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Smooth quantum–classical transition in photon subtraction and addition processes
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Recently Parigi et al. [Science 317, 1890 (2007)] implemented experimentally the photon subtrac-
tion and addition processes from/to a light field in a conditional way, when the required operations
were produced successfully only upon the positive outcome of a separate measurement. It was veri-
fied that for a low intensity beam (quantum regime) the bosonic annihilation operator a does indeed
describe a single photon subtraction, while the creation operator a† describes a photon addition.
Nonetheless, the exact formal expressions for these operations do not always reduce to these simple
identifications, and in this connection here we deduce the general superoperators for multiple pho-
tons subtraction and addition processes and analyze the statistics of the resulting states for classical
field states having an arbitrary intensity. We obtain closed analytical expressions and verify that for
classical fields with high intensity (classical regime) the operators that describe photon subtraction
and addition processes deviate significantly from simply a and a†. Complementarily, we analyze in
details such a smooth quantum-classical transition as function of beam intensity for both processes.

PACS numbers: 03.65.Ta; 42.50.Ar; 42.50.Lc

I. INTRODUCTION

It is well known [1] that the probability for absorbing
one photon per unit time from an electromagnetic field
is proportional to the average value of the ordered prod-
uct of the negative and positive frequency electric field
operators over some quantum state ρ, also known as the
statistical operator. In the simplest case of a single-mode,
that probability can be expressed in terms of the stan-
dard bosonic ‘annihilation’ and ‘creation’ operators a and
a†, satisfying the commutation relation [a, a†] = 1, as

P = γTr
(

aρa†
)

, (1)

where ρ stands for the field state just before absorption
and γ is an appropriate coefficient. After interacting with
some detector that absorbs one photon, the field makes a
transition to a new state, which can be formally described
by the action of a photon subtraction superoperator (PSS)
D as [2]

ρ′ = P−1Dρ, (2)

where ρ′ represents the field state immediately after the
subtraction of one photon and P = Tr(Dρ) is the proba-
bility for that process.

The hermiticity of ρ′ is always assured whenever D
takes the form

Dρ ≡ γOρO† (3)

where O is some operator responsible for the subtraction
of one photon from the field and the explicit form of O
depends on the details of the field-detector interaction.
Since the 1960s several models were proposed [3, 4, 5, 6]
(see [7] for more references therein) and the first one [2]
used the rather simple identification O = a, when Eq.
(3) becomes

Aρ = γaρa† (4)

and we shall refer to it as A-model. Although such a form,
Eq. (4), seems quite natural in view of equation (1), this
choice was, as a matter of fact, intuitive, although later,
under certain assumptions – such as the weak coupling,
low intensity and short interaction time – the authors of
Refs. [5, 8] were able to derive it from doing a microscopic
analysis.

Nonetheless, if those assumptions are replaced by oth-
ers, one can obtain different superoperators D. A family
of PSS based on the nonlinear lowering operators of the
form O = (1+ n̂)−βa, where n̂ = a†a, was derived in Ref.
[8]. The special case β = 1/2, called E-model,

Eρ = E−ρE+, E− ≡ (1 + n̂)−1/2a (5)

was originally proposed ad hoc in [9, 10]. Later, analyzing
carefully a microscopic model, it was shown [8, 11, 12]
that both superoperators A and E are particular cases of
a more general one, where A (E) is specific for a small
(large) mean photon number.

Recently, the A-model was subdued to an experimental
verification in the low photon number regime and weak
field-detector coupling [13]. That experiment employed a
beam-splitter and a single photon on/off detector (SPD),
within a simple scheme as illustrated in the Fig. 1a: a
low intensity beam, with a small mean photon number
per unit time, is prepared to hit a low reflectivity beam-
splitter. The reflected beam is continuously measured by
the SPD, and whenever it clicks, the transmitted field
statistical operator can be described, approximately, by
the A-model [13].

