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Abstract

A generalized notion of higher order nonclassicality (in terms of higher order moments) is introduced.
Under this generalized framework of higher order nonclassicality, conditions of higher order squeezing and
higher order subpoissonian photon statistics are derived. A simpler form of the Hong-Mandel higher order
squeezing criterion is derived under this framework by using an operator ordering theorem introduced
by us in [J. Phys. A. 33 (2000) 5607]. It is also generalized for multi-photon Bose operators of Brandt
and Greenberg. Similarly, condition for higher order subpoissonian photon statistics is derived by normal
ordering of higher powers of number operator. Further, with the help of simple density matrices, it
is shown that the higher order antibunching (HOA) and higher order subpoissonian photon statistics
(HOSPS) are not the manifestation of the same phenomenon and consequently it is incorrect to use
the condition of HOA as a test of HOSPS. It is also shown that the HOA and HOSPS may exist even
in absence of the corresponding lower order phenomenon. Binomial state, nonlinear �rst order excited
squeezed state (NLESS) and nonlinear vacuum squeezed state (NLVSS) are used as examples of quantum
state and it is shown that these states may show higher order nonclssical characteristics. It is observed
that the Binomial state which is always antibunched, is not always higher order squeezed and NLVSS
which shows higher order squeezing does not show HOSPS and HOA. The opposite is observed in NLESS
and consequently it is established that the HOSPS and HOS are two independent signatures of higher
order nonclassicality.
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1 Introduction: The generalized notion of higher order nonclassical

states

A state which does not have any classical analogue is known as nonclassical state. To be precise, when the
Glauber Sudarshan P function of a radiation �eld become negative or more singular than a delta function
then the radiation �eld is said to be nonclassical. In these situations quasi probability distribution P is
not accepted as classical probability and thus we can not obtain an analogous classical state. For example,
squeezed state and antibunched state are well known nonclassical states. These two lowest order nonclassical
states have been studied since long but the interest in higher order nonclassical states is relatively new.
Possibilities of observing higher order nonclassicalities in di�erent physical systems have been investigated
in recent past [1-15]. For example, i) higher order squeezed state of Hong Mandel type [1-3], ii) higher order
squeezed state of Hillery type [4,5], iii) higher order subpoissonian photon state [6-8] and iv) higher order
antibunched state [9-15] are recently studied in di�erent physical systems. But the general nature of higher
nonclassicality and the mutual relation between these higher order nonclassical states have not been studied
till now. Present work aims to provide a general and simpli�ed frame work for the study of higher order
nonclassical state.

Commonly, second order moment (standard deviation) of an observable is considered to be the most
natural measure of quantum �uctuation [16] associated with that observable and the reduction of quantum
�uctuation below the coherent state (poissonian state) level corresponds to lowest order nonclassical state.
For example, an electromagnetic �eld is said to be electrically squeezed �eld if uncertainties in the quadrature
phase observable X reduces below the coherent state level (i.e. (∆X)2 < 1

2 ) and antibunching is de�ned as a

phenomenon in which the �uctuations in photon number reduces below the Poisson level (i.e. (∆N)2 < 〈N〉)
[17,18]. In Essenes, if we consider an arbitrary quantum mechanical operator A and a quantum mechanical
state |ψ〉 then the state |ψ〉 is lowest order nonclassical with respect to the operator A if

(∆A)2|ψ〉 < (∆A)2|poissonian〉. (1)
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If |ψ〉 corresponds to an electromagnetic �eld, this condition will mean that the radiation �eld is nonclassical.
This condition can now be further generalized and we can say that a state |ψ〉 has nth order nonclassicality
with respect to the operator A if the nth order moment of A in that state reduces below the value of the nth
order moment of A in a poissonian state, i.e. the condition of nth order nonclassicality is

(∆A)n|ψ〉 < (∆A)n|poissonian〉, (2)

where (∆A)n is the nth order moment de�ned as

〈(∆A)n〉 =
n∑
r=0

nCr(−1)rAr Ān−r. (3)

If A is a �eld operator then it can be expressed as a function of creation and annihilation operators a and a†

and consequently further simpli�cation of (2) is possible by using the identity

〈:
(
A(a, a†)

