
ar
X

iv
:0

90
1.

45
10

v1
  [

qu
an

t-
ph

] 
 2

8 
Ja

n 
20

09

A general algorithm for manipulating non-linear and linear

entanglement witnesses by using exact convex optimization

M. A. Jafarizadeha,b,c ∗, K. Aghayara †, A. Heshmatia ‡

aDepartment of Theoretical Physics and Astrophysics, University of Tabriz, Tabriz 51664, Iran.

bInstitute for Studies in Theoretical Physics and Mathematics, Tehran 19395-1795, Iran.

cResearch Institute for Fundamental Sciences, Tabriz 51664, Iran.

Abstract

A generic algorithm is developed to reduce the problem of obtaining linear and nonlin-

ear entanglement witnesses of a given quantum system, to convex optimization problem.

This approach is completely general and can be applied for the entanglement detection

of any N-partite quantum system. For this purpose, a map from convex space of separa-

ble density matrices to a convex region called feasible region is defined, where by using

exact convex optimization method, the linear entanglement witnesses can be obtained

from polygonal shape feasible regions, while for curved shape feasible regions, envelope of

the family of linear entanglement witnesses can be considered as nonlinear entanglement

witnesses. This method proposes a new methodological framework within which most of

previous EWs can be studied. To conclude and in order to demonstrate the capability
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of the proposed approach, besides providing some nonlinear witnesses for entanglement

detection of density matrices in unextendible product bases, W-states, and GHZ with

W-states, some further examples of three qubits systems and their classification and en-

tanglement detection are included. Also it is explained how one can manipulate most of

the non-decomposable linear and nonlinear three qubits entanglement witnesses appear-

ing in some of the papers published by us and other authors, by the method proposed in

this paper.

Keywords: non-linear and linear entanglement witnesses, convex optimization

PACS number(s): 03.67.Mn, 03.65.Ud

1 Introduction

Entanglement is one of the interesting features of quantum systems. It is used as a physical

resource in realization of many quantum information and quantum computation processes

such as quantum parallelism [1], quantum cryptography [2], quantum teleportation [3, 4],

quantum dense coding [5, 6], reduction of communication complexity [7] and beating classical

communication complexity bounds with entanglement [8]. In these applications usually a

source produces entangled particles and after these particles reach to the related parties, there

is an important question for the parties - are these particles already entangled?

One approach to distinguish entangled states from separable ones is entanglement witness

(EW) [8, 9]. A quantum state is entangled iff there exists a Hermitian operator W with

Tr(Wρ) < 0 and Tr(Wρsep) > 0 for any separable state ρsep [10]. We say that the witness W

detects the entanglement of density matrix. Recently there has been an increased interest in

the nonlinear EWs because of their improved detection with respect to linear EWs. A nonlinear

EW is any bound on nonlinear function of observables which is satisfied by separable states

but violated by some entangled states [8, 11, 12, 13].
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Optimization problems occur in both classical and quantum physics [14]. One of the im-

portant subclass of optimization is convex optimization where the related functions of problem

are convex. The importance of convex optimization is that in these optimizations, any locally

optimal solution of problem is guaranteed globally optimal [15]. On the other hand, the set

of all possible states of a quantum system that can occur in nature must be a convex set [16]

and as the state of a quantum system is fully characterized by density matrix of that system

so the density matrix must be a convex function. Therefore, convex optimization is a natural

optimization in quantum information.

Although all the work on this paper deals with obtaining EWs via convex optimization,

other optimization approaches such as linear and semi-definite programming methods, can be

found in the literature. For example, the reader can find obtaining some EWs by linear pro-

gramming in [18, 19, 20], semi-definite programming for distinguish entangled from separable

quantum states and using robust semi-definite programs and EWs to study the distillability

of the Werner states in [21, 22], and convex optimization applications in entanglement in [23].

In this paper, we provide a general algorithm for finding the EWs by exact convex opti-

mization method. For this purpose, for a given system or density matrix we determine the

feasible region (FR). The FR for a system is defined by the mapping from separable states

space to a region called feasible region i.e. Tr(Wρs) where ρs is separable density matrices of

that system. As the ρs has convex structure, FR must be convex too ( the defined mapping

do not change the convexity property ). Any tangent to the surface of this FR corresponds to

an EW because it separates at least an entangled state from separable states. If this FR was

a polygon, applying first convex optimization to this convex function, would give linear EWs

which are one of vertices of polygon but if the FR was not a polygon, then applying convex

optimization would give a family of linear EWs which are tangent to FR. Nonlinear EW could

be considered as the envelope of these family [25]. The key point for convex optimization

arise from the linear or nonlinear form of FRs therefore linear or nonlinear cost functions and
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constraints in convex optimization problem. Although we will not consider in this paper, if

one can not determine the FR exactly, one can solve the problem by approximating the FR (

for example one can encircle the FR with a polygon [18]). Also, if one can not solve the convex

optimization problem analytically, there are efficient numerical methods such as interior point

method which may solve the problem numerically. After then we consider the entanglement de-

tection problem of given density matrix with EWs in the previous part. The optimized EW(s)

is come from the reapplication of convex optimization with new constraints. Although this

method is general and could be applied for any quantum systems, here we present examples

with some new EWs for three qubits systems.

The structure of the article is as follows. Sec. II introduces FR for a given system and

discusses how to determine FR for some selected operators in the Hilbert space of that system.

In Sec. III convex optimization is applied for finding linear EWs using FR which is determined

in second section. In Sec. IV convex optimization is applied again for finding nonlinear EWs

using results of Sec. III. In Sec. V, we list some important linear and nonlinear EWs for three

qubits systems which have been detected by convex optimization. The non-decomposability

of these EWs are also discussed. Optimality of some EWs including linear EWs and a special

case of spherical case is presented in Sec. VI. The detection of these EWs for some important

three-qubits density matrices such as density matrices in unextendible product bases, W-

state, and mixed GHZ with W states density matrices, have been presented in Sec. VII.

Convex optimization review and some detailed proofs of paper would presented in appendices.

Throughout these section, we have presented examples with details for three qubits system to

present the practicality of this method.
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2 Feasible region

One of the main problems in quantum information processing is detecting the entanglement of

the system. For a given state of a quantum system i.e. density matrix, we want to find some

(particularly optimal) EW’s for detecting entanglement of the system.

Consider a multipartite quantum system consisting of n subsystems which is characterized

by density matrix. In real applications of quantum information density matrices are mixed.

A mixed state of n systems is entangled if it cannot be written as a convex combination of

product states [8] ρ 6=
∑

i
piρ

i
1 ⊗ ... ⊗ ρin with pi > 0 and

∑

pi = 1, otherwise it is separable.

The total Hilbert space H of n systems is a tensor product of the subsystem spaces H = ⊗n

i=1
H

i

and any Hermitian operator such as EW could be written as a combination of operators Qi in

this total Hilbert space.

Now consider a set of Hermitian operators Q
i
. This set of operators are chosen in a way

that the entanglement of the system could be detected. We will attempt to construct various

linear and non-linear EWs using these operators. To this aim, for any separable state ρs we

introduce the maps

P
i
= Tr(Q

i
ρs) (2.1)

which map the convex set of separable states into a convex region named the feasible region

(FR). Any hyper-plane tangent to the FR corresponds to a linear EW, since such hyper-planes

separate the FR from entangled states. Hence, we need to determine the geometrical shape of

FR. In general, determining the geometrical shape of FR is a difficult task. However, one may

choose the Hermitian operators Q
i
in such a way that the exact geometrical shape of FR can

be obtained rather simply. By such a choice, when the FR is a polygon, its surface corresponds

to linear EWs which are linear combinations of the operators Q
i
; otherwise, linear EWs come

from any hyper-plane tangent to the surface of FR. When the FR is not a polygon, there are

a family of linear EWs which any of them are tangent to FR and the envelope of this family
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could be considered as nonlinear EW. [13, 12].