However, as already observed in [11], A is an un-
bounded superoperator and some physical inconsistencies
appear [14]. For example, A does not hold for large values
of the initial mean photon number, since the probability
of a photon subtraction, P = γTr(aρa†), may become
larger than 1. Moreover, applying A on some specific
field states, the calculations predict results which look
counterintuitive. For example, operating with A on the
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FIG. 1: (a) Scheme for conditional photon subtraction by
means of a beam-splitter (BS) and a photodetector (D). (b)
Scheme for conditional photon addition using a pump beam,
a non-linear optical crystal and a photodetector.

thermal state, which has the photon number distribution

p(th)
n =

nn
0

(n0 + 1)
n+1 , (6)

where n0 is the mean photon number, for post-selected
state we obtain 〈n〉A = 2n0. Although this prediction
was confirmed experimentally in the ‘quantum limit’ of
small mean photon number, n0 . 1, it is counterintuitive
from the classical point of view, namely, a high intensity
field cannot double the intensity due to a one-photon de-
tection. So A can describe satisfactorily the low intensity
field but not a high intensity one. Quite differently, us-
ing the E-model we get 〈n〉E = n0, which is sound for a
high intensity field after one-photon detection, whereas it
does not reproduce the observed doubling for low inten-
sity. Therefore, it is interesting to analyze the behavior of
the PSS in the ‘classical limit’ (large mean photon num-
ber) and how the pattern of post-selected state statistics
changes smoothly and continuously as function of the
field intensity. The quantum-classical transition in pho-
ton subtraction process regards the passage between the
two extreme situations for classical field states that can
be prepared with arbitrary low and high intensities.

Besides the photon subtraction, one may also imple-
ment the photon addition operation by the conditional
stimulated down-conversion in a non-linear optical crys-
tal, as reported in [13] and illustrated in the Fig. 1b.
Inside the crystal the pumped photons may decay spon-
taneously into two entangled photons with energies that
sum up to that of the parent one. Upon detecting one
of these photons (known as the trigger photon) along a
particular direction, the other photon state is unambigu-
ously determined. If one injects a seed light into the
crystal, the stimulated emission may occur into the same
mode, and the detection of a single trigger photon (by
means of a SPD) indicates the conditional generation of

the photon-added state. Using this scheme, the one pho-
ton addition superoperator (PAS) for low beam intensity
is

Aρ = γ′a†ρa (7)

(we call it the A+-model), which was experimentally im-
plemented for a low mean photon number [13]. Since the
superoperator A is unbounded, with the probability of
photon addition becoming larger than 1 for large field
intensities, in analogy to the E-model we also define the
E+-model as

Eρ = E+ρE−, (8)

that will also be analyzed and discussed below.
In the present paper we generalize the theoretical anal-

ysis presented in [13] for both, the photon subtraction
and photon addition operations, by substituting the SPD
by the k-photon resolving [19] or nonresolving [20] de-
tector, and obtain formally PSS and PAS valid for an
arbitrary field at any intensity. Although the resulting
formal expressions for the PSS and PAS are compact, in
general, it is not straightforward to obtain closed analyti-
cal expressions for these operations for an arbitrary initial
field state. Therefore, it is desirable to have some sim-
ple approximate expressions for the PSS and PAS that
hold in a specific regime of parameters and can be easily
evaluated for an arbitrary field state, providing a sim-
ple means of predicting the outcome of the experiment.
In this connection, we show that in the quantum limit
(small photon number), the A-model and A+-model are
good approximations to the exact PSS and PAS for any
field state, respectively, while in the classical limit (large
photon number), the E- and E+- models are more appro-
priate for a nonresolving detector and the ‘classical ’ field
states: coherent, thermal and ‘mixed light’.

The paper contains three additional sections. In sec-
tion II we obtain exact analytical expressions for the PSS
and analyze the behavior of the photon subtraction prob-
abilities and post-selected states statistics for any inten-
sity of the field and for different kinds of ‘classical’ field
states: (a) coherent, (b) thermal and (c) ‘mixed light’
[21], which, in principle, can be produced in the labo-
ratory with arbitrarily low or high beam intensities. In
section III we do the same for the PAS, considering (a)
coherent and (b) thermal field states. In section IV we
present a summary and our conclusions.

