Investigation of the Synthesis of Some Dehydroalanine Derivatives

Sibel SÜZEN

Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry 06100 Tandoğan, Ankara-TURKEY email: sibel@pharmacy.ankara.edu.tr

John Michael WILLIAMS

 $\label{lem:constraint} \begin{tabular}{ll} University of Wales Swansea, Chemistry Department, Singleton Park, \\ SA2 8PP, Swansea-UK \end{tabular}$

Received 09.06.1999

Dehydroamino acids represent an important class of compound as they are key intermediates in unusual amino acid and in the design of peptides and are constituents of a variety of naturally occurring antibiotic and phytotoxic peptides. In view of the importance of proteins and peptides containing hydroxyamino acids and the problems associated with their synthesis and dehydration, an investigation was performed on model compounds in order to examine the difficulties of the dehydration reactions. The preparation and properties of the model dehydroalanine derivatives have been studied.

Key Words: dehydroalanine, β -elimination, dehydration

Introduction

Dehydroalanine is an α , β -unsaturated amino acid which plays a catalytic role in the active sites of some yeast¹ and bacterial² enzymes. It also occurs in a variety of peptide antibiotics of bacterial origin, including the "lantibiotics" nisin³, subtilin⁴, epidermin⁵, and gallidermin⁶, and more highly modified peptides such as thiostrepton, siomycin-A⁷, nosiheptide⁸, and berninamycin⁹. Novel active antibiotics¹⁰ and immuno-adjuvants¹¹ have been synthesised by substituting dehydroalanine for other residues. Biosynthetically, the dehydroalanine in the lantibiotics originates from the dehydration of serine residues¹². It has been postulated that dehydroamino acid plays an important role in giving the definite peptide conformation that is required for exhibition of biological activities^{13,14}. Although several methods for synthesis of dehydroalanines have been reported15,16, there are still some problems such as unwanted side reactions or neighbouring effects of the protecting groups. At least ten dehydroamino acids have been found in nature while these and others may serve as precursors for other unusual, naturally occurring amino acids¹⁷.

We report here some of the problems encountered during the synthesis of dehydroalanines derivatives. In order to examine the elimination reactions of serine derivatives, the amides and esters shown in Table 1 and Scheme 1 were synthesised.

Scheme 1. Reactions of N- and O-substituted serine derivatives

$$\begin{array}{cccc}
O & O \\
R-NH-CH-C-OCH_3 & \longrightarrow & R-NH-CH-C-R' \\
CH_2OH & CH_2-OR''
\end{array}$$

Scheme 2. Synthesis of substituted serine derivatives

Compound	R	R'	$\mathbf{R}^{\prime\prime}$	Yield (%)
I	Bz	OCH_3	Н	33
II	Bz	$NH-CH(CH_3)_2$	Н	40
III	Bz	$NH-CH(CH_3)_2$	$COCH_3$	44
IV	Z	OCH_3	Н	18
V	Z	$NH-CH(CH_3)_2$	Н	38
VI	Z	$NH-(CH_2)_2CH_3$	Н	72
VII	Z	$NH-(CH_2)_2CH_3$	$SO_2C_6H_4NH_2$	60
VIII	Z	$NH-C_4H_8$	Н	59
IX	Z	$NH-C_4H_8$	$SO_2C_6H_4NH_2$	59
X	$(CH_3)_3C-CO$	OCH_3	H	49
XI	$(CH_3)_3C-CO$	$NH-CH(CH_3)_2$	Н	66

Table 1. Yields and list of substituted serine derivatives

N-Acyl and urethane protected serine amides were studied to mimic serine in a peptide chain, and were compared with esters which underwent elimination more readily. Preparation of the dehydroalanine derivatives shown in Table 2 was not straightforward. A number of methods were used including dehydration of serine derivatives and substitution of the serine OH followed by an elimination reaction to form the alkene derivative.

$$\begin{array}{c} \text{R-NH-C-CO-R'} \\ \text{CH}_2 \end{array}$$

Table 2. N- and O-disubstituted dehydroalanine derivatives

Compound	R'	\mathbf{R}''	Yield (%)
XII	Z	OCH_3	59
XIII	Z	$NH-(CH_2)_2CH_3$	70
XIV	Z	$NH-C_4H_8$	42
XV	Ac	$NH-(CH_2)_2CH_3$	42
XVI	Ac	$NH-CH_2C_6H_4$	54