)k
:〉|poisonian〉 = 〈

(
A(a, a†)

)
〉k|poisonian〉 (4)

where, the notation : (A(a, a†)k : is simply a binomial expansion in which powers of the a† are always kept
to the left of the powers of the a. Here it would be interesting to note that (4) helps us to show that that the
Glauber Sudarshan P function is negative for condition (2). It is clear from (3) that the problem of �nding
out the nth order moment of the operator A essentially reduces to a problem of operator ordering (normal
ordering) of Ar. Here, we would like to note that we observe the lowest order nonclassicality for n = 2. And
in this particular case (n = 2) we obtain the condition of squeezing of electric �eld, if A = X = 1√

2
(a + a†)

and obtain the condition of antibunching if A = N = a†a. Now if we need to generalize the idea of these well
known lower order nonclassical e�ects we have to �nd out normal ordered form of Xr and Nr. In section
2 we start with an operator ordering theorem which provides a normal ordered form of Xr and obtain a
simpli�ed expression of higher order squeezing3. We have also generalized that expression for multi-photon
Brandt-Greenberg Bose operators. In the section 3 we have provided an operator ordered form of Nr and
consequently obtained a condition for higher order subpoissonian photon statistics. In same section we have
also discussed the relation between di�erent criteria of higher order nonclassicalities. In section 4, Binomial
state, nonlinear �rst order excited squeezed state (NLESS) and nonlinear vacuum squeezed state (NLVSS)
are used as examples of quantum state and it is shown that these states may show higher order nonclssical
characteristics. Finally section 5 is dedicated to conclusions.

2 Simpli�ed condition for higher order squeezing:

To obtain the condition for higher order squeezing (HOS) we need to use the following operator order ordering
theorem introduced by us in [19]:
Theorem 1: If any two bosonic annihilation and creation operators a and a† satisfy the commutation
relation

[a, a†] = 1. (5)

Then for any integral values of m

(a† + a)mN =

m
2∑

r=0

t2r
mC2r : (a† + a)m−2r : (6)

with

t2r =
2r!

2r(r)!
= (2r − 1)!! = 2r

(
1
2

)
r

(7)

3According to this notion of higher order squeezing Hillery type amplitude powered squeezing is lower order squeezing of
nonlinear bosonic operators (Y1and Y2). This is so because the amplitude powered squeezing is described by the reduction
(with respect to the poissonian state) of second order moment of the corresponding quadrature variable. One can easily extend
the existing notion of Hillery type squeezing and obtain a new kind of higher order nonclassicality, namely, Hong Madel type
squeezing of Hillery type operator.
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where, the subscript N stands for the normal ordering 4, (x)r is conventional Pochhammer symbol and the
double factorial is de�ned as

n!! =

 n(n− 2)..5.3.1 for n > 0 odd
n(n− 2)..6.4.2 for n > 0 even

1 for n = −1, 0
. (8)

This theorem of normal ordering is not restricted to the ordering of annihilation and creation operator rather
it is valid for any arbitrary operator E+ and its conjugate E− which satisfy,

[E+, E−] = C. (9)

This is so because (9) can easily be reduced to the form of (5) as [E
+
√
C
, E
−
√
C

] = 1. Apart from theorem 1 we

need the following identity to proceed further:

nCr
rCj = n!

(n−r)!r!
r!

(r−j)!j! = n!
(n−j)!j!

(n−j)!
[(n−j)−(r−j)]!(r−j)! = nCj

n−jCr−j . (10)

Using (3), (6), (7) and (10) the nth order moment of ∆E = E−Ē (where the quadrature variable E = (a+a†))
can be expressed as

〈(∆E)n〉 =
∑n
r=0

nCr(−1)rEr Ēn−r

=
∑n
r=0

nCr(−1)r〈(a† + a)r〉〈a† + a〉n−r

=
∑n
r=0

nCr(−1)r
∑ r

2
i=0 t2i

rC2i〈: (a† + a)r−2i :〉〈a† + a〉n−r

=
∑n
r=0

∑ r
2
i=0 t2i

nC2i
n−2iCr−2i(−1)r−2i〈: (a† + a)r−2i :〉〈a† + a〉{(n−2i)−(r−2i)}

=
∑n

2
i=0 t2i

nC2i〈: (∆E)n−2i :〉.