II. PHOTON SUBTRACTION

After passing through the beam-splitter a small frac-
tion of the incident field (signal) is reflected into the mode
b, initially in the vacuum state |0b〉〈0b| (Fig. 1a). The
post-selection procedure – in which k > 0 photons are
detected by a detector placed in the reflected path – al-
lows to express the transmitted field state as Eq. (2),
where the exact PSS is written as

Dkρ = Trb

[

MkU (ρ ⊗ |0b〉〈0b|)U †
]

, (9)
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where ρ is the incident field state. Here

U = exp
[

θ
(

a†b − ab†
)]

(10)

is the beam-splitter operator, where a (signal beam) and
b (reflected beam) represent the two modes resulting from
the incident beam, and θ is a parameter related to the
reflectivity (R = sin2 θ) and transmittivity (T = cos2 θ)
coefficients. The operator Mk =

∑∞
l=k Υl|lb〉〈lb|, that

acts on the reflected mode, stands for the action of the
detector (referred as Dk, for short). Υl = 1 for a nonre-
solving k-photon detector (NDk), that clicks whenever
k or more photons are absorbed [19, 20], and Υl = δl,k

for the resolving k-photon detector (RDk), that clicks
when exactly k photons are absorbed [19]. The SPD cor-
responds to ND1 according to this notation.

The resulting PSS is a generalization of the Eq. (3)

Dkρ =
∞
∑

l=k

Υl〈lb|U |0b〉ρ〈lb|U |0b〉
†. (11)

The operator U has the form exp [−θ (K+ + K−)] where
K+ ≡ b†a, K− ≡ −ba†; a third operator, K0 ≡ (b†b −
a†a)/2, is necessary to close the su(1,1) algebra, they
constitute the generators of the SU(1,1) group. Using
the factorization theorem [15, 16, 17, 18] we can write
(11) as

Dkρ =

∞
∑

l=k

Υl

(

tan2 θ
)l

l!
al (cos θ)

n̂
ρ (cos θ)

n̂
a†l. (12)

which is the exact and complete PSS compatible with
the experimental setup reported in [13]. For a small
mean photon number n0 and R ≪ 1 one has roughly

Tr
[

(cos θ)
n̂

ρ (cos θ)
n̂
]

∼ (1 − n0R), so for n0R ≪ 1 one

obtains

Dkρ ≃ Akρ ≡
Rk

k!
akρa†k (13)

for both kinds of detectors. For k = 1 one retrieves the
A-model, whereas for k > 1 we have a straightforward
generalization of A-model for multiphoton subtraction.

The photon number distribution of the post-selected
state for the k photons detector is

p′n,Dk = P−1
DkΘ(Dk)

n , (14)

where

Θ(Dk)
n =

∞
∑

l=k

Υl

(

n + l

n

)

T nRlpn+l (15)

and PDk =
∑∞

n=0 Θ
(Dk)
n is the probability for k-photon

subtraction, with pn denoting the initial photon number
distribution.

Below we specialize to three different states of the field,
which are currently produced in the lab: the coherent,
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FIG. 2: (Color online) ND1 and RD1 results for the ‘mixed
light’ state with mean photon number n0 compared to the
predictions given by superoperators A and E . Here nc = nt/4.

thermal and the ‘mixed light’ [21]. The latter is a ‘mix-
ture of the thermal and coherent radiation’ [22], whose
the photon number distribution is

p(ml)
n = exp

(

−
nc

1 + nt

)

nn
t

(nt + 1)
n+1 Ln

[

−
nc

nt (1 + nt)

]

.

(16)
where nc and nt are the mean photon numbers of the co-
herent and thermal part of the mixed light, respectively,
n0 = nc + nt is the total photon number and Ln(·) is a
Laguerre polynomial. For these three states the resulting
expressions for p′n,Dk, PDk and the two lower moments
of the photon number distribution for the post-selected
state are given in the appendix A.