In summary, there are two kinds of inequalities which determines the FR, nonlinear and

linear ( see example 2 ). Therefore, the FR are constructed with some hyper-surfaces coming

from nonlinear inequality constraints and some hyper-planes coming from linear inequality

constraints. As any hyper surface tangent to FR is an EW, the envelope of linear EWs family

each tangent to the nonlinear part of FR could be considered as nonlinear EW’s. Finally,

linear inequalities lead to linear EW’s which are tangent to linear surfaces of FR.

In analyzing the FR, there are three cases for region defined by nonlinear and linear in-

equality constraints. In first case, the region defined only by linear inequality constraints, i.e.

gi(P1, .., Pn), lie completely outside the region defined only by nonlinear inequality constraint,

i.e. f(P1, .., Pn). In this case, the nonlinear constraints define the FR completely. In the second

case, the region defined only by linear inequality constraints lie completely inside the region

defined by only nonlinear inequality constraint. In this case, the linear constraints define the

FR completely. And finally in the third case, the nonlinear and linear inequality constraints

have some inter sections and due to nature of convex optimization, the optimal point in the

FR is one of these intersection or lie in the intersections of linear constraints ( see following

examples ).

Example 1: FR with polygonal shape for three qubits systems

As a special case we try to find FR with polygonal shape for a three qubits system. The

operators in this Hilbert space could be written as tensor product of Pauli group operators for

qubit i.e.

σi ⊗ σj ⊗ σk, i, j, k = 0, 1, 2, 3. (2.2)

where σ0, σ1, σ2 and σ3 stand for the two dimensional identity operator I2 and single qubit

Pauli operators σx, σy and σz respectively. For simplicity hereafter we will use the notation

I2 = I, σx = X, σy = Y , and σz = Z and will skip over the tensor product notation. The

general task is to find linear and nonlinear relations between operators in the Hilbert space of
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three-qubits. As there are many ways for choosing set of operators and then finding relation

between them, we may restrict ourselves to operators which appear in the expansion of given

density matrix of system in terms of Pauli operators. As an example consider the following

set of operators.

Q1 = XXX, Q2 = XY Y, Q3 = Y XZ, Q4 = Y ZY, Q5 = ZY Z, Q6 = ZZX. (2.3)

The linear constraints are (see appendix B)

(−1)
i1
P1 + (−1)

i2
P2 + (−1)

i3
P3 + (−1)

i4
P4 + (−1)

i5
P5 + (−1)

i1+i2+i3+i4+i5+1

P6 6 1 (2.4)

and the FR is a polygon which its boundary planes are (2.4).

Example 2: FR with quadratic and polygonal shape for three qubits systems

This is an example that there are nonlinear constraints in addition to linear ones for FR.

If we choose the following set of operators

Q
1

= ZXX + ZY Y, Q
2

= XXX +XY Y, Q
3

= Y XX + Y Y Y,

Q
4

= ZXY + ZY Y, Q
5

= XXY +XYX, Q
6

= Y XY + Y Y X, (2.5)

Q
7

= IXZ, Q
8

= IY Z, Q
9

= IZI, (2.6)

some trigonometric calculations (see Appendix B) lead to the following FR

9
∑

i=1

P 2
i 6 1 (2.7)

which is a hyper ball in Pis space. In addition to this nonlinear hyper-surfaces, i.e. (2.7), there

are some linear hyper-planes which restrict the FR. These are

±P1 ± P5 6 1, ±P1 ± P6 6 1,

±P2 ± P4 6 1, ±P2 ± P6 6 1,

± P3 ± P4 6 1, ±P3 ± P5 6 1. (2.8)

As in geometry, a spherical cap is a portion of a sphere cut off by a plane so one can say that

the FR is a hyper-ball cap but now cut off by 24 planes in (2.8).
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3 Constructing linear EWs via convex optimization

After determining the FR which is a convex region, we can convert the problem of finding EWs

to the convex optimization problem. Now we can construct EWs from operators Qi which have

been used before for obtaining the FR. For this purpose consider a Hermitian operator W with

some negative eigenvalues

W = A0I +
∑

i

AiQi (3.9)

where A0 is nonzero positive real, I is identity matrix with dimensionality equal with the

Hilbert space of the system, Qi are positive operators with −1 6 Tr(Qiρs) 6 1, for every

separable states ρs, and Ai are real parameters whose ranges must be determined in a way

that W become an EW.

From definition of EW the condition, Tr(Wρs) > 0, must be satisfied. In order to satisfy

this condition, we use convex optimization as follows. For ( 3.9 ), using convex optimization

we can minimize the term

Tr(Wρs) = A0 +
∑

i

AiPi (3.10)

where A0 would be chosen in a way that Tr(Wρs) > 0. Although we apply this procedure for

a pure state, but if the minimum of (3.10) is positive with all pure states, it will be positive

for mixed states because mixed states could be written as convex combination of pure states.

To summarize, the convex optimization problem takes the form

minimize A0 +
n

∑

i

AiPi

subject to f(P1, .., Pn) 6 0, (3.11)

gi(P1, .., Pn) 6 0 for i = 1, ..., m.

where f(P1, .., Pn) is nonlinear inequality constraint and gi(P1, .., Pn) are linear inequality con-

straints.

Example 3: Linear EWs for three qubits system
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As a special case, in this section we obtain linear EWs for three qubits system with some

details. From FR obtained in example 2, we minimize the function
∑9

i=1AiPi. So our convex

optimization problem takes form

Minimize f(P1, ..., P9) =

9
∑

i=1

AiPi

subject to
9

∑

i=1

P 2
i − 1 6 0,

±P1 ± P5 6 1, ±P1 ± P6 6 1,

±P2 ± P4 6 1, ±P2 ± P6 6 1,

±P3 ± P4 6 1, ±P3 ± P5 6 1.

The Lagrangian for this problem is

L(P, λ) =

9
∑

i=1

AiPi + λ1(

9
∑

j=1

P 2
j − 1)

+λ2(+P1 + P5 − 1) + λ3(+P1 − P5 − 1) + λ4(−P1 + P5 − 1) + λ5(−P1 − P5 − 1)

+λ6(+P1 + P6 − 1) + λ7(+P1 − P6 − 1) + λ8(−P1 + P6 − 1) + λ9(−P1 − P6 − 1)

+λ10(+P2 + P4 − 1) + λ11(+P2 − P4 − 1) + λ12(−P2 + P4 − 1) + λ13(−P2 − P4 − 1)

+λ14(+P2 + P6 − 1) + λ15(+P2 − P6 − 1) + λ16(−P2 + P6 − 1) + λ17(−P2 − P6 − 1)

+λ18(+P3 + P4 − 1) + λ19(+P3 − P4 − 1) + λ20(−P3 + P4 − 1) + λ21(−P3 − P4 − 1)

+λ22(+P3 + P5 − 1) + λ23(+P3 − P5 − 1) + λ24(−P3 + P5 − 1) + λ25(−P5 − P4 − 1)

As noted in appendix A, any points that satisfy the KKT conditions are primal and dual

optimal, and have zero duality gap so, we insist that points in FR must satisfy the KKT

conditions which are
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1. primal constraints: fi 6 0 , i=1,...,25

2. dual constraints: λi > 0, i = 1, ..., 25

3. complementary slackness: λifi(P1, ..., P9) = 0 ,i = 1, ..., 25

4. gradient of Lagrangian must vanish: ∇L(P, λ, ν) = 0.