(11)

Now if we follow (2), and de�ne nth order squeezed state as a quantum mechanical state in which nth order
moment 〈(∆E)n〉 is shorter than its poissonian sate value then the condition for nth order squeezing reduces
to

〈(∆E)n〉 < tn = (n− 1)!! (12)

which can be alternatively written as

n
2−1∑
i=0

t2i
nC2i〈: (∆E)n−2i :〉 < 0. (13)

or,

〈(∆E)n〉 =
n∑
r=0

r
2∑
i=0

r−2i∑
k=0

(−1)rt2i r−2iCk
nCr

rC2i〈a† + a〉n−r〈a†kar−2i−k〉 < (n− 1)!!. (14)

Conditions (12) and (13) coincide exactly with the de�nition of Hong Mandel squeezing, reported in earlier
works 5 [1, 3] and the equivalent condition (14) considerably simpli�es the calculation of HOS. Now instead
of E if we calculate the nth order moment for usual quadrature variable X de�ned as X = 1√

2
(a+ a†), then

we obtain

〈(∆X)n〉 < 1
2

n
2
tn =

1
2

n
2

(n− 1)!! =
(

1
2

)
n
2

(15)

or,
n∑
r=0

r
2∑
i=0

r−2i∑
k=0

(−1)r
1

2
n
2
t2i

r−2iCk
nCr

rC2i〈a† + a〉n−r〈a†kar−2i−k〉 <
(

1
2

)
n
2

. (16)

Starting from the generalized notion of higher order nonclassicality (2) we have obtained a closed from
expression of Hong-Mandel squeezing with the help of Theorem 1. The use of Theorem 1 not only simpli�es

4One can write f(a, a†) in such a way that all powers of a† always appear to the left of all powers of a. Then f(a, a†) is said
to be normal ordered.

5If we choose E1 = E+ + E− in analogy with Hong and Mandel [1] then (12) reduces to

〈(∆E)n
1 〉 < tnC

n
2 = (n− 1)!!C

n
2 ,

where n is even. This is the generalized expression obtained in [1] by using some other trick.
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the condition it signi�cantly reduces the calculational di�culties. To be precise, to study the possibility of
HOS for an arbitrary quantum state |ψ〉 we just need to calculate 〈a† + a〉 and 〈a†kar−2i−k〉. Calculation
of this expectation values are simple. For example, if we can expand the arbitrary state |ψ〉 in the number
state basis as

|ψ〉 =
N∑
j=0

Cj |j〉. (17)

Then we can easily obtain,

〈ψ|a†kar−2i−k|ψ〉 =
N−Max[k, r−2i−k]∑

j=0

C∗j+kCj+r−2i−k
1
j!

((j + k + r − 2i)!(j + k)!)
1
2 (18)

where Max yields the largest element from the list in its argument and

〈a† + a〉 =
N−1∑
m=0

√
(m+ 1

(
CmC

∗
m+1 + C∗mCm+1

)
. (19)

Therefore,

〈(∆X)n〉 =
∑n
r=0

∑ r
2
i=0

∑r−2i
k=0 (−1)r 1

2
n
2
t2i

r−2iCk
nCr

rC2i

×
(∑N−1

m=0

√
(m+ 1

(
CmC

∗
m+1 + C∗mCm+1

))n−r
×

∑N−Max[k, r−2i−k]
j=0 C∗j+kCj+r−2i−k

1
j! ((j + k + r − 2i)!(j + k)!)

1
2 .

(20)

In general, if we know the e�ect of as on the state |Ψ〉 and the orthogonality conditions 〈Ψ′|Ψ〉 then we can
easily �nd out 〈(∆X)n〉. Further, since (20) is a C-number equation, analytical tools like MAPPLE and
MATHEMATICA can also be used to study the possibilities of observing higher order squeezing (or higher
order nonclassicality in general). This point will be more clear in section 4, where we will provide speci�c
examples. Here we would like to note that we can normalize (15) and rewrite the condition of HOS as

SHM (n) =
〈(∆X)n −

(
1
2

)
n
2(

1
2

)
n
2

< 0 (21)

where the subscript HM stand for Hong Mandel.