For a small mean photon number, n0R ≪ 1, the ex-
pressions for the photon subtraction probability and the
two lower moments of photon number in the resulting
state [see Eqs. in appendix A] are approximately equal
to the expressions corresponding to the generalized A-
model. Thus, in the quantum regime (low intensity field),
Ak is a good approximation for the PSS, and the detec-
tion of one or more photons may significantly increase
the mean photon number of the post-selected state. On
the other hand, for a high intensity field, n0R ≫ 1, the
results are quite different from those predicted by using
Ak. This behavior can be appreciated looking Figs. 2
and 3, where we have plot PD1, 〈n〉D1 and 〈n (n − 1)〉D1,
together with the corresponding predictions of A1 and
E1, for the mixed light state with nc = nt/4 (Fig. 2) and
nc = 10nt (Fig. 3), setting R = 10−2. One can perceive,
from the figures, that for n0R ≫ 1 the probabilities and
the factorial moments for ND1 are close to those pre-
dicted by the generalized E-model. Therefore, for the
considered classical field states, in the classical regime Ek
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FIG. 3: (Color online) Same as Fig. 2 for nc = 10nt.

represents better the photon subtraction process (using
a nonresolving detector) and, as verified empirically, the
mean photon number does not increase upon the pho-
todetection. The smooth transition between the A- and
E- models occurs in the region n0R ∼ 1.

The important effect of the measurement back-action
may be clearly verified by comparing the outcomes of
the instantaneous k-photon detection (using either NDk
or RDk) to the sequential detection of k photons (one
by one, as a sequence of discernible clicks), using an
array of k SPD’s and detecting one click in each one.
For the sequential k photons detection the PSS is Sk =

(DN1)
k
,where DN1 is given by Eq. (12) with Υl = 1.

The resulting expressions are given in the appendix B
and plotted in the Fig. 4. Looking at it we can compare
the outcomes of the three kinds of detectors, S2, ND2
and RD2, for the thermal state and R = 10−2. It turns
out that for a sequential counting, the probability of de-
tecting k photons is always higher than that calculated
by admitting an instantaneous detection. Moreover, for
n0R ≪ 1 the mean photon number in the post-selected
state is always higher than for instantaneous detection,
while for n0R & 1 different mean values are predicted,
such that 〈n〉NDk > 〈n〉Sk > 〈n〉RDk, see Fig. 4.

III. PHOTON ADDITION

The k-photon addition superoperator is defined as [13]

Dkρ = Trb

[

Mkuρ|0b〉〈0b|u
†
]

, (17)

where Mk =
∑∞

l=k Υl|lb〉〈lb| (as defined previously) and

u = exp
[

λ
(

ab − a†b†
)]

(18)
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FIG. 4: (Color online) Comparison of 2 sequential detections
with SPD’s to the 2-photon detection using either the resolv-
ing or the nonresolving detectors, for the thermal state.

is the operator describing the parametric down-
conversion process with gain factor λ ≪ 1. The op-
erator u contains two generators of the su(1, 1) alge-

bra, K̃+ = a†b†, K̃− = ab, while the third one is

K̃0 =
(

a†a + b†b + 1
)

/2. So Eq. (17) becomes [18]

Dkρ = t

∞
∑

l=k

Υl

(

tanh2 λ
)l

l!
a†l

(

cosh−1 λ
)n̂

ρ
(

cosh−1 λ
)n̂

al,

(19)
and we define r ≡ sinh2 λ and t ≡ cosh−2 λ. For a small
mean photon number one obtains

Dkρ ≃ Akρ =
rk

k!
a†kρak, (20)

which is the generalization of the A+-model. As like
as Ak, the superoperator Ak is unbounded, with the
probability of photon addition becoming larger than 1
for n0 ≫ 1. Therefore, the A+-model cannot stand for
high field intensities. Here we shall study the behavior
of the lowest photon number moments in the transition
from the quantum regime, n0 ≪ 1, to the classical one,
n0 ≫ 1, and compare the results with the predictions of
the generalized E+-model, Ekρ = Ek

+ρEk
−. Contrarily to

Ak, superoperator Ek is bounded, presenting probability
PEk = 1 and the mean value 〈n〉

Ek = n0 + k for k-photon
addition operation.

The photon number distribution of the k-photon added
state is given by

p′n,Dk = P−1
Dk Θ(Dk)

n , (21)
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tions of superoperators A and E.

where

Θ(Dk)
n =

∞
∑

l=k

Υl

(

n

l

)

tn+1rlpn−l (22)

and the probability of the k-photon addition is PDk =
∑∞

n=0 Θ
(Dk)
n , independently of the number of photons

present in the field. In order to make the physics more
transparent, we assume the simplest situation k = 1, for
which PA1 = r (n0 + 1) and 〈n〉

E1 /n0 = 1 + n−1
0 .