The first and second KKT conditions are satisfied automatically. For third constraints

please note that duo to the convex optimization nature, the optimal point of the problem is in

the intersection region of these constraints and, as this region also belong to the FR defined

by only nonlinear constraint; therefore, we can consider the FR defined only by the nonlinear

constraint and the role of other constraints are limiting this FR. Thus we can write the third

condition of KKT in the following form

λ1 > 0 ⇒ f1(P1, ..., P9) = 0 (3.12)

and

f1(P1, ..., P9) < 0 ⇒ λi = 0, i = 2, ..., 25. (3.13)

Forth constraints of KKT conditions yields to

Pi = − Ai
2λ1

, i = 1, ..., 9 (3.14)

substituting these equations in (3.12) gives

4λ2
1 =

9
∑

i=1

A2
i

and the minimum value of f(P1, ..., P9) becomes

− (

9
∑

i=1

A2
i )

1

2 (3.15)

Now the EW takes form

W = A0III +

9
∑

i=1

AiQi (3.16)
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with following constraint

A2
0 >

9
∑

i=1

A2
i (3.17)

This constraint ensure that Tr(Wρs) > 0. The other constraints on EW (3.16) which comes

from (2.8), now takes form

(A1 + A5)
2

6 R , (A1 − A5)
2

6 R

(A1 + A6)
2

6 R , (A1 − A6)
2

6 R

(A2 + A4)
2

6 R , (A2 − A4)
2

6 R

(A2 + A6)
2

6 R , (A2 − A6)
2

6 R

(A3 + A4)
2

6 R , (A3 − A4)
2

6 R

(A3 + A5)
2

6 R , (A3 − A5)
2

6 R (3.18)

where R =
∑9

i=1A
2
i .

For dual problem note that

g(λ1) = −λ1 −
1

4λ1

9
∑

i=1

A2
i

so the dual problem take form

Maximize g(λ1)

s.t. λ1 > 0 (3.19)

As λ1 > 0, the maximum value of g(λ1) is

− (

9
∑

i=1

A2
i )

1

2 . (3.20)

So the minimum of primal problem (3.15), is equal with the maximum of dual problem (3.20),

and there is no gap between them and the minimum of primal problem is global.
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4 Constructing nonlinear EWs via convex optimization

As noted before, the envelope of family of linear EWs tangent to FR, could be considered

as a nonlinear EW. We want to obtain this nonlinear EW via convex optimization. For this

purpose we reformulate problem in convex optimization format. Suppose a density matrix, ρ,

for a system is given. One can expand this density matrix in terms of related operators Qi in

the Hilbert space of the system with coefficients say ri.

ρ =
∑

i

riQi

Entanglement detection condition requires Tr(Wρ) 6 0. Here W is the family of linear EWs,

which have been obtained from previous section. We want to minimize Tr(Wρ) and the convex

optimization problem takes the form

minimize A0r0 +

n
∑

i=1

Airi

subject to fi(A1, .., An) 6 0, (4.21)

where f(A1, .., An) is new inequality constraint which comes from previous section.

So the nonlinear and linear EWs are constructed directly from convex optimization in

two steps, as discussed above. This approach is completely general and could be applied for

detection of entanglement of any quantum system. As a matter of fact, even for a system with

complicating nonlinear and linear constraints and functions, this approach will lead to some

nonlinear and linear EWs, this is because of the convexity nature of the problem, and if there

is no analytical solution to the problem, one can solve problem by good numerical algorithms

such as interior point method (which again is valid for KKT conditions) [17].

In the previous works of obtaining nonlinear EWs with convex optimization [25, 12], there

were two disadvantages. First, the linear inequality constraints are not considered, and second,

the convex optimization for determining the nonlinear EWs, was not used explicitly in this

form.
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Example 4: Nonlinear EW for three qubits system

In this example as a special case, we construct nonlinear EW for a given density matrix of

three qubit system in example 3. We choose EW in (3.16). In this step the linear inequality

constraints takes form (3.18). The given density matrix for three qubits system could be

written as follows

ρ =
∑

i

riQi =
3

∑

i,j,k=0

bi,j,kσi ⊗ σj ⊗ σk

For better detection of entanglement of the system, we want to minimize Tr(Wρ) =
∑9

m=0 rmAm

therefore, convex optimization problem takes form

Minimize

9
∑

m=0

rmAm (4.22)

subject to − A2
0 +R 6 0,

(A1 + A5)
2

6 R , (A1 − A5)
2

6 R

(A1 + A6)
2

6 R , (A1 − A6)
2

6 R

(A2 + A4)
2

6 R , (A2 − A4)
2

6 R

(A2 + A6)
2

6 R , (A2 − A6)
2

6 R

(A3 + A4)
2

6 R , (A3 − A4)
2

6 R

(A3 + A5)
2

6 R , (A3 − A5)
2

6 R

The linear and nonlinear inequality constraints comes from (3.17) and (3.18). The Lagrangian

for this part of problem is

L(A, µ) = A0r0 +

9
∑

i=1

Airi + µ1(

9
∑

i=1

A2
i −A

2

0) + µ2((A1 + A5)
2 −R) + µ3((A1 − A5)

2 − R)

+µ4((A1 + A6)
2 − R) + µ5((A1 −A6)

2 − R)

+µ6((A2 + A4)
2 − R) + µ7((A2 −A4)

2 − R)

+µ8((A2 + A6)
2 − R) + µ9((A2 −A6)

2 − R)
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+µ10((A3 + A4)
2 − R) + µ11((A3 −A4)

2 −R)

+µ12((A3 + A5)
2 − R) + µ13((A3 −A5)

2 −R)

The arguments for KKT conditions in example 3 are also valid here. From complementary

slackness of KKT conditions we have

µ1 > 0 ⇒ f1(P1, ..., P9) =
9

∑

i=1

A2
i −A

2

0 = 0 (4.23)

and

fi(P1, ..., P9) < 0 ⇒ µi = 0, µ = 2, ..., 13 (4.24)

and zero gradient of Lagrangian condition yields to

Ai = − ri
2µ1

, i = 1, ..., 9

So the condition (4.23) becomes

4µ2
1 =

1

A2
0

9
∑

i=1

r2
i (4.25)

the other constraints (4.24), becomes

(r1 + r5)
2

6 T , (r1 − r5)
2

6 T

(r1 + r6)
2

6 T , (r1 − r6)
2

6 T

(r2 + r4)
2

6 T , (r2 − r4)
2

6 T

(r2 + r6)
2

6 T , (r2 − r6)
2

6 T

(r3 + r4)
2

6 T , (r3 − r4)
2

6 T

(r3 + r5)
2

6 T , (r3 − r5)
2

6 T (4.26)

where

T =
R

A2
0

9
∑

i=1

r2
i
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Thus the nonlinear EW detection becomes

Min Tr(Wρ) = A0[r0 − (
9

∑

i=1

r2
i )

1

2 ] (4.27)

with constraints (4.26). For dual problem we have

g(µ1) = A0r0 − (µ1 +
1

4µ1

9
∑

i=1

r2
i )

so the dual problem take form

Maximize g(µ1)

s.t. µ1 > 0 (4.28)

As µ1 > 0, the maximum value of g(µ1) is

A0[r0 − (

9
∑

i=1

r2
i )

1

2 ]. (4.29)

Again, the minimum of primal problem (4.27), is equal with the maximum of dual problem

(4.29), and there is no gap between them and the minimum of primal problem is global.

5 EWs for three qubits systems

There are many special sets of linear and nonlinear EWs for three qubits with specific FRs.

In this section we recover some of them for three qubits systems. These are classified into

four sets and finding these FRs and linear and nonlinear EWs are completely similar to the

previous sections. In the following we report FRs and EWs concisely.

