − ∂νAµ is the field strength.
We compute the physical quantities as a path integral over all gauge potential configurations,

Z ∼
∫

DAµe
i IM .

On the other hand, since Fµν is the unique solution of the Bianchi identity, ∂µFνλ + ∂νFλµ + ∂λFµν = 0 the
above path integral can be rewritten as an integral over Fµν , if we insert the Bianchi identity as a constraint

Zp ∼
∫

DFµνDADµe
i Ip

where AD is a Lagrange multiplier one form enforcing the Bianchi id. in the action,

Ip =
∫

d4x(− 1
4g2

F µνFµν +
1
2
ADµε

µνλρ∂νFλρ). (2)

Note that performing the functional integral over AD gives the original action (1) and the one over F , gives
the ”Dual Action” ID for AD

ID =
∫

d4x(−g2

4
F µν

D FDµν) (3)

that is equivalent to the original action (1) when one replaces A with AD and g with 1/g. In other words,
U(1) gauge theory is equivalent to another such theory with coupling 1/g and this duality invariance can be
formulated at the level of actions due to a Parent Action Ip which generates both the original and the dual
actions.

3. Supersymmetry

Supersymmetry is, by definition, a symmetry between fermions and bosons.

δ : Fermions → Bosons

Bosons → Fermions

A supersymmetric field theoretical model consists of a set of fields and of a Lagrangian such that the
latter possesses this kind of symmetry with a rigid anticommuting parameter. Let us briefly mention N=1
SUSY U(1) gauge theory. For details we refer to [13].

To supersymmetrize U(1) gauge theory (1) one should introduce chiral and anti chiral Weyl spinors2

λα λ̄α̇ with a kinetic term iλ̄σµ∂µλ . However the off-shell degrees of freedom of the bosons Aµ and the
fermions λα λ̄α̇, are still not equal (i.e 3 �= 4). Therefore, we introduce another scalar real field D without a
kinetic term (i.e an auxiliary field).

The off-shell N=1 SUSY algebra is ;

{Q , Q̄} = −2iσµ∂µ

{Q ,Q} = 0 = {Q̄ , Q̄}. (4)
2Instead of introducing a chiral and a antichiral spinor field we could equivalently introduce a Majarona field.

452
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where Qα , Q̄α̇ are generators of chiral and antichiral SUSY transformations. It is clear that Qα , Q̄α̇ maps
mass dimension d fields to mass dimension d+1/2 fields. Therefore, we introduce anti-commutative param-
eters ξα , ξ̄α̇, to define δ = ξQ + ξ̄Q̄, and assume that the SUSY transformation acts linearly on the fields to
get

δξAµ = iξσµλ̄+ iξ̄σ̄µλ, (5)
δξλ = σµνξFµν + iξD, (6)
δξD = ξ̄σ̄µDµλ− ξσµDµλ̄ (7)

with the help of the algebra (4).
There is a unique action which is invariant under δ,

I =
1
g2

∫
d4x[−1

4
F µνFµν − iλ∂/λ̄+

1
2
D2]. (8)

Note that these component fields form a vector multiplet (Aµ, λα, λ̄α̇, D)3.
On the other hand, although it is possible to construct supersymmetric Lagrangeans directly from the

components of a supermultiplet, there are advantages to construct these theories in superspace/superfield
formalism. Superspace is a 4+4 dimensional coset space (superPoincare group/Lorentz group) that is param-
eterised by (xµ, θa, θ̄α̇). Here,θa, θ̄α̇ are constant anticommuting Weyl spinors. This coset space is commonly
known as N=1 rigid superspace.

A superfield is defined as a function in superspace. It is obvious that a superfield, Φ(x, θ, θ̄), has a finite
series expansion in terms of θα , θ̄α̇,

Φ(x, θ, θ̄) = φ(x) + θψ + θ̄ψ̄ + ...+ θθθ̄θ̄F + 0

since θ3 = θ̄3 = 0 identically. Note that, (φ, ψ, ..., F ) are components of the superfield that belong to the
same supermultiplet.