Experimental

All the chemicals were purchased from Aldrich Chemical Co. All melting points were determined using a digital melting point apparatus (Electrothermal IA9000 series) and were uncorrected. ¹H (400 MHz) and ¹³C (62.9 MHz) NMR spectra were recorded on a Bruker AC 400 spectrometer. Tetramethylsilane was used as a reference. Unless otherwise stated, the deuteriated solvent was CDCl₃ and all the chemical shifts were measured from SiMe₄. J values are given in Hz. The low resolution mass spectra (EI/CI) were obtained with a Fisons VG Quattro II with NH₃ as reagent gas for CI. Accurate mass measurements were recorded on a VG ZAB E mass spectrometer. Column chromatography was carried out with silica gel 60 (230-400 Mesh). All the evaporations were made under reduced pressure. For the synthesis of N-protected serine

derivatives, Bergmann's general procedure¹⁸ was employed. All the esterification reactions were carried out in dry methanol using thionyl chloride. Satisfactory yields were obtained at all stages and no special difficulties were encountered. The method of Harada and Tagasaki described¹⁹ was used²⁰ to synthesise N-acetyldehydroalanine isopropyl amide **XV** (42%, mp 117.5-119.5°C) and N-acetyldehydroalanine benzyl amide **XVI** (54%, mp 123-124°C). The abbreviations used are as follows: DCCI (1,3-dicyclohexyl carbodi-imide), DCU (1,3-dicyclohexylurea), DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), DEAD (diethyl azodicarboxylate), HOBt (1-hydroxybenzotriazole), Tosyl chloride (TsCl, p-toluene sulfonyl chloride), Bz (benzoyl) and Z (benzyloxycarbonyl).

N-Benzoyl-DL-serine isopropyl amide II

A solution of N-benzoyl-DL-serine methyl ester²¹ **I** (0.46g) in isopropyl amine (5ml) was placed in a Teflon vessel which was sealed in a stainless steel container and heated in a Berghof block at 38-40°C for 3 days. Then the mixture was evaporated to dryness. The crude product was purified by column chromatography using ethyl acetate-petroleum spirit to give the pure amide **II** (0.2g, 40%), m.p. 147-149°C; δ_H (d₄-MeOH) 1.16, 1.17 (2×3H, 2d, J 6.6, CH(CH₃)₂), 3.85 (2H, d, J 5.5, CH₂), 4.00 (1H, q, CH(CH₃)₂), 4.58 (1H, t, J 5.5, CH-CO), 7.46 (2H, m, ArH), 7.54 (1H, m, ArH), (7.88 (2H,m, ArH); δ_C 22.60 [(CH₃)₂], 42.72 (CH(CH₃)₂), 57.21 (CH-CO), 63.27 (CH₂), 128.44, 129.52 and 132.87 (Ar-C), 135.09 (quarternary-C1), 169.87 (CH-C=O), 171.28 (Ph-C=O); (CI) m/z 251 (M+1), 233 [(M+1)-H₂O], 192 (M-NHCH(CH₃)₂); (EI) m/z 164 (5%, M-C₃H₇NHCO), 147 (25%, M+1-C₃H₇NHCO-H₂O), 105 (100%, Ph-CO), 77 (21%, C₆H₅); accurate mass (M+1) calculated for C₁₃H₁₉N₂O₃ 251.1396; found, 251.1391.