2.1 Brandt-Greenberg operators and k-photon coherent state:

The k-photon coherent state was introduced by D'Arino and coworkers by using Brandt-Greenberg multi-
photon operators [20] Ak and A†k, which are de�ned as

A†k =
[[
N

k

]
N − k
N

]
a†k, (22)

Ak = (A†k)†, (23)

where the function [x] is de�ned as the greatest integer less or equal to x; a†and a are the usual bosonic
relation and annihilation operator and N = a†a is the number operator. This particular from of Brandt-
Greenberg operators is also used in the work of Buzek and Jex [21] in which they have studied the amplitude
k − th power squeezing of the k-photon coherent states. These operators satisfy the commutation relation
analogous to (5), i.e. they satisfy,

[Ak, A
†
k] = 1. (24)

If any operator and its hermitian conjugate satis�es this kind of commutation relation then it has to satisfy
the operator ordering theorem 1 and consequently we will be able to de�ne Hong-Mandel squeezing in terms
that particular operator (in a modi�ed Fock space). For example, if we de�ne to quadrature variables X1k

and X2K as
X1k = Ak +A†k
X2k = Ak −A†k

(25)

4



then we can de�ne the condition for nth order Hong-Mandel squeezing as

n∑
r=0

r
2∑
i=0

r−2i∑
k=0

(−1)r
1

2
n
2
t2i

r−2iCk
nCr

rC2i〈A† +A〉n−r〈A†kAr−2i−k〉 <
(

1
2

)
n
2

. (26)

This provides an extended notion of Hong-Mandel squeezing in a modi�ed Hilbert space.

3 Higher order subpoissonian photon statistics

In analogy to the procedure followed to derive the Hong-Mandel higher order squeezing condition from the
generalized expression (2) of higher order nonclassicality, we wish to study the nonclassicality associated with
A(a, a†) = N = a†a. As we have already discussed, for this purpose we will require operator ordered form of
Nr. Since the operator ordered expansion of Nr will not contain any o�-diagonal term so it is justi�ed to
assume that the normal ordered form of (N)rcan be given as

Nr =
r∑
i=1

Cr,i : N i :=
r∑
i=1

Cr,ia
†iai. (27)

From this equation it is clear that Cr,1 = Cr,r = 1 and we can write Nr+1as

Nr+1 =
r+1∑
i=1

Cr+1,ia
†iai =

r∑
i=1

Cr,ia
†iaia†a =

r∑
i=1

(
Cr,ia

†i+1ai+1 + iCr,ia
†iai
)

(28)

where the operator ordering identity, ala† = a†al + lal−1 is used. Now, we will be able to obtain closed form
normal ordered expansion of Nr provided we know the solution of the recurrence relation:

Cr+1,i = iCr,i + Cr,i−1 (29)

with Cr,0 = 0 and Cr,1 = 1. One can easily identify (29) as the famous recurrence relation of Stirling number
of second kind [22]. Thus we can write

Nr =
r∑

k=1

S2(r, k)a†kak =
r∑

k=1

S2(r, k) : Nk :=
r∑

k=1

S2(r, k)N (k), (30)

where S2(r, k) is the Stirling number of second kind N (k) = a†kak is the kth factorial moment of the number
operator N . Now using (2), (3), (5) and (30) we can obtain the condition of higher order subpoissonian
photon statistics as

〈(∆N)n〉 =
n∑
r=0

nCr(−1)rN̄rN̄n−r =
n∑
r=0

r∑
k=1

S2(r, k) nCr(−1)r〈N (k)〉〈N〉n−r < 〈(∆N)n〉|poissonain〉

or,

dh(n− 1) =
n∑
r=0

r∑
k=1

S2(r, k) nCr(−1)r〈N (k)〉〈N〉n−r −
n∑
r=0

r∑
k=1

S2(r, k) nCr(−1)r〈N〉k+n−r < 0. (31)

The negativity of dh(n − 1) will mean (n − 1)th order subpoissonian photon statistics. This condition is
equivalent to the condition of HOSPS obtained Mishra-Prakash [8].