A motion in superspace (i.e the parameter space (xµ, θα, θ̄α̇)) is generated by the differential operators
Qα, Q̄α̇ ;

iQα =
∂

∂θα
− iσµ

αα̇θ̄
α̇∂µ , iQ̄α̇ = − ∂

∂θ̄α̇
+ iθασµ

αα̇∂µ (9)

These operators satisfy the SUSY algebra (4). The SUSY transformations (5-7) can then be found by
applying these differential operators on the superfield Φ(x, θ, θ̄).

To write an action functional I[Φ] that is invariant under SUSY, let us introduce superspace covariant
derivatives,

Dα =
∂

∂θα
+ iσµ

αα̇θ̄
α̇∂µ , D̄α̇ = − ∂

∂θ̄α̇
− iθασµ

αα̇∂µ. (10)

that anticommutes with Q and Q̄.
The members of the vector multiplet of N=1 U(1) gauge theory, (Aµ, λα, λ̄α̇, D) can then be written in

superspace as a vector superfield V in Wess-Zumino gauge as,

V = −(θσµ θ̄)Aµ + iθθθ̄λ̄− iθ̄θ̄θλ +
1
2
θθθ̄θ̄D. (11)

Note that V is a real superfield V † = V . Moreover, from V one can construct chiral and antichiral superfields4

by using the covariant derivatives

Wα =
1
2
D̄2DαV. , W̄α̇ =

1
2
D2D̄α̇V.

Wα can be found in terms of the component fields as

Wα(y) = −iλα(y) + θαD(y) − iσµν β
α θβFµν(y) + θθσµ

αα̇∂µψ̄
α̇(y)

3Note that, fields in the same supermultiplet always have the same mass and the coupling constant.
4i.e D̄α̇Φ = 0 , DαΦ̃ = 0 respectively.
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after a variable redefinition yµ = xµ + iθσµθ̄.
It is easy then to show that the action (8) can be written as :

I =
1
4g2

∫
d4x(

∫
d2θW 2 +

∫
d2θ̄W̄ 2). (12)

4. Parent Action For Supersymmetric U(1) Gauge Theory

Just as in the ordinary case for supersymmetric U(1) gauge theory5, duality can be formulated at the
level of actions due to a parent action which generates both the original and the dual actions in terms of
superfields [14].

Working in 4 dimensional Minkowski space–time and the N = 1 superspace (xµ, θα, θ̄
α̇) we consider a

general chiral superfield (not a supersymmetric field strength) W̃α and a real (dual) vector field VD to write
the parent action

Ip =
1
4g2

∫
d4x(

∫
d2θW̃ 2 +

∫
d2θ̄

¯̃
W

2
) +

1
2

∫
d4xd4θ(VDDW̃ − VDD̄

¯̃
W ) (13)

where Dα is the supercovariant derivative (we use notations of [13]).
Equation of motion with respect to VD leads to the supersymmetric Bianchi identity DW̃ − D̄ ¯̃W |W = 0

whose solution is the supersymmetric field strength Wα = 1
2 D̄

2DαV. Replacement of W̃ , ¯̃W with this solution
in the parent action6, leads to

I =
1
4g2

∫
d4x(

∫
d2θW 2 +

∫
d2θ̄W̄ 2). (14)

This is the action of supersymmetric U(1) gauge theory.

On the other hand, when solutions of the equations of motion with respect to W̃α and ¯̃W
α̇
following

from Ip are plugged into we get the dual action

ID =
g2

4

∫
d4x(

∫
d2θW 2

D +
∫

d2θ̄W̄ 2
D) (15)

where WD is the dual superfield strength WDα = 1
2D̄

2DαVD .
The original and the dual actions and are in the same form when g is replaced with 1/g as expected.
On the other hand, one is forced to deal with the component field formalism in particular when calcula-

tions on non-trivial backgrounds are considered. Therefore, instead of superfields, we would like to consider
duality transformations in terms of component fields [11]. For this purpose we introduce a general chiral
superfield7 W̃α that does not satisfy the condition DW̃ − D̄

¯̃
W |W = 0,

W̃α(y) = −iλα(y) + θαD̃(y) − iσµν β
α θβ F̃µν(y) + θθσµ

αα̇∂µψ̄
α̇(y)

where yµ = xµ + iθσµθ̄. Here, λ and ψ̄ are two independent Weyl spinors, F̃µν is a antisymmetric field and
D̃ is a complex scalar field.