N-Benzoyl-O-acetyl-DL-serine isopropyl amide III

The method described by Srinivasan²² was used. N-benzoyl-DL-serine isopropyl amide II (0.66g) was dissolved in dry pyridine (4ml) under N₂. The solution was cooled in an ice bath and acetic anhydride (5.38g) was added via syringe. The reaction mixture was stirred at room temperature for 1.5 days. Water (10ml) was added to the mixture and stirred for 15 min. The mixture was then extracted with CH₂Cl₂. The organic layer was washed with dilute HCl, saturated NaHCO₃, and water, dried and filtered, and the solvent was removed. The crude product was recrystallised twice from chloroform-petroleum spirit. The yield was 44%, m.p 154-155°C; δ_H 1.17, 1.18 (2×3H, 2d, J 6.6, CH(CH₃)₂), 2.09 (3H, s, CO-CH₃), 4.09 (1H, m, CH-(CH₃)₂), 4.36 (1H, dd, J 5.2, 11.5, 1H of CH₂), 4.55 (1H, dd, J 6.4, 11.5, 1H of CH₂), 4.85 (1H, dt, CH-CO), 6.23 (1H, d, J 6.5, NH), 7.18 (1H, bd, J 6.6, NH), 7.47 (2H, m, ArH), 7.54 (1H, m, ArH), 7.823 (1H, d, J 8.5, ArH), 7.826 (1H, d, J 8.1, ArH); (CI) m/z 293 (M+1), 234 (M-NHCH(CH₃)₂), 233 (M-OCOCH₃), 105 (Ph-CO), 77 (C₆H₅).

N-Benzyloxycarbonyl-DL-serine isopropyl amide V

A solution of N-Z-DL-serine methyl ester²¹ **IV** (0.6g) in isopropylamine (10ml) was heated at 38-40°C for 3 days as described for the synthesis of compound **II**. The excess isopropylamine was evaporated. The crude product was crystallised from CH₂Cl₂-petroleum spirit to give fine white crystals (0.25g, 38 %, m.p. 132-134°C) of the product **V**; δ_H (d₆-DMSO) 1.02, 1.04 (2×3H, 2d, J 6.5 CH(C<u>H</u>₃)₂), 3.53 (2H, m, C<u>H</u>₂OH)), 3.81 (1H, m, CH(C<u>H</u>₃)₂), 3.98 (1H, m, CH), 4.82 (1H, t, J 5.7, CH₂O<u>H</u>), 5.03 (2H, s, CH₂-Ph), 7.10 (1H, d, J 8.5, NH), 7.36 (5H, m, ArH), 7.69 (1H, d, J 7.6, NH); (EI) m/z 281 (65%, M+1), 190 [100%, (M+1)-CH₂-Ph], 173 (17%, M-OCH₂Ph), 147 (11%, 190-C₃H₇), 108 (10%, PhCH₂OH), 91 (5%, C₇H₇); accurate mass (M+1) calculated for C₁₄H₂₁N₂O₄ 281.1528; found 281.1501.

N-Benzyloxycarbonyl-DL-serine propyl amide VI

A solution of N-Z-DL-serine methyl ester **IV** (0.8g) in propylamine (5ml) was stirred at room temperature for 24h as described for the preparation of compound **II**. The excess propyl amine was evaporated. The crude product was recrystallised twice from CH_2Cl_2 to give the crystalline compound VI in 95% yield (0.84g, m.p. 111°C). No NMR and mass spectral data were reported in the literature²³. δ_H (d₄-MeOH) 0.90 (3H, t, $C\underline{H}_3$ -CH₂), 1.51 (2H, sextet, J 7.4, $C\underline{H}_2$ -CH₃), 3.14 (2H, t, $C\underline{H}_2$ -CH₂-CH₃), 3.73 (2H, d, J 5.3, $C\underline{H}_2$ OH), 4.15 (1H, t, J 5.3, CH), 5.09 (2H, s, CH₂-Ph), 7.32 (5H, m, Ar-H), δ_C : 11.73 (CH₃), 23.51 ($C\underline{C}$ H₂-CH₃), 42.21 ($C\underline{C}$ H₂-CH₂-CH₃), 58.45 (CH), 63.24 ($C\underline{C}$ H₂-OH), 67.80 ($C\underline{C}$ H₂-Ph), 128.92, 129.03 and 129.43 (ArCH), 137.92 (quarternary-C), 158.22 ($C\underline{C}$ O), 172.64 ($C\underline{C}$ O); (CI) m/z 281 (100%, M+1), 237 (3%, M-C₃H₇), 190 [31%, (M+1)-CH₂Ph], 173 (5%, M-OCH₂Ph), 147 (12%, 190-C₃H₇), 108 (8%, PhCH₂OH), 91 (3%, C₇H₇); accurate mass (M+1) calculated for C_{14} H₂₁N₂O₄ 281.1501, found, 281.1496

