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Weak Value and Correlation Function
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We show that there exists, in quantum theory, a close relationship between the weak value and
the correlation function, which sheds new lights on the concept of the weak value.
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In this report, we prove an equality which connects
two fundamental concepts in quantum theory: the weak
value and the correlation function. The weak value has
been a topic of active researches [1, 2, 3, 4, 5, 6], and is
related to the foundation of quantum mechanics [7]. On
the other hand, the (symmetric) correlation function is

defined as Re〈ψ|B̂(t2)Â(t1)|ψ〉, where “Re” means “the

real part”, |ψ〉 is a state vector, and Â(t1) and B̂(t2) are
observables at time t1 and t2 in the Heisenberg picture.
The correlation function is a useful quantity to charac-
terize the dynamics of quantum systems, and has played
an important role in quantum statistical mechanics such
as the linear response theory [8]. For example, the cor-
relation function is related to the susceptibility by the
fluctuation-dissipation theorem.

To introduce the weak value, we consider two observ-
ables Â and B̂ of a quantum system. We denote the
spectrum decompositions of them as Â =

∑
a a|a〉〈a| and

B̂ =
∑

b b|b〉〈b|, where a’s (b’s) are the eigenvalues of Â

(B̂), and |a〉’s (|b〉’s) are the corresponding eigenvectors.

Let P̂Aa ≡ |a〉〈a| and P̂Bb ≡ |b〉〈b| be the projection op-
erators. We consider the unitary evolution of the system
from time 0 to t2, and suppose that the projection mea-
surement of B̂ is performed at time t2, and the outcome
b is obtained. Let |ψ〉 be the initial state, t1 (0 < t1 < t2)

be an intermediate time, and Û1 (Û2) be the unitary evo-
lution from 0 to t1 (t1 to t2). Then the definition of the

(real) weak value of Â at time t1 with the post-selection
|b〉 is given by

b〈A〉w ≡ Re
〈b|Û2ÂÛ1|ψ〉

〈b|Û2Û1|ψ〉
. (1)

To relate the weak value to the correlation function,
we first define a quasi-probability distribution based on
the correlation function:

Prψ(b, a) ≡ Re〈ψ|P̂Bb (t2)P̂
A
a (t1)|ψ〉, (2)

where P̂Bb (t2) ≡ Û †
1
Û †

2
P̂Bb Û2Û1 and P̂Aa (t1) ≡ Û †

1
P̂Aa Û1

are described in the Heisenberg picture. We stress
that this quasi-probability distribution does not corre-
spond to the probability distribution which we can ob-

tain by performing the successive projection measure-
ments of Â at t1 and B̂ at t2. The quasi-probability
Prψ(b, a) satisfies that

∑
a Prψ(b, a) = 〈ψ|P̂Bb (t2)|ψ〉 ≡

Prψ(b),
∑
b Prψ(b, a) = 〈ψ|P̂Aa (t1)|ψ〉 ≡ Prψ(a), and∑

a,b Prψ(b, a) = 1. We note that, in the special case that

Â(t1) and B̂(t2) are commuting, the quasi-probability
Prψ(b, a) reduces to the true probability.

We then calculate the quasi-probability under the
condition of b as Prψ(a|b) ≡ Prψ(b, a)/Prψ(b) =

Re〈ψ|Û †
1
Û †

2
|b〉〈b|Û2P̂

A
a Û1|ψ〉/〈ψ|Û

†
1
Û †

2
|b〉〈b|Û2Û1|ψ〉, and

obtain

Prψ(a|b) = b〈P
A
a 〉w. (3)

Averaging the eigenvalue a over the conditional quasi-
probability, we have

b〈A〉w =
∑

a

aPrψ(a|b), (4)

which is the main result of this report. The left-hand
side of Eq. (4) is the weak value, and the right-hand side
is related to the correlation function via Eq. (2).

In conclusion, we have derived an equality which gives
us a new interpretation of the weak value b〈A〉w: it is

the average of Â under the condition of b over the quasi-
probability which is defined via the correlation function.
While we have only considered the real weak value and
the symmetric correlation function, we can straightfor-
wardly generalize our result to the complex weak value
and the complex correlation function by removing the
notation “Re”.
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