Since the Lagrange multiplier VD is a real vector superfield we have

VD = −(θσµθ̄)ADµ + iθθθ̄λ̄D − iθ̄θ̄θλD +
1
2
θθθ̄θ̄DD (16)

in terms of dual fields. Therefore, by using the action (6) and the above definitions we propose [11],

Sp = So[X] + Sl[X,XD], (17)
5See for instance the text book [13]
6Note that this is equivalent to perform the path integral over VD in its partition function
7This choice is not unique, one can also choose F as a complex two form that also yields similar results. For details see [11].
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as the parent action, where

So ≡ 1
4g2

∫
d4x[−F µνFµν − 2iλ̄σµ∂µψ − 2iλσµ∂µψ̄ + D̃2 + D̃†2], (18)

and the Legendre transformation part

Sl ≡
1
2

∫
d4x[εµνρσFµν∂ρADσ + λDσµ∂µψ̄ + λ̄D σ̄µ∂µλ − λDσµ∂µλ̄ − λ̄D σ̄µ∂µψ + iDD(D̃− D̃†)]. (19)

We can now proceed as before to derive supersymmetric U(1) gauge theory in terms of the component
fields from the parent action (17): The solutions of the equations of motions with respect to the dual fields

εµνρσ∂νFρσ = 0 ,
(
D̃ − D̃†

)
D̃=D

= 0, (20)

σµ
αα̇∂µψ̄

α̇ − σµ
αα̇∂µλ̄

α̇ = 0 , σ̄α̇α
µ ∂µλα − σ̄α̇α

µ ∂µψα = 0, (21)

yield Fµν = ∂µAν − ∂νAµ where Aµ is the usual U(1) gauge field and D = D†, λα 
 ψα and λ̄α̇ 
 ψ̄α̇.
When these solutions are plugged in the parent action (17) we obtain the supersymmetric U(1) gauge theory
action

I =
1
g2

∫
d4x[−1

4
F µνFµν − i

2
λ∂/λ̄− i

2
λ̄∂̄/λ +

1
2
D2]. (22)

in terms of component fields.
On the other hand, the equations of motions with respect to the fields

Fµν , λ, ψ, λ̄, D̃, ψ̄, D̃† are

− 1
g2

F µν + εµνρσ∂ρADσ = 0 ,
1
g2

D̃† − iDD = 0 ,
1
g2

D̃ + iDD = 0, (23)

σµ
αα̇∂µ(−

i

g2
ψ̄α̇ + λ̄α̇

D) = 0 , σ̄µα̇α∂µ(−
i

g2
ψα − λDα) = 0, (24)

∂µ(−
i

g2
λ̄α̇ + λ̄Dα̇)σ̄µα̇α = 0 , ∂µ(−

i

g2
λα + λα

D)σ
µ
αα̇ = 0. (25)

Substituting solutions of these equations in the parent action yield the dual of action of N=1 supersymmetric
U(1) gauge theory in terms of the component fields,

ID = g2

∫
d4x[−1

4
F µν

D FDµν − i

2
λD∂/λ̄D − i

2
λ̄D∂̄/λD +

1
2
D2

D ]. (26)

where FDµν = ∂µADν − ∂νADµ.
Therefore one may say that supersymmetric parent action (17) generates supersymmetric U(1) gauge

theory and its dual in terms of component fields [11].