For the two different field states, the coherent and the
thermal, we get the expressions given in the appendix C.
For n0r ≪ 1, in both cases, the expressions become very
close to those predicted by the A+-model, so in the quan-
tum regime the photon creation operator a† describes
accurately the photon addition process. In the regime
n0r ≫ 1, for the coherent state the predictions of the
A+- and E+- models for the moments 〈n〉 and 〈n (n − 1)〉
are very similar, while for the thermal state, according to
the A+-model, the mean photon number is roughly twice
the one predicted by the E+-model. In Fig. 5 we show
the behaviors of the photon addition probability P , 〈n〉
and 〈n (n − 1)〉 for the thermal state as function of n0r
for λ = 10−2. We see that by using a nonresolving de-
tector for n0r ≫ 1, the expressions approach the results
of the E+-model, so in the classical regime the A+-model
ceases to represent the PAS and the E+-model becomes
more appropriate. The transition between the A+- and
E+- models occurs in the region n0r ∼ 1. Finally, notice
that, although the photon resolving and nonresolving de-
tectors are quite similar in the quantum regime, they are
completely different in the classical one, as clearly seen
from Figs. 2, 3, 4 and 5.

IV. SUMMARY AND CONCLUSIONS

In summary, we have analyzed the quantum–classical
transitions for the photon subtraction and for the pho-
ton addition processes from or into the field. We used
the usual formal representations for the beam-splitter,
the optical nonlinear crystal and the k-photon resolving
or nonresolving detector, as it was described in [13]. We
considered three classical field states – coherent, ther-
mal and the ‘mixed light’ – to illustrate the transition
from quantum to classical regimes and studied the pho-
ton number factorial moments in the post-selected state
as function of the intensity of the prepared field, that goes
on either a beam-splitter or a nonlinear crystal. We ob-
tained the formal expressions for the PSS and the PAS,
valid for any input state, and for the considered clas-
sical states we derived closed analytical expressions for
the photon number distribution of the post-selected state
and the associated lower factorial moments, as well as the
photon addition and subtraction probabilities.

We found that in the quantum regime (small pho-
ton number) the PSS can be described approximately
by the generalized A-model, while the PAS by the gen-
eralizedA+-model for any field state. The mean pho-
ton number in the post-selected state may increase sig-
nificantly due to the photon subtraction. On the other
hand, in the classical regime (large photon number) the
generalized A- and A+- models lose the validity and, for
a nonresolving photodetector and the considered classi-
cal states, the PSS (PAS) is better approximated by the
generalized E-model (E+-model), and the mean photon
number necessarily decreases upon a photon subtraction.
Thus, one may associate E− used in [10] to the classical
photodetection operator, in the same way as the bosonic
annihilation operator a is associated to the quantum pho-
todetection operator.

In conclusion, the exact expressions of photon subtrac-
tion and addition superoperators, Eqs. (12) and (19),
cannot always be written as γOρO† or γO†ρO, they re-
duce to these simple expressions only in some limits of
the field intensity or for a photon-number resolving de-
tector. More importantly, they depend on the form how
detection is done, so the post-selected field state will de-
pend essentially on the way the experimenter chooses to
probe it.
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APPENDIX A: EXPRESSIONS FOR PHOTON

SUBTRACTION

(a) The coherent state |α〉 is insensitive to the detector
outcome, since it is an eigenstate of the lowering operator
a appearing in Eq. (10), so the resulting post-selected
state is still a coherent state |α cos θ〉, although having
the field intensity attenuated. We get for the photon
number distribution of the post-selected state

p′n,NDk = p′n,RDk = e−n0T (n0T )
n

/n!. (A1)

The normalized factorial moments in the post-selected
state are the same for both detectors,

〈n〉Dk /n0 = T, 〈n (n − 1)〉Dk /n2
0 = T 2, (A2)

although the subtraction probabilities associated to the
detectors are different

PRDk = e−n0R (n0R)k

k!
, PNDk = 1 − e−n0R

k−1
∑

l=0

(n0R)l

l!
.