N-Benzyloxycarbonyl-O-tosyl-DL-serine propyl amide VII

The method described by Photaki²⁴ was used. A solution of N-Z-DL-serine propyl amide VI (1g) in dry pyridine was cooled at -10°C, and then TsCl (2.38g) in dry pyridine (5ml) was added dropwise to the reaction mixture under N₂. The reaction mixture was stirred first at -10°C for an hour and then at room temperature. The excess TsCl was destroyed by addition of a few drops of water. After the addition of water (15ml) the mixture was extracted with CH₂Cl₂ which was washed with 5% HCl, saturated NaHCO₃ and water. The organic layer was dried and evaporated to dryness. The product was obtained as a sticky yellow solid (0.2g) after purification by column chromatography (EtOAc-petroleum spirit). The yield was 17% (Lit²⁵, m.p. 91°C); δ_H 0.85 (3H, t, J 7.3, CH₂-CH₃), 1.44 (2H, sextet, CH₂-CH₃), 2.41 (3H, s, CH₃), 3.13 (2H, q, J 6.7, CH₂-CH₂-CH₃), 4.17 (1H, dd, J 5.1, 10.1, 1H of CH₂), 4.32 (1H, dd, J 5.1, 10.1, 1H of CH₂), 4.49 (1H, dt, CH), 5.96 (1H, d, J 8.1 NH), 6.59 (1H, bt, NH), 7.32 (7H, m, ArH), 7.73 (2H, d, J 8.2, H-2,6 in tolyl group); δ_C 11.24 (CH₂-CH₃), 21.66 (Ar-CH₃), 22.49 (CH₂-CH₃), 41.44 (CH₂-CH₂-CH₃), 53.76 (CH), 67.35 (CH₂-O), 69.14 (Ph-CH₂), 127.98-130.00 (ArCH), 132.02, 145.32 (23 quarternary-C), 156.03, 167.70 (2 C=O); (CI) m/z 435 (5%, M+1), 299 (20%, M-CO₂CH₂Ph), 280 [100%, (M+1)-SO₂C₇H₇], 263 [14%, (M+1)-C₇H₇SO₃H], 173 (10%, 280-OCH₂Ph), 108 (32%, PhCH₂OH), 91 (11%, C₇H₇); accurate mass (M+1) calculated for C₂₁H₂₇N₂O6S 435.159, found, 435.1583

N-Benzyloxycarbonyl-DL-serine pyrrolidine amide VIII

A solution of N-Z-DL-serine methyl ester **IV** (1.19g) in dry pyrrolidine (4.5ml) was stirred at 55°C for one day. The excess pyrrolidine was evaporated to dryness. The crude product was crystallised from CH₂Cl₂-Et₂O twice to give a white crystalline compound **VIII** (0.81g) in 59% yield (m.p. 117-120°C); δ_H 1.88 and 1.97 (4H, 2m, N(CH₂-CH₂)₂), 2.60 (1H, bs, OH), 3.49 (3H, m, 3H of N(CH₂-CH₂)₂), 3.67 (1H, m, 1H of N(CH₂-CH₂)₂), 3.78 (1H, dd, J 4.2, 11.4, 1H of CH₂), 3.86 (1H, dd, J 4.0, 11.4, 1H of CH₂), 4.56 (1H, m, CH), 5.11 (2H, s, Ph-CH₂), 5.97 (1H, d, NH), 7.35 (5H, m, ArH); δ_C 24.07 and 25.96 (N(CH₂-CH₂)₂), 46.22 and 46.80 (N(CH₂-CH₂)₂), 53.84 (CH), 63.37 (CH₂-OH), 67.07 (Ph-CH₂), 128.03, 128.16 and 128.51 (ArCH), 136.19 (quarternary-C), 156.40 (Z C=O),169.26 (amide C=O); (CI) m/z 293 (100%, M+1), 275 [3%, (M+1)-H₂O), 202 [88%, (M+1)-CH₂Ph], 185 (45%, M-OCH₂Ph), 108 (16%, PhCH₂OH), 72 (30%, C₄H₁₀N); accurate mass (M+1) calculated for C15H₂0N₂O4 293.1501, found, 293.1501.