5. Noncommutative Generalization of Supersymmetric U(1)Gauge

Theory

Noncommutativity is introduced through the star product

∗ ≡ exp
iθµν

2

(←
∂ µ

→
∂ ν −

←
∂ ν

→
∂µ

)
, (27)

for an antisymmetric and constant real parameter θµν . Here, xµ are space–time coordinates and satisfy the
Moyal bracket

xµ ∗ xν − xν ∗ xµ = iθµν . (28)
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We get the noncommutative (NC) supersymmetric theory8 simply by replacing all the products with the
*-product9 :

SNC =
1
2g2

∫
d4x[−1

2
F̂ µνF̂µν − î̄λσ̄µD̂µ ∗ λ̂− iλ̂σµD̂µ ∗ ̂̄λ+ D̂D̂], (29)

where D̂µ ∗ λ̂ = ∂µλ̂ + i(Âµ ∗ λ̂− λ̂ ∗ Âµ) and F̂µν = ∂µÂν − ∂νÂµ + i(Âµ ∗ Âν − Âν ∗ Âµ). is the NC field
strength.

The action (29) is invariant under the (NC) supersymmetry transformations

δξÂµ = iξσµ̂̄λ+ iξ̄σ̄µλ̂, (30)

δξλ̂ = σµνξF̂µν + iξD̂, (31)

δξD̂ = ξ̄σ̄µD̂µ ∗ λ̂ − ξσµD̂µ ∗ ̂̄λ. (32)

where ξ is a fermionic constant spinor parameter.
It is possible to find an explicit map (Seiberg-Witten map) from the NC vector potential Âµ and to a

conventional vector potential Aµ,[3]

Âµ(A) + δ̂ΛÂµ(A) = Âµ(A+ δΛA)

where Λ̂ = Λ̂(A,Λ) is the gauge parameter.
Similarly for the supersymmetric U(1) case we can find a supersymmetric Seiberg-Witten Map10 [11] :

Âµ = Aµ − 1
2
Θνρ(Aν∂ρAµ + AνFρµ), (33)

λ̂ = λ− Θνρ∂νλAρ , ̂̄λ = λ̄−Θνρ∂νλ̄Aρ, , D̂ = D− Θνρ∂νDAρ. (34)

where we get the NC fields in terms of the ordinary ones at the first order in Θµν .
With help of SW map (33) we can write the action (29) in terms of the ordinary component fields

SNC [F, λ,D,Θ] =
∫

d4x{− 1
4g2

(F µνFµν + 2ΘµνFνρF
ρσFσµ − 1

2
ΘµνFνµFρσF

σρ)

− i

g2
[
1
2
λ̄σ̄µ∂µλ+ Θµν(

1
4
λ̄σ̄ρ∂ρλFµν +

1
2
λ̄σ̄ρ∂µλFνρ) +

1
2
λσµ∂µλ̄

+Θµν (
1
4
λσρ∂ρλ̄Fµν +

1
2
λσρ∂µλ̄Fνρ)] +

1
2g2

(D2 +
1
2
ΘµνD2Fµν)} (35)

The SUSY transformations that are found after performing the SW map (33),

δξAµ = iξσµλ̄ + iξ̄σ̄µλ− iΘρκ(ξσρλ̄+ ξ̄σ̄ρλ)(
1
2
Fκµ +

1
2
∂κAµ)− iΘρκ 1

2
(ξσρ∂µλ̄+ ξ̄σ̄ρ∂µλ)Aκ, (36)

δξλ = σµνξFµν + iξD + Θρκ∂ρλ(iξσκλ̄ + iξ̄σ̄κλ) + ΘρκiσµνξFµρFνκ, (37)
δξD = ξ̄σ̄µ∂µλ− ξσµ∂µλ̄ − iΘρκ(ξσρλ̄+ ξ̄σ̄ρλ)∂κD +ΘρκξσµFρµ∂κλ̄ −Θρκξ̄σ̄µFρµ∂κλ. (38)

leaves the action (35) invariant.

6. Dual of NC Supersymmetric Gauge Theory

We generalize the parent action (17) of the ordinary supersymmetric gauge theory to the noncommutative
case

SoNC =
∫

d4x[− 1
4g2

F̂ µν F̂µν − i

2g2
̂̄λσ̄µD̂µ ∗ ψ̂ − i

2g2
λ̂σµD̂µ ∗ ̂̄ψ +

1
2g2

D̂D̂†]. (39)

8Although we deal with Euclidean R4, we use Minkowski space notation and follow the conventions of [13]. For detailed,
discussion of we refer to [10]

9We assume that surface terms are vanishing, so that
R

d4xf(x) ∗ g(x) =
R

d4xf(x)g(x) and
R

d4xf(x) ∗ g(x) ∗ h(x) =R
d4x(f(x) ∗ g(x))h(x) =

R
d4xf(x)(g(x)∗ h(x)).