(A3)
(b) For the thermal state the photon number distribu-

tions of the post-selected state for the k photons resolv-
ing/nonresolving detector are

p′n,RDk =

(

n + k

n

) (

1 + n0R

1 + n0

)k+1 (

n0T

1 + n0

)n

(A4)

p′n,NDk =

(

1 + n0R

n0R

)k
[

(n0T )
n

(1 + n0T )
n+1 (A5)

−

k−1
∑

l=0

(

n + l

n

) (

n0R

1 + n0

)l
(n0T )

n

(1 + n0)
n+1

]

.

The k-photon subtraction probability is

PDk =
(n0R)

k

(1 + n0R)k+1−v
, (A6)

and the normalized lowest factorial moments are

〈n〉Dk

n0
= T

1 + k + vn0R

1 + n0R
(A7)

〈n (n − 1)〉Dk

n2
0

= T 2 (1 + k) (2 + k) + 2vn0R (2 + k + n0R)

(1 + n0R)
2 ,

(A8)
where v = 1 for the NDk and v = 0 for the RDk.

(c) For the ‘mixed light’ and the nonresolving detector
NDk, the resulting expressions are quite extensive, so we
write out explicitly only the expressions for k = 1,

PND1 = 1 −
e−x

1 + Rnt
(A9)

〈n〉ND1 = P−1
ND1T

[

n0 − e−x n0 + Rn2
t

(1 + Rnt)
3

]

(A10)

〈n (n − 1)〉ND1 = P−1
ND1T

2
{

n2
0 + nt (n0 + nc) (A11)

− e−x n2
0 + 2ncnt + n2

t

(

1 + 4Rn0 + 2R2n2
t

)

(1 + Rnt)
5

}

,

where x ≡ Rnc/ (1 + Rnt). For the RDk the correspond-
ing expressions are quite simple for any k

PRDk = e−x (Rnt)
k

(1 + Rnt)
k+1

Lk (A12)

〈n〉RDk =
ntT

1 + Rnt

[

z − k
Lk−1

Lk

]

(A13)

〈n (n − 1)〉RDk =

(

ntT

1 + Rnt

)2

{z (1 + z) − y(A14)

−
2kzLk−1

Lk
+

k (k − 1)Lk−2

Lk

}

where Lk ≡ Lk (y), y ≡ −nc/ [nt (1 + Rnt)] and z ≡
1 + 2k − y.

APPENDIX B: EXPRESSIONS FOR

SEQUENTIAL PHOTON SUBTRACTION

For the sequential counting, in the simplest case, k = 2,
we obtain:
(a) For a coherent state p′n,S2 = e−n0T 2 (

n0T
2
)n

/n! and

PS2 = e−n0R(1+T )
(

en0RT − 1
) (

en0R − 1
)

〈n〉S2

n0
= T 2,

〈n (n − 1)〉S2

n2
0

= T 4. (B1)

(b) For a thermal state

p′n,S2 = g−1
1

[

(

n0T
2
)n

(1 + n0T 2)
n+1 −

(

n0T
2
)n

(1 + n0T )
n+1 (B2)

−

(

n0T
2
)n

[1 + n0 (1 − RT )]n+1 +

(

n0T
2
)n

(1 + n0)
n+1

]

and

PS2 = g1,
〈n〉S2

n0
= T 2 g2

g1
,

〈n (n − 1)〉S2

n2
0

= 2T 4 g3

g1
,

(B3)
where

gn ≡ 1−[1 + n0R]
−n

−[1 + n0RT ]
−n

+[1 + n0R (1 + T )]
−n

.
(B4)

These expressions are quite different from the corre-
sponding expressions obtained in the appendix A.
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APPENDIX C: EXPRESSIONS FOR PHOTON

ADDITION

(a) For a coherent state and the one-photon nonresolv-
ing detector we get

p′n,ND1 = P−1
ND1 te−n0

[

(rt)
n

Ln

(

−
n0

r

)

−
(n0t)

n

n!