N-Benzyloxycarbonyl-O-tosyl-DL-serine pyrrolidine amide IX

The same reaction procedure was carried out as described for the synthesis of compound VII using N-Z-DL-serine pyrrolidine amide VIII (0.090g), TsCl (0.17g) in dry pyridine (1.5ml). The crude product was purified by crystallisation from $CH_2Cl_2-Et_2O$ to give compound (in 59 % yield) as a pale yellow solid,

m.p. 89-91°C; δ_H 1.91 (4H, m, N(CH₂-C<u>H</u>₂)₂), 2.43 (3H, s, CH₃), 3.49 (4H, m, N(CH₂-CH₂)₂), 4.15 (2H, m, CH-C<u>H</u>₂-O), 4.78 (1H, m, CH), 5.06 (2H, s, Ph-CH₂), 5.61 (1H, d, J 7.5, NH), 7.33 (7H, m, ArH), 7.75 (2H, d, J 8.1, ArH); accurate mass (M+1) calculated for $C_{22}H_{27}N_20_6S$ 447.1590; found, 447.1583

N-Trimethylacetyl-DL-serine methyl ester X

To a vigorously stirred solution of DL-serine methyl ester HCl (1.7g) in saturated NaHCO₃ (25ml), N-trimethylacetyl chloride (1.72g) was added dropwise. Then the reaction mixture was stirred vigorously for 1.5 days at room temperature. The reaction was followed by TLC (MeOH-EtOAc, 1:1 detection with 1% KMnO4 in 10% NaOH^{26,27}). The reaction mixture was extracted with CH₂Cl₂ and the organic layer was washed with 5% HCl, saturated NaHCO₃ water and dried. The crude product was purified by a column chromatography from EtOAc-MeOH (1.09g, 49% yield); δ_H 1.24 (9H, s, (CH₃)₃), 2.05 (1H, s, CH₂O<u>H</u>), 3.79 (3H, s, OCH₃), 3.88 (1H, dd, J 3.5, 11.2, 1H of CH₂), 3.97 (1H, dd, J 4.1, 11.2, 1H of CH₂), 4.64 (1H, q, J 3.8, CH), 6.68 (1H, d, J 7.2, NH); (EI) m/z 204 (28%, M+1), 186 [9%, (M+1)-H₂O], 173 [4%, (M+1)-OCH₃), 144 (11%, M-CO₂CH₃), 126 (20%, 144-H₂O), 85 (53%, Me₃CCO), 57 (100%, Me₃C); accurate mass (M+1) calculated for C₉H₁₈NO₄ 204.124, found, 204.126.

N-Trimethylacetyl-DL-serine isopropyl amide XI

The reaction that was described for the synthesis compound **II** was used. A solution of N-trimethylacetyl-DL-serine methyl ester **X** (1g) in isopropylamine (6ml) was heated at 40°C for 5 days. The reaction was followed by $TLC^{26,27}$. The excess isopropylamine was then evaporated. The crude product was purified by column chromatography (EtOAc-MeOH) to give the pure amide **XI** (0.75g, 66%, m.p. 128-130.5°C); δ_H 1.12 and 1.16 (6H, dd, (CH₃)₂), 1.23 (9H, s, (CH₃)₃), 3.58 (1H, dd, J 4.4, 11.6 1H of CH₂), 3.65 (1H, bs, OH), 4.02 (1H, m, C<u>H</u>(CH₃)₂), 4.13 (1H, dd, J 2.8, 11.6, 1H of CH₂), 4.32 (1H, sept, CH-CO), 6.84 (1H, bd, N<u>H</u>CH(CH₃)₂), 6.86 (1H, bd, (CH₃)3C-CON<u>H</u>); (EI) m/z 212 (29%, M-H₂O), 200 [3%, (M+1)-CH₂OH), 187 (2%, M-C₃H₇), 173 (4%, M-Me3C), 155 (28%, 212-Me3C), 144 (33%, M-C₃H₇NHCO), 127 [96%, (M+1)-H₂O- C₃H₇NHCO], 85 (98%, Me3CCO), 57 (100%, Me₃C); (CI) m/z 231 (M+1); accurate mass (M+1) calculated for C11H₂₃N₂O₃ 231.1709, found, 231.1630