5.1 EWs with polygonal FR

The polygonal FR in example 1, leads to polygonal class for three qubits linear EWs. The

convex optimization for this problem is

minimize A0 +
3

∑

i=1

AiPi
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subject to equation (2.4) (5.30)

and the relative EWs takes form

W
i1,i2,i3,i4,i5

= A0III+

A1[(−1)
i1
Q1 + (−1)

i2
Q2 + (−1)

i3
Q3 + (−1)

i4
Q4 + (−1)

i5
Q5 + (−1)

i1+i2+i3+i4+i5+1

Q6] (5.31)

where i1, ..., i5 = 0, 1 then we have 32 linear EWs. Besides these EWs, we can construct

other EWs by using the fact that local unitary operators take an EW to another EW. The

36 transformation of table (1) on (5.31), give a new EW which could be constructed by local

unitary operators. Please note that M2
x↔y, means transformation which interchange x and y

in the second qubit and so on. For example in (5.31) for i1 = ... = i5 = 0 if we apply the

transformation M1
y↔zM

2
y↔z then

M1
y↔zM

2
y↔zW0,0,0,0,0

= A0III + A1[XXX +XZY + ZXZ + ZY Y + Y ZZ − Y Y X]

which is a new linear EW. Therefore the total linear EWs, with odd number minus signs and

all transformations of table 1, becomes 32 × 36 = 1184.

These linear EW are non-decomposable because they can detect density matrices with

positive partial transpose (PPT). For example the linear EW

W = III +XXX +XY Z + Y Y Y + Y ZX + ZXY − ZZZ

which comes from applying transformation M3
y↔zM

2
x↔yM

3
x↔y on (5.31) and taking A0 = A1 =

1, i1 = ... = i5 = 0; can detect the PPT density matrix in [25]. As the non-decomposability

of EWs are invariant under the transformations of table 1, therefore all 1184 linear EWs in

this section are also non-decomposable.

5.2 EWs with conical FR

Let us consider the following operators

QCo
1 = Z(XX + Y Y ), QCo

2 = X(XX + Y Y ), QCo
3 = Y (XX + Y Y ),
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Table 1: 36 transformation on (5.31).

M3

y↔z
M3

x↔y
M3

x→y→z→x
M3

x→z→y→x
M3

x↔z
M2

x↔y
M3

x↔y

M2

y↔z
M1

y↔z
M2

y↔z
M1

y↔z
M2

x→y→z→x
M2

x→y→z→x
M2

x→y→z→x
M3

x↔y
M2

x↔z

M1

x→y→z→x
M1

x↔z
M2

x↔z
M3

x→y→z→x
M3

y↔z
M2

x↔y
M3

x↔y
M3

y↔z
M2

y↔z
M3

y↔z
M1

y↔z
M2

x→y→z→x

M3

x↔y
M2

x↔y
M3

x↔y
M3

x→y→z→x
M2

x↔y
M3

x↔y
M3

x↔y
M2

y↔z
M3

x↔y
M1

y↔z
M2

y↔z
M3

x→y→z→x
M2

y↔z
M3

x→y→z→x
M1

y↔z
M2

y↔z

M3

x→y→z→x
M2

x↔y
M3

x↔y
M3

x↔z
M3

x→z→y→x
M2

y↔z
M3

x→z→y→x
M1

y↔z
M2

x→y→z→x
M3

x↔z
M2

y↔z
M3

x↔z
M1

y↔z
M2

x→y→z→x

M3

y↔z
M1

y↔z
M2

x→y→z→x
M3

y↔z
M2

x→y→z→x
M3

x↔z
M2

x↔z
M3

x↔z
M2

x→y→z→x
M3

x↔y
M3

x↔y
M1

x→y→z→x
M3

x↔y
M1

x↔z

QCo
4 = Z(XY − Y X), QCo

5 = X(XY − Y X), QCo
6 = Y (XY − Y X),

QCo
13 = IZZ. (5.32)

where the superscript Co in Qi’s, shows the conical case. Now we try to determine the exact

shape of the FR. The FR is a cone given by

6
∑

i=1

P 2
i − (1 ± P13)

2
6 0 (5.33)

(for a proof, see appendix B). First convex optimization gives two related EWs as follows

minimize A13P13 +
6

∑

i=1

AiPi

subject to (5.33) (5.34)

The minimum is equal to −A13, provided that

A2
13 =

6
∑

i=1

A2
i (5.35)

and the constraints Tr(Wρsep) > 0 leads to A0 > A13. So the linear witnesses becomes

WCo = A0(III ±Q13 +

6
∑

i=1

AiQi) (5.36)

Second convex optimization gives the nonlinear EW as follows. The minimum of Tr(Wρ)

subject to constraints A0 − A13 > 0 and (5.35) becomes

Min Tr(Wρ) = A0(1 ± r13 −
√

r2
1 + ...+ r2

6 )
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Further, if we consider other operators such as

QCo
7 = Z(XX − Y Y ), QCo

8 = X(XX − Y Y ), QCo
9 = Y (XX − Y Y ),

QCo
10 = Z(XY + Y X), QCo

11 = X(XY + Y X), QCo
12 = Y (XY + Y X),

then one can show that

P 2
1 + P 2

4 = P 2
7 + P 2

10

P 2
2 + P 2

5 = P 2
8 + P 2

11

P 2
3 + P 2

6 = P 2
9 + P 2

12 (5.37)

One can get new EWs, under any replacement of one or more left hand sides of (5.37) with

their respective right hand sides in the (5.33). As this can be done in eight ways, number of

EWs so far are 2 × 8 = 16. In addition, the replacement of first party with second or third

also give new EWs and as a result, the number of EWs in this form become 16 × 3 = 48.

Again similar to the previous subsection arguments, these EWs are non-decomposable.

5.3 EWs with spherical FR

For some special choice of operators one can get FR with hyper spherical shape. Some set of

these choices is for following operators.

Q1 = Z(XX + Y Y ), Q2 = X(XX + Y Y ), Q3 = Y (XX + Y Y ),

Q4 = Z(XY − Y X), Q5 = X(XY − Y X), Q6 = Y (XY − Y X),

Q7 = Z(XX − Y Y ), Q8 = X(XX − Y Y ), Q9 = Y (XX − Y Y ),

Q10 = Z(XY + Y X), Q11 = X(XY + Y X), Q12 = Y (XY + Y X),

Q13 = IXZ, Q14 = IY Z, Q15 = IZI. (5.38)

and the FR becomes

P 2
1 + ...+ P 2

6 + P 2
13 + P 2

14 + P 2
15 6 1 (5.39)
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The proof is similar to the previous proofs in the appendix B. The relative EWs become

W = A0III + A13Q13 + A14Q14 + A15Q15 +

6
∑

i=1

AiQi (5.40)

with constraint A2
0 > +A2

13 + A2
14 + A2

15 +
∑6

i=1A
2
i . Finding the nonlinear EWs is completely

similar to example 4.

We can find 14 other FRs with the following replacements

I → (n1X + n2Y + n3Z), n2
1 + n2

2 + n2
3 = 1

in any parties of Q13, Q14 or Q15 in (5.38). For example if we replace Q13 = IXZ with

Q16 +Q17 +Q18 = XXZ + Y XZ + ZXZ, then the new FR becomes

P 2
1 + ...+ P 2

6 + P 2
14 + P 2

15 + P 2
16 + P 2

17 + P 2
18 6 1 (5.41)

Now the convex optimization problem is Min
∑6

i=1AiPi +
∑18

j=14AjPj, s.t. (5.41). and the

linear EWs become

W = A0III +

6
∑

i=1

AiQi +

18
∑

j=14

AjQj (5.42)

with constraint A0 > [
∑6

i=1A
2
i +

∑18
j=14A

2
j ]

1/2. Again this constraint comes from the condition

Tr(Wρsep) > 0. In each of these 1 + 14 = 15 FRs if we replace one or more of left hand sides

of the following equations with the respective right hand sides, we will get new FRs.

P 2
1 + P 2

4 = P 2
7 + P 2

10

P 2
2 + P 2

5 = P 2
8 + P 2

11

P 2
3 + P 2

6 = P 2
9 + P 2

12

As there are 7 possible replacements with one on replacement, we have 8× 15 = 120 spherical

FR up to now. In addition, the replacement of first operator with second or third in all terms

of (5.38 ) also give new FR and as a result, we have 120 × 3 = 360 spherical FR. Finally

learning from previous proofs in appendix B, we present another spherical FR which is

27
∑

i=1

P 2
i 6 1.
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Therefore the total EWs for this set becomes 361 which are non-decomposable (similar to the

previous subsections arguments).