]

(C1)

PND1 = 1 − te−rtn0 (C2)

〈n〉ND1

n0
=

1 + r + r/n0 − t2e−rtn0

PND1
(C3)

〈n (n − 1)〉ND1

n2
0

=
t−2 + 4r/(n0t) + 2r2/n2

0 − t3e−rtn0

PND1
,

(C4)
where Ln(·) is a Laguerre polynomial. For the A+- and
E+- models the resulting expressions are

〈n〉
A1 /n0 = 1 + n−1

0 + (n0 + 1)
−1

(C5)

〈n (n − 1)〉
A1 /n2

0 = 1 + 4n−1
0 (C6)

〈n (n − 1)〉
E1 /n2

0 = 1 + 2n−1
0 . (C7)

(b) For a thermal state and the one-photon nonresolv-
ing detector one has

p′n,ND1 = P−1
ND1 t

[

(rt + n0)
n

(1 + n0)
n+1 −

(n0t)
n

(1 + n0)
n+1

]

(C8)

PND1 =
rt (1 + n0)

1 + n0rt
(C9)

〈n〉ND1

n0
=

(

t−1 + r/n0

)

− [t/ (n0rt + 1)]
2

PND1
(C10)

〈n(n − 1)〉ND1

n2
0

= 2

(

t−1 + r/n0

)2
− [t/ (n0rt + 1)]

3

PND1
.

(C11)
For the one-photon resolving detector we get

p′n,RD1 =
(1 + n0rt)

2

t n0
n

(n0t)
n

(1 + n0)
n+1 (C12)

PRD1 =
rt2 (1 + n0)

(1 + n0rt)
2 (C13)

〈n〉RD1

n0
=

1 + t + n−1
0

1 + n0rt
(C14)

〈n(n − 1)〉RD1

n2
0

= 2t
2 + t + 2n−1

0

(1 + n0rt)
2 . (C15)

The expressions for the A+- and E+- models are

〈n〉
A1 /n0 = 2 + n−1

0 (C16)

〈n (n − 1)〉
A1 /n2

0 = 6 + 4n−1
0 (C17)

〈n (n − 1)〉
E1 /n2

0 = 2 + 2n−1
0 . (C18)
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[7] V. Peřinová and A. Lukš, Progress in Optics 40, ed. E.

Wolf (Elsevier, Amsterdam, 2000), p. 115.
[8] A. V. Dodonov, S. S. Mizrahi, and V. V. Dodonov, Phys.

Rev. A 72, 023816 (2005).
[9] Y. Ben-Aryeh and C. Brif, Preprint at quant-ph/9504009

(unpublished).
[10] M. C. de Oliveira, S. S. Mizrahi, and V. V. Dodonov, J.

Opt. B: Quantum. Semiclass. Opt. 5, S271 (2003).
[11] A. V. Dodonov, S. S. Mizrahi, and V. V. Dodonov, J.

Opt. B: Quantum. Semiclass. Opt. 7, 99 (2005).
[12] A. V. Dodonov, S. S. Mizrahi, and V. V. Dodonov, Phys.

Rev. A 74, 033823 (2006).
[13] V. Parigi, A. Zavatta, M. Kim, and M. Bellini, Science

317, 1890 (2007).
[14] For A they were noticed already in the original paper [2];

see also [10, 11].
[15] M. Ban, Phys. Rev. A 47, 5093 (1993).
[16] J. Wei and E. Norman, J. Math. Phys. 4, 575 (1963); R.

M. Wilcox, ibid. 8, 962 (1967).
[17] S. M. Chumakov, V. V. Dodonov, and V. I. Man’ko, J.

Phys. A 19, 3229 (1986); S. V. Prants, ibid. 19, 3457
(1986); G. Dattoli, S. Solimeno, and A. Torre, Phys. Rev.
A 34, 2646 (1986).

[18] R. R. Puri, Mathematical Methods of Quantum Optics

(Springer, Berlin, 2001), p. 51.
[19] E. J. Gansen et al., Nature Photon. 1, 585 (2007); B.

E. Kardynal, Z. L. Yuan, and A. J. Shields, ibid. 2, 425
(2008).

[20] M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D.
Franson, Phys. Rev. A 68, 043814 (2003); L. A. Jiang,
E. A. Dauler, and J. T. Chang, ibid. 75, 062325 (2007).

[21] M. Martinelli and P. Martelli, Opt. Photonics News 19,
No. 2, 31 (2008).

[22] G. Lacks, Phys. Rev. 138, B1012 (1965).

http://arXiv.org/abs/quant-ph/9504009