N-Benzyloxycarbonyldehydroalanine methyl ester XII

This compound was prepared from N-Z-DL-serine methyl ester **IV** according to Wojciechowska et al.²⁸ in 59% yield; δ_H 7.31 (6 H, m, ArH and NH), 6.25 (1 H, bs, 1H of C=CH₂), 5.78 (1 H, d, J 1.5, 1H of C=CH₂), 5.15 (2 H, s, CH₂Ph) and 3.80 (3 H, s, OCH₃)

N-benzyloxycarbonyldehydroalanine propyl amide XIII

The N-Z-O-Ts-DL-serine propyl amide VII (0.1316g) was dissolved in dry methanol (2ml) under N₂. Na (7.76mg) in dry methanol (0.1ml), added to the reaction mixture via syringe and stirred for 30 min. A few ml of water were added and the mixture was then extracted with CH₂Cl₂. The organic phase was dried and evaporated. The crude product was purified by column chromatography (EtOAc/petroleum spirit) to give a white crystalline compound XIII. The yield 50%, m.p. 66-68°C (Lit¹³ 68°C). No NMR or mass spectral data were published; δ_H 0.94 (3H, t, J 7.4, CH₃-CH₂), 1.56 (2H, sex, J 7.4, CH₂-CH₃), 3.29 (2H, dq, J 6.1, 7.4, CH₂-CH₂-CH₃), 5.06 (1H, t, J 1.7, C=CH), 5.16 (2H, s, Ph-CH₂), 6.04 (1H, bs, =CH), 6.19 (1H, bs, NH), 7.35 (5H, m, ArH), 7.59 (1H, bs, NH); °C 11.31 (CH₃), 22.66 (CH₂-CH₃), 41.81 (CH₂-CH₂-CH₃), 66.88 (Ph-CH₂), 97.75 (=CH₂), 128.11, 128.29 and 128.58 (ArCH), 134.69 (C=), 135.94 (quarternary-C), 153.32 and 163.62 (2 C=O); (CI) m/z 263 (100%, M+1), 219 (12%, M-C₃H₇), 155 (14%, M-OCH₂Ph), 129

(8%, M-CO₂CH₂Ph), 108 (5%, PhCH₂OH), 91 (7%, C₇H₇)

N-Benzyloxycarbonyl-dehydroalanine pyrrolidine amide XIV

N-Z-O-tosyl-DL-serine pyrrolidine amide **IX** (38 mg) was dissolved in dried CH₂Cl₂ (1.5ml) and Na (2mg) in dry MeOH (0.5ml) was added via syringe under N₂. The solution was stirred at room temperature for 1.5 h. The reaction solution was then washed with water. The organic layer was dried and filtered and the solvent removed under reduced pressure. The crude product was purified by column chromatography using EtOAc-petroleum-spirit to give the alkene **XIV** as an oil (10mg, 42% yield); δ_H 1.89 (4H, m, N(CH₂-CH₂)₂), 3.52 and 3.65 (4H, dd, N(CH₂-CH₂)₂), 5.03 (1H, s, C=CH), 5.14 (2H, s, Ph-CH₂), 6.05 (1H, bs, C=CH), 7.34 (6H, m, Ph and NH); °C 24.00 and 26.56 (N(CH₂-CH₂)₂), 47.02 and 50.13 (N(CH₂-CH₂)₂), 66.83 (Ph-CH₂), 101.84 (=CH₂), 128.12, 128.24 and 128.55 (ArCH), 135.15 (C=), 136.01 (quaternary C), 153.37 (O=C-N), 164.80 (O=C-O).

Results and Discussion

Schmidt et al.²⁶ reported that the elimination of water from β -hydroxy- α -amino acid derivatives is a particularly valuable method for alkene synthesis. DCCI is one of the most common reagents used for the β -elimination^{29,30}. N-Benzoyl-DL-serine methyl ester **I** was treated with DCCI and CuCl in dry CH₂Cl₂ under N₂ at -5°C and then 40°C overnight. The product signals were detected on the NMR spectrum (alkene protons δ_H 6.00 and 6.80 in CDCl₃), but during the purification, decomposition occurred. The same reaction, performed on the corresponding isopropyl amide II in DMF, gave a similar result. Dehydration of some serine methyl esters was achieved in acceptable yields by Wojciechowska et al.²⁸ who used DEAD and triphenyl phosphine as reagents. An attempt to prepare N-benzoyldehydroalanine isopropyl amide from the serine isopropyl amide II under these conditions gave 2-phenyl-4-isopropylamido-1,3-oxazoline resulting from neigbouring group participation of the N-benzoyl group. This oxazoline, which was isolated with some of the by-product, 1,2-diethoxycarbonylhydrazine, was identified by comparison of the ¹H and ¹³C NMR data with that for the closely related 2-phenyl-4-methoxycarbonyl-1,3-oxazoline³¹.