5.4 EWs with other FRs

There are many FRs for three qubits which lead to relative EWs. Here we obtain two cases as

follows.

A. First case

Consider the following set of operators

Q
1

= XZZ, Q
2

= XXX, Q
3

= ZXZ, Q
4

= ZZX,

Q
5

= −ZXI, Q
6

= −ZZI, Q
7

= XZI, Q
8

= XXI,

Q
9

= −IZX, Q
10

= −IZZ, Q
11

= IXZ, Q
12

= IXX,

Q
13

= −XIZ, Q
14

= −ZIZ, Q
15

= ZIX, Q
16

= XIX. (5.43)

With this choice, we have the following nonlinear constraints ( the proof is similar to the

previous proofs in appendix B, therefore is omitted ).

(P
1
+ P

2
)
2

+ (P3 + P4)
2

6 1

P 2
5 + P 2

6 + P 2
7 + P 2

8 6 1

P 2
9 + P 2

10 + P 2
11 + P 2

12 6 1

P 2
13 + P 2

14 + P 2
15 + P 2

16 6 1 (5.44)

The related EW is W = A0 +
∑16

i=1AiQi. As discussed before, using convex optimization

method we see that this EW candid satisfy Tr(Wρs) > 0 condition if

A0 − (
√

A2
1 + A2

3 +
√

A2
5 + A2

6 + A2
7 + A2

8+

√

A2
9 + A2

10 + A2
11 + A2

12 +
√

A2
13 + A2

14 + A2
15 + A2

16) > 0 (5.45)
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For obtaining nonlinear form now the inequality constraints have same form as in (5.44) but

we must replace Pi to Ai, so the convex optimization problem takes form

Minimize Tr(Wρ) = A0r0 +
16

∑

j=1

Ajrj

subject to condition

(A
1
+ A

2
)
2

+ (A3 + A4)
2

6 1

A2
5 + A2

6 + A2
7 + A2

8 6 1

A2
9 + A2

10 + A2
11 + A2

12 6 1

A2
13 + A2

14 + A2
15 + A2

16 6 1 (5.46)

Again using convex optimization method, the result is

Tr(Wρ) = A0[(r0 − (
√

(r1 + r2)2 + (r3 + r4)2 +
√

r2
5 + r2

6 + r2
7 + r2

8

+
√

r2
9 + r2

10 + r2
11 + r2

12 +
√

r2
13 + r2

14 + r2
15 + r2

16)] (5.47)

B. Second case

Here, we consider the following Hermitian operators

Q1 = XXX, Q2 = Y XX, Q3 = ZXX, Q4 = XY Y,

Q5 = Y Y Y, Q6 = ZY Y, Q7 = XZZ, Q8 = Y ZZ, Q9 = ZZZ (5.48)

The FR takes form

√

P 2
1 + P 2

2 + P 2
3 +

√

P 2
4 + P 2

5 + P 2
6 +

√

P 2
7 + P 2

8 + P 2
9 6 1. (5.49)

Using convex optimization method for satisfying the condition Tr(Wρ) > 0 we have A0 −
√

A2
1 + A2

2 + A2
3 > 0 with conditions A2

1 + A2
2 + A2

3 = A2
4 + A2

5 + A2
6 = A2

7 + A2
8 + A2

9.

The nonlinear EW takes form

Tr(Wρ) = A0[1 − (r2
1 + r2

2 + r2
3)

1/2 + (r2
4 + r2

5 + r2
6)

1/2 + (r2
7 + r2

8 + r2
9)

1/2] (5.50)
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6 Optimality of the EWs

In general, we have not found a proof for optimality of nonlinear EWs although, we expect

that optimality problem could be solved using convex optimization and this issue is currently

under investigation. However, in this section we consider optimality proofs for linear EWs

with polygonal FR, and a special case of spherical EWs.

To do so let us recall that if there exist ǫ > 0 and a positive operator P such that W ′ =

W − ǫP be again an EW, the EW W is not optimal, otherwise it is. Every positive operator

can be expressed as a sum of pure projection operators with positive coefficients, i.e., P =

∑

i λi
|ψ

i
〉〈ψ

i
| with all λ

i
≥ 0, so we can take P as pure projection operator P = |ψ〉〈ψ|. If W ′

is to be an EW, then |ψ〉 must be orthogonal to all pure product states that the expectation

value of W over them is zero. The eigenstates of each three-qubit Pauli group operator can be

chosen as pure product states, half with eigenvalue +1 and the other half with eigenvalue -1.

In EWs introduced so far, there exists no pair of locally commuting Pauli group operators, so

the expectation value of such pauli group operators vanishes over the pure product eigenstates

of one of them.

6.1 Optimality of the EWs with polygonal FR

Let us begin with the following EWs with polygonal FR

W
i1,i2,i3,i4,i5

= A0III+

A1[(−1)
i1
ZZZ+(−1)

i2
XXX+(−1)

i3
XZY+(−1)

i4
Y XZ+(−1)

i5
Y Y Y+(−1)

i1+i2+i3+i4+i5+1

ZY X].

(6.51)

This EW comes from with transformation M2
y↔z on the(5.31) and rearranging terms. We

discuss two cases i
1

= 0 and i
1

= 1 separately. For the case i
1

= 0, note that we can take the

pure product states

|z; +〉|z; +〉|z; +〉, |z; +〉|z;−〉|z;−〉, |z;−〉|z; +〉|z;−〉, |z;−〉|z;−〉|z; +〉, (6.52)
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as eigenstates of the operator σzσzσz with eigenvalue +1 and the following ones

|z; +〉|z; +〉|z;−〉, |z; +〉|z;−〉|z; +〉, |z;−〉|z; +〉|z; +〉, |z;−〉|z;−〉|z;−〉. (6.53)

as eigenstates with eigenvalue -1. The EWs W0,i
2
,i

3
,i

4
,i

5
have zero expectation values over the

states of (6.53), so if there exists a pure projection operator |ψ〉〈ψ| that can be subtracted

from EWs W0,i
2
,i

3
,i

4
,i

5
, the state |ψ〉 ought to be of the form

|ψ〉 = a
+++

|z; +〉|z; +〉|z; +〉 + a
+−−

|z; +〉|z;−〉|z;−〉

+a
−+−

|z;−〉|z; +〉|z;−〉 + a
−−+

|z;−〉|z;−〉|z; +〉.
(6.54)

Expectation values of W0,0,i
3
,i

4
,i

5
over pure product eigenstates of the operator σxσxσx with

eigenvalue -1 are zero, so |ψ〉 should be orthogonal to these eigenstates. Applying the orthog-

onality constraints gives the following equations

〈x; +|〈x; +|〈x;−||ψ〉 = 1
2
√

2
(a

+++
− a

+−−
− a

−+−
+ a

−−+
) = 0,

〈x; +|〈x;−|〈x; +||ψ〉 = 1
2
√

2
(a

+++
− a

+−−
+ a

−+−
− a

−−+
) = 0,

〈x;−|〈x; +|〈x; +||ψ〉 = 1
2
√

2
(a

+++
+ a

+−−
− a

−+−
− a

−−+
) = 0,

〈x;−|〈x;−|〈x;−||ψ〉 = 1
2
√

2
(a

+++
+ a

+−−
+ a

−+−
+ a

−−+
) = 0.

The solution of this system of four linear equations is a
+++

= a
+−−

= a
−+−

= a
−−+

= 0. Thus

|ψ〉 = 0, that is, there exists no pure projection operator |ψ〉〈ψ|, hence no positive operator P,

which can be subtracted from W0,0,i
3
,i

4
,i

5
and leave them EWs again. So the EWs W0,0,i

3
,i

4
,i

5

are optimal. Similar argument proves the optimality of EWs W0,1,i
3
,i

4
,i

5
.