10For other approaches see Ref.[15, 16].
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and through the supersymmetric Seiberg–Witten map (33) we write,

SoNC [F, λ, ψ,D] =
∫

d4x{− 1
4g2

(F µνFµν + 2ΘµνFνρF
ρσFσµ − 1

2
ΘµνFνµFρσF

σρ)

− i

2g2
(λ̄σ̄µ∂µψ +Θµν λ̄σ̄ρ∂µψFνρ +

1
2
Θµν λ̄σ̄ρ∂ρψFµν)

− i

2g2
(λσµ∂µψ̄ +Θµνλσρ∂µψ̄Fνρ +

1
2
Θµνλσρ∂ρψ̄Fµν)

+
1
4g2

[D2 +D†2 +
1
2
Θµν(D2 +D†2)Fµν)]}. (40)

Similarly, we can define the parent action as,

SP = SoNC [X] + Sl[X,XD] (41)

where Sl is the Legendre transformation term (19) as before.
The equations of motions with respect to the dual fields are the same for the commuting case (20) and

when the solutions are used in the parent action we get the one of the NC supersymmetric U(1) gauge theory
(35).

On the other hand equations of motion with respect to the other fields are more complicated,

− 1
g2

F µν − 1
g2
Θρ[µF ν]σFσρ −

1
2g2

ΘρσFσ[µFν]ρ +
1
4g2

ΘµνFρσF
ρσ +

1
2g2

ΘρσFρσF
µν

− i

2g2
(Θρµλ̄σ̄ν −Θρν λ̄σ̄µ)∂ρψ − i

2g2
Θµν (λ̄σ̄ρ∂ρψ) −

i

2g2
(Θρµλσν − Θρνλσµ)∂ρψ̄

− i

2g2
Θµνλσρ∂ρψ̄ +

1
4g2

Θµν(D̃2 + D̃†2)− εµνρσ∂ρADσ = 0, (42)

− i

2g2
σµ∂µψ̄ − i

4g2
Θµνσρ∂ρψ̄Fµν − i

2g2
Θµνσρ∂µψ̄Fνρ +

1
2
σµ∂µλ̄D = 0, (43)

− i

2g2
σ̄µ∂µψ − i

4g2
Θµν σ̄ρ∂ρψFµν − i

2g2
Θµν σ̄ρ∂µψFνρ − 1

2
σ̄µ∂µλD = 0, (44)

−∂µ(
i

2g2
λ̄σ̄µ − i

4g2
Θρν λ̄σ̄µFρν − i

2g2
Θµν λ̄σ̄ρFνρ −

1
2
λ̄Dσ̄µ) = 0, (45)

∂µ(−
i

2g2
λσµ − i

4g2
ΘρνλσµFρν − i

2g2
ΘµνλσρFνρ +

1
2
λDσµ) = 0, (46)

1
2g2

D̃ +
1
4g2

ΘµνD̃Fµν +
i

4
DD = 0, (47)

1
2g2

D̃† +
1
4g2

Θµν D̃†Fµν − i

4
DD = 0. (48)

We can solve these equations for F, ψ, λ, D̃ and plug the solutions into the parent action to obtain the
dual action [11]

SNCD =
∫

d4x[−g2

4
(F µν

D FDµν + 2Θ̃µνFDνρF
ρσ
D FDσµ − 1

2
Θ̃µνFDνµFDρσF

Dσρ)

−ig2(
1
2
λDσµ∂µλ̄D +

1
2
λ̄D σ̄µ∂µλD +

1
4
Θ̃µνλDσµ∂

ρλ̄DFDρν)