3.1 Relation between the criteria of HOA and HOSPS

The criterion of HOA is expressed in terms of higher order factorial moments of number operator. There exist
several criterion for the same which are essentially equivalent. Here we would like to investigate how are they
related to the criterion of HOSPS. Initially, using the negativity of P function and theory of Majorization,
Lee [9, 10] introduced the criterion for HOA as
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Density matrix Antibunching SPS HOA (l = 3) HOSPS (n = 4) Conclusions
1
2 (|3〉〈3|+ |8〉〈8|) No No Yes Yes HOA and HOSPS can exist in

absence of lower order
1
2 (|4〉〈4|+ |10〉〈10|) No No No Yes HOA and HOSPS are di�erent

phenomenon

Table 1: HOA and HOSPS are not the manifestation of the same phenomenon and consequently it is incorrect
to use the condition of HOA as a test of HOSPS.

R(l,m) =

〈
N

(l+1)
x

〉〈
N

(m−1)
x

〉
〈
N

(l)
x

〉〈
N

(m)
x

〉 − 1 < 0, (32)

where N is the usual number operator,
〈
N (i)

〉
= 〈N(N − 1)...(N − i+ 1)〉 is the ith factorial moment of

number operator, l and m are integers satisfying the conditions 1 ≤ m ≤ l and the subscript x denotes a
particular mode. Ba An [11] choose m = 1 and reduced the criterion of lth order antibunching to

Ax,l =

〈
N

(l+1)
x

〉
〈
N

(l)
x

〉
〈Nx〉

− 1 < 0 (33)

or, 〈
N (l+1)
x

〉
<
〈
N (l)
x

〉
〈Nx〉 . (34)

We can further simplify (34) as〈
N (l+1)
x

〉
<
〈
N (l)
x

〉
〈Nx〉 <

〈
N (l−1)
x

〉
〈Nx〉2 <

〈
N (l−2)
x

〉
〈Nx〉3 < ... < 〈Nx〉l+1

(35)

and obtain the condition for l − th order antibunching as

d(l) =
〈
N (l+1)
x

〉
− 〈Nx〉l+1

< 0. (36)

This simpli�ed criterion (36) coincides exactly with the physical criterion of HOA introduced by Pathak and
Garica [12] and the criterion of Erenso, Vyas and Singh [14]. In [12] it is already shown that the depth of
nonclassicality of an lth order antibunching is always more than that of (l − 1)th order antibunching of the
same state. Consequently,

d(l) < d(l − 1) (37)

or,
〈N (l+1)〉〈N〉n−r − 〈N〉l+1+n−r < 〈N (l)〉〈N〉n−r − 〈N〉l+n−r. (38)

Now the condition for HOSPS, i.e. (31) can be written as

dh(n−1) =
n∑
r=0

r∑
k=1

S2(r, k) nCr(−1)r
[
〈N (k)〉 − 〈N〉k

]
〈N〉n−r =

n∑
r=0

r∑
k=1

S2(r, k) nCr(−1)rd(k−1)〈N〉n−r < 0.

(39)
Above relation connects the condition of HOA (36) and that of HOSPS (31) but does not provide any con-
clusion about the mutual satis�ability. Physically it is expected from the analogy of lower order phenomenon
that all states that show HOA should show HOSPS but the reverse should not be true. We have not succeed
in showing that analytically but we can establish that with the help of simple density matrix of the form
1
2 (|a〉〈a|+ |b〉〈b|), where |a〉and |b〉 are Fock states. The results are shown in the Table 1.