As for EWs W1,i
2
,i

3
,i

4
,i

5
, the state |ψ〉 (if exises) ought to be of the form

|ψ〉 = a
++−

|z; +〉|z; +〉|z;−〉 + a
+−+

|z; +〉|z;−〉|z; +〉

+a
−++

|z;−〉|z; +〉|z; +〉 + a
−−−

|z;−〉|z;−〉|z;−〉.
(6.55)

The same argument as above shows the impossibility of existing such |ψ〉. Therefore, the EWs

W1,i
2
,i

3
,i

4
,i

5
are also optimal.
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6.2 Optimality of a special case of spherical EWs

For some special cases of EWs with spherical FR one can show the optimality of EWs. For

example, consider the following case which is the spherical case in [25].

One of these spherical EWs is

W = III +
1

√

A2
1 + A2

2 + A2
3

[A1ZII + A2(XXX +XY Y ) + A3(Y XY + Y Y X)] (6.56)

Let us first find pure product states that the expectation value of (6.56) over them vanishes.

For this purpose, we consider a pure product state as follows

|ν〉 =

3
⊗

j=1

(

cos(
θ

j

2
)|z; +〉 + exp(iϕ

j
) sin(

θ
j

2
)|z;−〉

)

(6.57)

and attempt to choose parameters θ
j
and ϕ

j
such that Tr(W |ν〉〈ν|) = 0. By direct calculation,

this trace is

Tr(W |ν〉〈ν|) = 1 + A1√
A2

1
+A2

2
+A2

3

cos θ
1
+ sin θ

1
sin θ

2
sin θ

3

×[ A2√
A2

1
+A2

2
+A2

3

cosϕ
1
cos(ϕ

2
− ϕ

3
) + A3√

A2
1
+A2

2
+A2

3

sinϕ
1
sin(ϕ

2
+ ϕ

3
)].

(6.58)

In this relation, if we choose ϕ
2

= ϕ
3

= π
4
, cosψ

1
= A2√

A2
2
+A2

3

, and sinψ
1

= A3√
A2

2
+A2

3

then (6.58)

will become

Tr(W |ν〉〈ν|) = 1 + A1√
A2

1
+A2

2
+A2

3

cos θ
1
+ sin θ

1
sin θ

2
sin θ

3

A2√
A2

1
+A2

2
+A2

3

cos(ψ
1
− ϕ

1
) (6.59)

In (6.58), if we choose ψ
1

= ϕ
1
, θ

2
= θ

3
= π

2
, cosψ

2
= A1√

A2
1
+A2

2
+A2

3

, and sinψ
2

=

√
A2

2
+A2

3√
A2

1
+A2

2
+A2

3

then (6.60) will become

Tr(W |ν〉〈ν|) = 1 + cos(ψ
2
− θ

1
). (6.60)

and the choices of parameters ψ
2
− θ

1
= π, lead to zero value for the Tr(W |ν〉〈ν|) = 0.

Now similar to the above discussion, it is easy to see that the following eight choices of
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parameters θ
j

and ϕ
j

lead to zero value for the Tr(W |ν〉〈ν|) :

|ν
1
〉 : θ

2
= θ

3
= π

2
, ψ

2
− θ

1
= π, ϕ

1
= ψ

1
, ϕ

2
= ϕ

3
= π

4
,

|ν
2
〉 : θ

2
= θ

3
= π

2
, ψ

2
− θ

1
= π, ϕ

1
= −ψ

1
, ϕ

2
= ϕ

3
= −π

4
,

|ν
3
〉 : θ

2
= θ

3
= π

2
, ψ

2
+ θ

1
= π, ϕ

1
= ψ

1
, ϕ

2
= π

4
, ϕ

3
= −3π

4
,

|ν
4
〉 : θ

2
= θ

3
= π

2
, ψ

2
+ θ

1
= π, ϕ

1
= −ψ

1
, ϕ

2
= 3π

4
, ϕ

3
= −π

4
,

|ν
5
〉 : θ

2
= θ

3
= π

2
, ψ

2
− θ

1
= π, ϕ

1
= ψ

1
, ϕ

2
= 5π

4
, ϕ

3
= −3π

4
,

|ν
6
〉 : θ

2
= θ

3
= π

2
, ψ

2
− θ

1
= π, ϕ

1
= −ψ

1
, ϕ

2
= 3π

4
, ϕ

3
= −5π

4
,

|ν
7
〉 : θ

2
= θ

3
= π

2
, ψ

2
+ θ

1
= π, ϕ

1
= ψ

1
, ϕ

2
= −3π

4
, ϕ

3
= π

4
,

|ν
8
〉 : θ

2
= θ

3
= π

2
, ψ

2
+ θ

1
= π, ϕ

1
= −ψ

1
, ϕ

2
= −π

4
, ϕ

3
= 3π

4
.

For (6.56), the state |ψ〉 (if exists) must be of the following form

|ψ〉 = a
+++

|z; +〉|z; +〉|z; +〉 + a
++−

|z; +〉|z; +〉|z;−〉

+a
+−+

|z; +〉|z;−〉|z; +〉 + a
+−−

|z; +〉|z;−〉|z;−〉

+a
−++

|z;−〉|z; +〉|z; +〉 + a
−+−

|z;−〉|z; +〉|z;−〉

+a
−−+

|z;−〉|z;−〉|z; +〉 + a
−−−

|z;−〉|z;−〉|z;−〉.

(6.61)
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and be orthogonal to the above eight states, i.e.,

〈ν
1
|ψ〉 = [sin ψ2

2
(a

+++
+ a

++−
ei

π
4 + a

+−+
ei

π
4 + a

+−−
ei

π
2 )

−eiψ1 cos ψ2

2
(a

−++
+ a

−+−
ei

π
4 + a

−−+
ei

π
4 + a

−−−
ei

π
2 )] = 0,

〈ν
2
|ψ〉 = [sin ψ2

2
(a

+++
+ a

++−
ei

−π
4 + a

+−+
ei

−π
4 + a

+−−
ei

−π
2 )

−e−iψ1 cos ψ2

2
(a

−++
+ a

−+−
ei

−π
4 + a

−−+
ei

−π
4 + a

−−−
ei

−π
2 )] = 0,

〈ν
3
|ψ〉 = [sin ψ2

2
(a

+++
− a

++−
ei

π
4 + a

+−+
ei

π
4 − a

+−−
ei

π
2 )

+eiψ1 cos ψ2

2
(a

−++
− a

−+−
ei

π
4 + a

−−+
ei

π
4 − a

−−−
ei

π
2 )] = 0,

〈ν
4
|ψ〉 = [sin ψ2

2
(a

+++
+ a

++−
ei

−π
4 − a

+−+
ei

−π
4 − a

+−−
e−i

π
2 )

+e−iψ1 cos ψ2

2
(a

−++
+ a

−+−
ei

−π
4 − a

−−+
ei

−π
4 − a

−−−
e−i

π
2 )] = 0,

〈ν
5
|ψ〉 = [sin ψ2

2
(a

+++
− a

++−
ei

π
4 − a

+−+
ei

π
4 + a

+−−
ei

π
2 )

+eiψ1 cos ψ2

2
(−a

−++
+ a

−+−
ei

π
4 + a

−−+
ei

π
4 − a

−−−
ei

π
2 )] = 0,

〈ν
6
|ψ〉 = [sin ψ2

2
(a

+++
− a

++−
ei

−π
4 − a

+−+
ei

−π
4 + a

+−−
ei

−π
2 )

+e−iψ1 cos ψ2

2
(−a

−++
+ a

−+−
ei

−π
4 + a

−−+
e−i

π
4 − a

−−−
ei

−π
2 )] = 0,

〈ν
7
|ψ〉 = [sin ψ2

2
(a

+++
+ a

++−
ei

π
4 − a

+−+
ei

π
4 − a

+−−
ei

π
2 )

+eiψ1 cos ψ2

2
(a

−++
+ a

−+−
ei

π
4 − a

−−+
ei

π
4 − a

−−−
ei

π
2 )] = 0,

〈ν
8
|ψ〉 = [sin ψ2

2
(a

+++
− a

++−
e−i

π
4 + a

+−+
e−i

π
4 − a

+−−
e−i

π
2 )

+e−iψ1 cos ψ2

2
(a

−++
− a

−+−
e−i

π
4 + a

−−+
e−i

π
4 − a

−−−
e−i

π
2 )] = 0,

The above system of eight equations has trivial solution a
+++

= a
++−

= a
+−+

= a
+−−

=

a
−++

= a
−+−

= a
−−+

= a
−−−

= 0 provided that ψ1 6= 0,±π
2
,±π and ψ2 6= 0,±π. This proves

the optimality of (6.56) for all but ψ1 = 0,±π
2
,±π and ψ2 = 0,±π values of ψ.