+
1
4
Θ̃µν λ̄D σ̄µ∂

ρλDFDρν) +
1
2
(D2

D +
1
2
Θ̃µνD2

DFDµν)],

where
Θ̃µν ≡ g2εµνρσΘρσ , (49)

When the fermionic and auxiliary fields λD , DD set equal to zero one obtains the result of [4]: There is
a duality symmetry under the replacement of Aµ with Aµ

D and Θµν with Θ̃µν .
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Unfortunately, this symmetry accompanied by the replacement of λ,D with λD, DD, cease to exist
between the noncommutative supersymmetric action and its dual. However, by inspecting the terms which
obstruct the duality symmetry it is still possible to define an action

Σ(Θ, F, λ, λ̄, D) = SNC − i

g2

∫
d4xΘµν

(
λσµ∂

ρλ̄+ λ̄σ̄µ∂
ρλ

)
Fρν,

which can be obtained from the parent action

ΣP = SP − i

2g2

∫
d4xΘµν(ψσµ∂

ρλ̄+ ψ̄σ̄µ∂
ρλ+ λσµ∂

ρψ̄ + λ̄σ̄µ∂
ρψ)FRρν , (50)

when the solutions of equations of motion with respect to dual fields AD , λD, DD are plugged into it. Now,
the dual theory can be shown to have the same form with the action (50):

ΣD = g4Σ(Θ̃, FD, λD, λ̄D, DD). (51)

The action (50) is gauge invariant and possesses the duality symmetry when the original fields are
substituted by the dual ones and the noncommutativity parameter Θ is replaced with Θ̃. However, whether
the action Σ is supersymmetric or not is an open question [11].

7. Dual of Non-anticommutative
N = 1

2 Supersymmetric U(1) Gauge Theory

One can introduce nonanticommutativity in 4 dimensional superspace N = 1 superspace (x, θ, θ̄) by
taking the Grassmann odd coordinates of one-chirality, i.e. the chiral one θα, not to anticommute with itself
[7] :

{θα, θβ} = Cαβ, (52)

where Cαβ are constant deformation parameters. It is clear that this theory should be defined in Euclidean
space since in R

4 chiral and antichiral fermions are not related with complex conjugation.The deformation
(52) breaks half of the supersymmetry. As in the noncommutative case, where the space-time coordinates
xµ do not commute, Moyal products are employed to interpose non-anticommutativity between the coordi-
nates. Vector superfields taking values in this deformed superspace utilized to define a non–anticommutative
supersymmetric Yang-Mills gauge theory. However, due to a change of variables one deals with the standard
gauge transformations and component fields[7].

After aforementioned change of variables, the N = 1
2 supersymmetric Yang-Mills theory action[7] is found

to be

I1/2 =
1
g2

∫
d4xTr(−1

4
GµνGµν − iλD/λ̄ +

1
2
D2 − i

2
CµνGµν(λ̄λ̄) +

|C|2
8

(λ̄λ̄)2), (53)

where Cµν = Cαβεβγσ
µν γ
α and Dµ is the covariant derivative. Gauge transformations possess the usual

form. Gµν is the non–Abelian field strength related to the gauge field Aµ. λ , λ̄ are independent fermionic
fields and D is auxiliary bosonic field.

The surviving part of the N = 1 supersymmetry acts on the standard component fields as

δλ = iεD + σµνε(Gµν +
i

2
Cµν λ̄λ̄)

δAµ = −iλ̄σ̄µε , δD = −εσµDµλ̄ , δλ̄ = 0 , (54)

where ε is a constant Grassmann parameter.
Note that the action (53) can also be obtained by applying the supersymmetry generator Q defined by

δ = εQ, to the lower dimensional field monomial Trλλ as [12]

I1/2 =
1
8g2

Q2

∫
d4xTr(λλ), (55)
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ÜLKER

up to total derivatives, similar to the usual N = 1 super Yang-Mills theory [17].
We propose the following parent action in terms of component fields