All the criterion related to HOA and HOSPS essentially lead to same kind of nonclassicality which
belong to the class of strong nonclassicality according to the classi�cation scheme of Arvind et al [23]. The
Table 1 shows that HOA and HOSPS may be present in a system in absence of corresponding lower order
phenomenon. It also shows that HOA and HOSPS are not the same phenomenon. To be precise, HOSPS can
be present in a system even in absence of HOA. Thus it is not proper to consider the condition on HOA as the

6



condition of HOSPS. In [5] Duc has recently used criterion of HOA to study possibilities of observing HOSPS
in photon added coherent state. Incorrect choice of criterion may yield incorrect conclusions so we need to
be very careful before choosing a criterion of higher order nonclassicality. Further in section 4 we have shown
that the binomial state is not always higher order squeezed but is always higher order antibunched. Thus
we can conclude that although they may be derived from same generalized framework they are essentially
independent criterion. This is in the sense that ful�llment of one does not mean ful�llment of the other.

4 Examples

4.1 Binomial State

An intermediate state is a quantum state which reduces to two or more distinguishably di�erent states
(normally, distinguishable in terms of photon number distribution) in di�erent limits. In 1985, such a state
was �rst time introduced by Stoler et al. [24]. To be precise, they introduced Binomial state (BS) as a state
which is intermediate between the most nonclassical number state |n′〉 and the most classical coherent state
|α〉. They de�ned BS as

|p,M〉 =
∑M
n′=0 BMn′ |n

′〉 =
M∑
n′=0

√
MCn′pn

′(1− p)M−n′ |n′〉 0 ≤ p ≤ 1. (40)

This state6 is called intermediate state as it reduces to number state in the limit p → 0 and p → 1 (as
|0,M〉 = 0 and |1,M〉 = |M〉) and in the limit of M →∞, p→ 1, where α is a real constant, it reduces to a
coherent state with real amplitude. Since the introduction of BS as an intermediate state it was always been of
interest to quantum optics, nonlinear optics, atomic physics and molecular physics community. Consequently,
di�erent properties of binomial states have been studied [25-30]. In these studies it has been observed that
the nonclassical phenomena (such as, antibunching, squeezing and higher order squeezing) can be seen in BS.

Using the above de�nition of BS we obtain

d(l)BS =
M !pl+1

(M − l − 1)!
− (Mp)l+1, (41)

dh(n− 1)BS =
n∑
r=0

r∑
k=1

[
S2(r, k) nCr(−1)r(Mp)n−r

(
M !pk

(M − k)!
− (Mp)k

)]
, (42)

and

SHM (n)BS = 1

( 1
2 ) n

2

∑n
r=0

∑ r
2
i=0

∑r−2i
k=0 (−1)r 1

2
n
2
t2i

r−2iCk
nCr

rC2i〈a† + a〉n−r〈a†kar−2i−k〉 − 1

= 1

( 1
2 ) n

2

[∑n
r=0

∑ r
2
i=0

∑r−2i
k=0 (−1)r 1

2
n
2
t2i

r−2iCk
nCr

rC2i

[
2(Mp)1/2

∑M−1

n′=0B
M
n′B

M−1
n′

]n−r

[
M !2pr−2i

(M−k)!(M−r+2i+k)!

]1/2∑M−Max[k,r−2i−k]

n′=0 BM−kn′ BM−r+2i+k
n′

]
− 1

(43)
Above expressions are graphically represented in Fig. 1-Fig. 2. From the Fig. 1 it is clear that the BS

shows HOA and HOSPS simultaneously, but they are not proportional to each other. This result is not of
much interest as we have already shown in [15] that the BS is always higher order antibunched and as every
higher order nonclassical state is expected to show HOSPS, independent of whether they show HOA and
Hong-Mandel squeezing or not. The result of real physical relevance appears when we look at Fig. 2 which
shows that the BS does not show Hong Mandel squeezing for all values of p. For example 4th order Hong
Mandel squeezing vanishes for M = 50 and p ≥ 0.8607. In this range the state is still nonclassical and shows
HOA and HOSPS but does not show Hong Madel Squeezing. Consequently we can conclude that the HOA
and Hong Mandel squeezing are two independent processes which may or may not appear together. Further
it can be observed that for the same photon member (M), the region of nonclassicality decreases with the
increase in order of Hong Mandel squeezing. To be precise, when M = 50 then SHM (4)BS is negative till
p = 0.8607, but SHM (6)BS is negative till p = 0.7943 and SHM (8)BS is negative till p = 0.7343.