7 Detection of entanglement for three qubits systems

In this section we develop two applications for EWs obtained via convex optimization method.

Firstly, a density matrix is given and we want to construct some EWs for determining en-

tanglement of this density matrix, and secondly a general class of nonlinear EWs is known
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and we would like to find some density matrices which could be detected efficiently by this

class of nonlinear EWs. First application is completely natural and some straightforward. But

second is not so trivial and an important question is: what is the physical motivation for this

constructed density matrix? Some motivation are as follows. As any density matrix shows a

real physical system, the entanglement source and channels may be rearrange in a way that

the final density matrix for system be equal approximately to the constructed density matrix.

Although this is a hard task, but if the constructed density matrix is valuable from experi-

mental point of view, maybe this procedure will become a way for entanglement detection.

On the other hand, at least as a toy model, this method will give some intuition to physical

system. Although we are not deal to these subjects, we will discuss about how to construct

some density matrices by this method.

7.1 Detection of density matrices

We begin with some known density matrices for three qubits systems and try to detect entan-

glement of them with nonlinear EW constructed by exact convex optimization in the following

three examples.

A. Unextendible product bases density matrix

The density matrix considered here, is the entangled state in [26] which is constructed using

unextendible product bases (UPBs), and has the very interesting property of being separable

for every possible bipartition of the three parties. The state has the following expression:

ρ =
1

4
(III −

4
∑

i=1

|ψi〉〈ψi|), (7.62)

where

ψ1 = |0, 1,+〉, ψ2 = |1,+, 0〉,

ψ3 = |+, 0, 1〉, ψ4 = |−,−,−〉,
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and |±〉 = (|0〉 ± |1〉)/
√

2. Rewriting (7.62) in terms of Pauli operators yields

ρ =
1

8
[III +

1

4
(−IXX − IXZ + IZX + IZZ −XIX +XIZ

−XXI +XXX −XZI +XZZ − ZIX + ZIZ + ZXI + ZXZ + ZZI + ZZX)] (7.63)

Now one can choose operators sets Qi from (7.63) in a way that the related EW can detect

entanglement of the system. One of these sets are (5.43) which leads to the nonlinear EW

(5.47). The detection of this nonlinear EW (5.47) for UPB density matrix (7.63) is Tr(Wρ) =

−1−
√

2
16

.

B. W state density matrices

The second mixed state density matrix which we consider here is W state density matrix

[27]. Consider the state

ρ =
1

8
(1 − p)III + p|W 〉〈W |

where |W 〉 = |100〉+ |010〉+ |001〉 is the three partite W state. In [27], using an entanglement

witness operator, the range for the parameter p, in which their EW detects ρ, i.e., Tr(Wρ) < 0,

is found to be 3/5 < p 6 1.

Using our nonlinear EW (5.50), the entanglement detection range for parameter p, is

3/7 < p 6 1 which shows better detection (range of p is wider than before).

C. Mixed GHZ with W states density matrices

As the final example consider the following mixed GHZ with W states density matrix

ρ =
1

4
|ψ1〉〈ψ1| +

3

8
(|W1〉〈W1| + |W2〉〈W2|)

where |ψ1〉 = 1√
2
(|000〉 ± |111〉) is GHZ state for three-qubits and |W1〉 = 1√

3
(|001〉 + |010〉 +

|100〉), |W2〉 = 1√
3
(|110〉+|101〉+|011〉) are W states for three-qubits. The nonlinear EW (5.47),

can detect the entanglement of this density matrix and the detection is Tr(Wρ) = − 3
32

.
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7.2 Miscellaneous three-qubits PPT density matrices

Here we construct some three-qubits PPT density matrices by nonlinear EWs. As an example

consider the following nonlinear EW.

W = A0(III ±QCo
13 +

3
∑

i=1

AiQ
Co
i +

12
∑

j=10

AjQ
Co
j ) (7.64)

Now we choose some Pauli operators from this nonlinear EW and introduce a density matrix

in the following form

ρ =
1

8
[III + r1IZZ + r2(ZXX + ZY Y ) + r3(XXX +XY Y ) + r4(Y XX + Y Y Y )

+ r5(ZXY + ZY X) + r6(XXY +XYX) + r7(Y XY + Y Y X)] (7.65)

The PPT conditions for this density matrix are

(1 ± r1 ± 2
√

R2
1 ) > 0, (7.66)

(1 ± r1 ± 2
√

R2
2 ) > 0. (7.67)

where R2
1 = r2

2 + r2
3 + r2

4 and R2
2 = r2

5 + r2
6 + r2

7. The solution for these PPT conditions are

r1 = 1, R1 = 0, R2 = 0 (7.68)

r1 = −1, R1 = 0, R2 = 0 (7.69)

− 1 < r1 6 0, −(1 + r1) 6 2R1 6 (1 + r1), −(1 + r1) 6 2R2 6 (1 + r1) (7.70)

0 < r1 < 1, −(1 − r1) 6 2R1 6 (1 − r1), −(1 − r1) 6 2R2 6 (1 − r1) (7.71)

so the detection conditions become

Tr(Wρ) = 1 + r1 − 2
√

R2
1 +R2

2 < 0,

T r(Wρ) = 1 − r1 − 2
√

R2
1 +R2

2 < 0.
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Therefore we construct a three qubits PPT density matrix by a nonlinear EW and the entan-

glement of the density matrix is detected by this nonlinear EW.

As another example, consider following density matrix

ρ =
1

8
[III+r1XXX+r2Y XX+r3ZXX+r4XY Y+r5Y Y Y+r6ZY Y+r7XZZ+r8Y ZZ+r9ZZZ]

(7.72)

The PPT conditions for this density matrix are

1

8
(1 ±

√

(r1 + r4 − r7)2 + (r2 + r5 − r8)2 + (r3 + r6 − r9)2) > 0 (7.73)

1

8
(1 ±

√

(r1 − r4 + r7)2 + (r2 − r5 + r8)2 + (r3 − r6 + r9)2) > 0 (7.74)

1

8
(1 ±

√

(−r1 + r4 + r7)2 + (−r2 + r5 + r8)2 + (−r3 + r6 + r9)2) > 0 (7.75)

1

8
(1 ±

√

(r1 + r4 + r7)2 + (r2 + r5 + r8)2 + (r3 + r6 + r9)2) > 0 (7.76)

For this case, the non-linear EW, (5.50), detects (7.72) with following conditions. In the PPT

conditions if we choose ri > 0 for ∀i and also the final PPT condition (7.76) is satisfied, then

all other PPT conditions would be satisfied. In addition, the following three inequalities must

be satisfied (for detection)

[(r2
1 + r2

2 + r2
3)(r

2
4 + r2

5 + r2
6)]

1/2
> (r1r4 + r2r5 + r3r6),

[(r2
1 + r2

2 + r2
3)(r

2
7 + r2

8 + r2
9)]

1/2
> (r1r7 + r2r8 + r3r9),

[(r2
4 + r2

5 + r2
6)(r

2
7 + r2

8 + r2
9)]

1/2
> (r5r7 + r5r8 + r6r9).

which come from applying the Cauchy-Schwartz inequality to each part.