X = (Fµν , λα, λ̄
α̇, ψα, ψ̄

α̇, D1, D2) and XD = (ADµ, λDα, λ̄
α̇
D, DD) [12],

Ip = I0[X] + Il[X,XD] (56)

where I0 is

I0 =
1
g2

∫
d4x

{
− 1

4
F µνFµν − i

2
λ/∂λ̄ − i

2
ψ̄/̄∂ψ +

1
4
D2

1 +
1
4
D2

2 − i

4
CµνFµν(λ̄λ̄ + ψ̄ψ̄)

}
(57)

and Il is defined as in (19).
When one plugs the solutions of the equations of motion of dual fields in terms of λ, λ̄, D, into the

parent action, the NAC N = 1
2 supersymmetric U(1) gauge theory action follows11:

I =
1
g2

∫
d4x

{
− 1
4
(∂µAν − ∂νAµ)2 − iλ/∂λ̄ +

1
2
D2 − i

2
Cµν(∂µAν − ∂νAµ)λ̄λ̄

}
. (58)

On the other hand, the equations of motion with respect to other fields are

1
2g2

F µν +
i

4g2
Cµν(λ̄λ̄ + ψ̄ψ̄) − 1

2
εµνλκ∂λADκ = 0 ,

/∂λ̄ + ig2/∂λ̄D = 0 , /∂ψ̄ − ig2/∂λ̄D = 0 ,

/̄∂λ +CµνFµνλ̄ + ig2 /̄∂λD = 0 , /̄∂ψ +CµνFµνψ̄ − ig2/̄∂λD = 0 ,

D1 + ig2DD = 0 , D2 − ig2DD = 0 (59)

When we substitute the solutions of these equations in the parent action we obtain the dual non–
anticommutative N = 1

2
supersymmetric U(1) gauge theory action :

ID = g2

∫
d4x

{
− 1

4
F µν

D FDµν − iλD/∂λ̄D +
1
2
D2

D +
i

4
g2εµνλκCµνFDλκλ̄Dλ̄D

}
. (60)

One can observe that the non–anticommutative N = 1
2
supersymmetric U(1) gauge theory action and

its dual possess the same form and

g → 1
g

Cµν → Cµν
D = −1

2
g2εµνλκCλκ = ig2Cµν (61)

is the duality transformation [12].

8. Appendix

We use Wess-Bagger conventions [13]:

ηµν = −diag(−1, 1, 1, 1)

λψ = λαψα ; ψα = εαβψ
β , ψα = εαβψβ

λ̄ψ̄ = λ̄α̇ψ̄
α̇ ; ψα̇ = εα̇β̇ψ

β̇ , ψα̇ = εα̇β̇ψβ̇

11Note that, since we deal with U (1) gauge group, the term quadratic in the deformation parameter,
|C|2

8
(λ̄λ̄)2, of the action

vanishes.
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ε21 = −ε12 = ε12 = −ε21 = 1

σ̄0 = σ0 , σ̄1,2,3 = −σ1,2,3 (62)

σµ
αα̇ = εαβεα̇β̇σ̄

µ β̇β , σ̄µ α̇α = εα̇β̇εαβσµ

ββ̇
(63)

σµν β
α =

1
4
(σµ

αα̇σ̄
α̇β ν − σν

αα̇σ̄
α̇β µ)

σ̄µν α̇

β̇
=

1
4
(σ̄α̇α µσν

αβ̇
− σ̄α̇α νσµ

αβ̇
)

where µ, ν, ...= 0, 1, 2, 3, 4 are Lorentz indices α..., α̇... = 1, 2 are spinor indices; λα are Chiral Weyl spinors;
λ̄α̇ are Anti-chiral Weyl spinors.

The integration over anticommuting coordinates θ, θ̄ are defined as follows:∫
dθαθ

β ≡ dθβ

dθα
= δβ

α ,

∫
dθ̄α̇θ̄β̇ ≡

dθ̄β̇

dθ̄α̇
= δα̇

β̇
.

Note also that then a integral of a integrated superfield can be written as∫
d4x

∫
dθαΦ =

∫
d4x

∂Φ
∂θα

=
∫

d4xDαΦ,

up to a boundary term since the superspace covariant derivative Dα contains a x-space derivative explicitly
(10).
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