6The state is named as binomial state because the photon number distribution associated with this state
(
i.e. |BM

n |2
)
is

simply a binomial distribution.
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Figure 1: Signature of HOA and HOSPS in Binomial state for M = 20.

Figure 2: Signature of Hong Mandel Squeezing in Binomial State for M = 50.
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4.2 Nonlinear Squeezed State

Recently Darwish [31] has introduced a class of nonlinear squeezed states. These states are named as nonlinear
vacuum squeezed state (NLVSS) and nonlinear �rst order excited squeezed state (NLESS). Nonlinear states
are expected to show nonclassical properties. Keeping that in mind, Darwish has investigated the possibilities
of observing normal quadrature squeezing, amplitude squared squeezing and antibunching. To be precise
the study of Darwish shows that, NLESS show subpoissonian photon statistics but does not show normal
squeezing and NLVSS does not show subpoissonian statistics but shows quadrature squeezing. Here we wish
to investigate the possibilities of observing HOA and HOSPS in NLESS and NLVSS. Following Darwish we
can de�ne NLVSS as

|ψ〉V = N

∞∑
n′=0

√
(2n′)!

n′![f(2n′)]!

[
ξ1
2

]n′
|2n′〉, (44)

with

|N |−2 =
∞∑
n′=0

(2n′)!
(n′!)2 [f(2n′)!]2

[
ξ1
2

]2n′
(45)

and NLESS as

|φ〉E = N ′
∞∑
n′=0

√
(2n′ + 1)!

n![f(2n′ + 1)]!

[
ξ1
2

]n′
|2n′ + 1〉, (46)

with

|N ′|−2 =
∞∑
n′=0

(2n′ + 1)!
(n′!)2 [f(2n′ + 1)!]2

[
ξ1
2

]2n′
(47)

where f(.) is a well behaved nonunitary operator valued function which is chosen in such a way that the
normalization constant N and N ′ must be bound. The above equations de�ne NLESS and NLVSS in general.
To study the higher order nonclassical properties of NLESS and NLVSS we have chosen a particular case in
which ξ1 = eiφ tanh r, φ = π and f(n′) =

√
n′. This particular case is considered by Darwish [31] to study the

possibility of observing squeezing, amplitude squared squeezing and quasi probability distribution nonlinear
squeezed states. This particular choice of parameter yields

|N | = |N ′| =

[ ∞∑
n′=0

1
(n′!)2

[
tanh r

2

]2n′]− 1
2

. (48)

Using the de�nition of NLESS and the above choices of parameters we obtain

d(l)E = |N |2
∞∑
n′=0

(2n′ + 1)!
(2n′ − l )!

1
(n′!)2

[
tanh r

2

]2n′
−

[
|N |2

∞∑
n′=0

(2n′ + 1)
1

(n′!)2

[
tanh r

2

]2n′]l+1

, (49)

dh(n− 1)E =
∑n
r=0

∑r
k=1

[
S2(r, k) nCr(−1)r

(
|N |2

∑∞
n′=0(2n′ + 1) 1

(n′!)2

[
tanh r

2

]2n′)n−r(
|N |2

∑∞
n′=0

(2n′+1)!
(2n′+1−k)!

1
(n′!)2

[
tanh r

2

]2n′ − (|N |2∑∞n′=0(2n′ + 1) 1
(n′!)2

[
tanh r

2

]2n′)k)]
(50)

and

SHM (n)E =

[
1

( 1
2 ) n

2

∑n
2
i=0

∑n−2i
k=0

1

2
n
2
t2i

n−2iCk
nC2i |N |2∑∞

n′=Max[ 2k−n+2i
2 ,n−2i−2k

2 ]

√
(2n′+1)!(2n′+1+n−2i−2k)!

(2n′+1−k )!n′!
[

2n′+n−2i−2k
2

]
!

[
− tanh r

2

](4n′+n−2i−2k)/2
]
− 1

(51)

Similarly we can write

d(l)V = |N |2
∞∑
n′=0

(2n′)!
(2n′ − l − 1)!