8 Conclusion

We have presented a general algorithm via exact convex optimization to the problem of finding

nonlinear and linear EWs. This approach is completely general and could be applied for
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detection of entanglement of any N-partite quantum system. For this purpose we defined a

map from convex space of separable density matrices to a convex region called FR so the

problem of finding EWs was reduced to the convex optimization problem which could be

solved by the Karush-Kuhn-Tucker convex optimization method. The problem of finding FRs

is occupy a significant place in our algorithm and the main finding of the study for three-qubits

reveal how systematic such convex optimization algorithm can be. As exemplified by our three-

qubits study, there are many FRs for a quantum system which lead to linear and nonlinear

EWs and this is a good reason to think that finding the whole FRs is time-consuming and our

expectation is that finding the whole FR is a nontrivial algebraic geometry problem. While our

analysis is for three-qubits systems, it serves to provide a unified explanation for a variety of

EWs with striking detection ability with respect to previous EWs. The main conclusion is that

the presented algorithm provide indispensable prerequisites for further investigation and can

bring a robustness in constructing EWs for a system. Application of this algorithm to other

quantum system and finding related FR is still an open problem which is under investigation.
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Appendix A

Convex optimization review

An optimization problem [17], has the standard form

minimize f0(x)

subject to fi(x) 6 0, i = 1, ..., m.

hi(x) = 0, i = 1, ..., p.

Where the vector x = (x1, ..., xn) is the optimization variable of the problem, the function

f0 : Rn → R is the objective function, the functions fi : Rn → R, i = 1, ..., m, are the

(inequality) constraint functions, and the constants b1, ..., bm are the limits, or bounds, for the

constraints. A convex optimization problem, is an optimization problem where the objective

and the constraint functions are convex functions which means they satisfy inequality fi(αx+

βy) 6 αfi(x) + βfi(y), for all x, y ∈ R and all α, β ∈ R with α + β = 1, α > 0, β > 0 and

the equality constraint functions hi(x) = 0 must be affine (A set C ∈ Rn is affine if the line

through any two distinct points in C lies in C).

One can solve this convex optimization problem using Lagrangian duality. The basic idea in

the Lagrangian duality is to take the constraints in convex optimization problem into account

by augmenting the objective function with a weighted sum of the constraint functions. The

Lagrangian L : Rn ×Rm ×Rp → R associated with the problem is defined as

L(x, λ, ν) = f0(x) +
m

∑

i=1

λifi(x) +

p
∑

i=1

νihi(x) (A-i)

The Lagrange dual function g : Rm×Rn×Rm×Rp → R is defined as the minimum value of

the Lagrangian over x: for λ ∈ Rm, ν ∈ Rp,

g(λ, ν) = inf
x∈D

L(x, λ, ν) (A-ii)

The dual function yields lower bounds on the optimal value p⋆ of the convex optimization

problem, i.e for any λ � 0 and any ν we have

g(λ, ν) 6 p⋆ (A-iii)
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The optimal value of the Lagrange dual problem, which we denote d⋆, is, by definition, the

best lower bound on d⋆ that can be obtained from the Lagrange dual function. In particular,

we have the simple but important inequality

d⋆ 6 p⋆

This property is called weak duality. If the equality d⋆ = p⋆ holds, i.e., the optimal duality

gap is zero, then we say that strong duality holds. If strong duality holds and a dual optimal

solution (λ⋆, ν⋆) exists, then any primal optimal point is also a minimizer of L(x, λ⋆, ν⋆). This

fact sometimes allows us to compute a primal optimal solution from a dual optimal solution.

For the best lower bound that can be obtained from the Lagrange dual function one can

solve the following optimization problem

maximize g(λ, ν)

subject to λ � 0

This problem is called the Lagrange dual problem associated with the main problem. Condi-

tions for the optimality of a convex problem is called Karush-Kuhn-Tucker (KKT) conditions.

If fi are convex and hi are affine, and x̃, λ̃, ν̃ are any points that satisfy the KKT conditions

fi(x̃) ≤ 0, i = 1, ..., m

hi(x̃) = 0, i = 1, ..., p

λ̃i ≥ 0, i = 1, ..., m

λ̃ifi(x̃) = 0, i = 1, ..., m

∇f0(x̃) +
∑m

i=1 λ̃i∇fi(x̃) +
∑p

i=1 ν̃i∇hi(x̃) = 0

then x̃ and (λ̃, ν̃) are primal and dual optimal, with zero duality gap. In other words, for

any convex optimization problem with differentiable objective and constraint functions, any

points that satisfy the KKT conditions are primal and dual optimal, and have zero duality

gap. Hence, f0(x̃) = g(λ̃; ν̃).

The condition λ̃ifi(x̃) = 0, i = 1, ..., m is known as complementary slackness; it holds for

any primal optimal x̃ and any dual optimal λ̃, ν̃ (when strong duality holds)
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Appendix B: Proving FR inequalities

a). FR inequality (2.4) of example 1

Here we prove inequality (2.4) for i1 = ... = i5 = 0. The other cases could be proved

similarly. We use the abbreviations

Tr(σ
(1)
i |α〉〈α|) = a

i

Tr(σ
(2)
i |β〉〈β|) = b

i

Tr(σ
(3)
i |γ〉〈γ|) = c

i
.

(A-i)

where the superscripts 1, 2, 3 in σi, denotes the first, second, and third party respectively. Since

a2
1
+ a2

2
+ a2

3
= 1 and also the similar relations hold for b

i
’s and c

i
’s, so the points a, b, c lie on

a unit sphere and we can parameterize their coordinates by using spherical coordinates θ and

ϕ as follows

a
1

= sin θ
1
cosϕ

1
, a

2
= sin θ

1
sinϕ

1
, a

3
= cos θ

1

b
1

= sin θ
2
cosϕ

2
, b

2
= sin θ

2
sinϕ

2
, b

3
= cos θ

2

c
1

= sin θ
3
cosϕ

3
, c

2
= sin θ

3
sinϕ

3
, c

3
= cos θ

3
.

Now

P1 + P2 + P3 + P4 + P5 − P6 =

[a1(b1c1 + b2c2) + a2(b1c3 + b3c2) + a3(b2c3 − b3c1)] 6 [1 − (b1c2 − b2c1 − b3c3)
2]

which is equal or less than one. In the last step we use the Cauchy-Schwartz inequality.

b). FR inequality (2.7) of example 2

From definition Pi = Tr(Qiρs) we have

P1 = cos(θ1) sin(θ2) sin(θ3) cos(ϕ2 − ϕ3),

P2 = cos(ϕ1) sin(θ1) sin(θ2) sin(θ3) cos(ϕ2 − ϕ3),

P3 = sin(ϕ1) sin(θ1) sin(θ2) sin(θ3) cos(ϕ2 − ϕ3),

P4 = cos(θ1) sin(θ2) sin(θ3) sin(ϕ3 − ϕ2),

P5 = cos(ϕ1) sin(θ1) sin(θ2) sin(θ3) sin(ϕ3 − ϕ2),
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P6 = sin(ϕ1) sin(θ1) sin(θ2) sin(θ3) sin(ϕ3 − ϕ2),

P7 = sin(θ2) cos(ϕ2) cos(θ3),

P8 = sin(θ2) sin(ϕ2) cos(θ3),

P9 cos(θ2).

Now
∑6

1 P
2
i = sin2(θ2) sin2(θ3), and P 2

7 +P 2
8 = sin2(θ2) cos2(θ3) so

∑8
1 P

2
i = sin2(θ2) and finally

∑9
1 P

2
i = 1. This equation defines the surface of hyper-sphere. As we want to determine the

region on and inside of this surface then we can write
∑9

1 P
2
i 6 1, which defines the hyper ball.
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