1
(n′!)2

[
tanh r

2

]2n′
−

[
|N |2

∞∑
n′=0

(2n′)
1

(n′!)2

[
tanh r

2

]2n′]l+1

, (52)
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Figure 3: Signature of HOA and HOSPS in NLESS

dh(n− 1)V =
∑n
r=0

∑r
k=1

[
S2(r, k) nCr(−1)r

(
|N ′|2

∑∞
n′=0(2n′) 1

(n′!)2

[
tanh r

2

]2n′)n−r(
|N |2

∑∞
n′=0

(2n′)!
(2n′−k)!

1
(n′!)2

[
tanh r

2

]2n′ − (|N |2∑∞n′=0(2n′) 1
(n′!)2

[
tanh r

2

]2n′)k)] (53)

and

SHM (n)V =

[
1

( 1
2 ) n

2

∑n
2
i=0

∑n−2i
k=0

1

2
n
2
t2i

n−2iCk
nC2i |N |2∑∞

n′=Max[ 2k−n+2i
2 ,n−2i−2k

2 ]

√
(2n′)!(2n′+n−2i−2k)!

(2n′−k )!n′!
[

2n′+n−2i−2k
2

]
!

[
− tanh r

2

](4n′+n−2i−2k)/2
]
− 1

(54)

Above expressions are graphically represented in Fig. 3-Fig. 7. From Fig. 3 one can easily see that the
condition for �fth order antibunching (HOA) and �fth order subpoissonian photon statistics are satis�ed by
NLESS but the same is not satis�ed by NLVSS (as shown in Fig. 4). Again Fig. 5 shows the absence of
higher order Hong Mandel squeezing in NLESS. However, Fig. 6 shows the presence of higher order Hong
Mandel squeezing in NLVSS. These observations (Fig.3 -Fig 6) strongly establishes the fact that the HOS
and HOSPS are two independent phenomena. This observation is in accordance with the corresponding lower
order observations of Darwish [31] related to these nonlinear squeezed states. Another interesting observation
is that the higher order squeezing parameter (SHM (n)) oscillates between nonclassical region and classical
region in case of NLESS for n ≥ 10. This oscillatory nature is depicted in Fig. 7

5 Conclusions

The criteria of HOSPS and Hong Mandel type of higher order squeezing are derived from a single frame-
work. Using that framework and operator ordering theorem a simpler form of the Hong-Mandel higher order
squeezing criterion is derived and generalized for the multi-photon Bose operators of Brandt and Greenberg.
The relation between HOA, HOSPS and HOS is investigated in detail and certain interesting observations
in this regard has been reported. For example, it is shown that the lower order antibunching, HOA and
HOSPS appear in novel regimes (i.e. they may or may not appear simultaneously as shown in Table 1).
But in literature HOA and HOSPS have been used as synonymous [5]. Our observations establish that it is
incorrect to use the condition of HOA as a test of HOSPS. We have used binomial state, NLESS and NLVSS
as examples of quantum state and have observed that BS always shows HOA and HOSPS but it does not
show HOS for all values of p. So we conclude that existence of HOSPS does not guarantee the existence of
HOS. This is consistent with the corresponding observations in lower order. Further, it is also observed that
the NLVSS which shows higher order squeezing does not show HOSPS and HOA. The opposite is observed

10



Figure 4: NLVSS shows superpoissonian characteristics

Figure 5: NLESS does not exhibit signature of HOS
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Figure 6: Signature of Hong Mandel squeezing in NLVSS

Figure 7: Oscillatory nature of Hong Mandel squeezing in NLVSS
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in NLESS and consequently it is established that the HOSPS and HOS are two independent signatures of
higher order nonclassicality. Present study is the �rst one of his kind in which rigorous attempts have been
made to understand the mutual relationship between di�erent higher order nonclassical states. The e�ort
is successful to provide an insight into the mutual relations between the well known nonclassical states and
opens up a possibility of similar work in broader class of nonclassical states. The simpler framework provided
for the study of possibilities of observing Hong Mandel squeezing is also expected to be useful in the future
works.
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