One important and well-used approach involves the β -elimination reactions of serine and threonine derivatives containing suitable leaving groups¹⁸. To synthesise N-benzoyl-O-tosyl-serine isopropyl amide, the alcohol II was treated with tosyl chloride in dry pyridine^{18,24,25} at -5°C. The analyses of the crude product by NMR showed that the expected tosylate derivative was the minor product. The crude product was found to be unstable. Nakagawa et al.³² studied the tosylation of hydroxy amino acids and found that the O-tosylated products gradually decomposed, especially in solution. Schluter et al.³³ mentioned the same problem and reported that the O-tosylated serine derivatives cannot be stored under atmospheric humidity. Their attempts to synthesise N-acetyl-O-tosyl-DL-serine methyl ester using TsCl in dry pyridine failed at several temperatures and reaction concentrations. Since carboxylic esters are more stable than sulphonic esters, the lithium bromide/DBU-promoted elimination of acetic acid³⁴ was next tried. N-Benzoyl-O-acetyl-DL-serine isopropyl amide III was prepared in 44% yield according to the method of Anderson et al. 35 and reacted with lithium bromide and DBU in dry THF. However, no alkene was detected and the starting material was recovered. In earlier work^{9,23}, it was found that N-benzyloxycarbonyl serine derivatives did not form oxazolines by neighbouring-group reaction of the urethane carbonyl group. N-Benzyloxycarbonyldehydroalanine methyl ester XII was synthesised successfully from N-benzyloxycarbonyl serine methyl ester IV as described by Wojciechowska et al.²⁸. The NMR analyses showed the expected alkene signals (δ_H 5.78 and 6.25 in CDCl₃). Wojciechowska et al.²⁸ gave the same signals δ_H values as 5.6 and 6.1. The alkene was found to be unstable at room temperature and under atmospheric humidity. Alternative dehydration conditions involving 1.17 equivalent of DCCI and 0.4 equivalent of CuCl in dry CH₂Cl₂ gave the alkene **XII** but in unsatisfactory yield and contaminated with DCU. The by-product DCU³⁶, which is removed by filtration, is not entirely insoluble, particularly in the presence of other dissolved materials. The solubility of DCU was investigated by Tartar and Gesquiere³⁷ who suggested that urea derivatives such as DCU had some solubility in almost all organic solvents.

N-Benzyloxycarbonyl-DL-serine propyl amide VI and N-benzyloxycarbonyl-DL-serine pyrrolidine amide VIII were easily synthesised using N-benzyloxycarbonyl-DL-serine methyl ester IV and tosylated. The tosylated compounds VII and IX were found to be unstable at room temperature and were stored in a refrigerator under N₂. To synthesise the dehydro derivatives XIII and XIV via tosyl elimination, a reaction with CH₃ONa was carried out. The tosyl elimination was found to be the best way to synthesise the dehydro derivatives of these and related amides. To investigate the tosyl elimination from compounds VII and IX using a different reagent from CH₃ONa two small-scale reactions were carried out using DBU²⁰ in CDCl₃ and d₆-DMSO. Both reactions were followed by NMR and the expected alkene signals were detected 4 min after the reaction was started. Alkene formation was complete in 40-45 min. In contrast, the reaction of the N-acylated amide XI with 4 equivalents of TsCl in dry pyridine at room temperature gave a low yield (7%) of the tosylate, which decomposed upon attempted recrystallisation.

Dehydration attempts of the N-benzyloxycarbonyl-DL-serine pyrrolidine amide **VIII** were unsuccessful due to decomposition of the resulting product, although the expected alkene signals (δ_H , 5.01 and 6.02 in CDCl₃) were detected by NMR. The reaction with DCCI (1.3eq.) was carried out in dry DMF in the presence of freshly purified CuCl. Synthesis of N-trimethylacetyl dehydroalanine isopropyl amide using 1.3 equivalent of DCCI in dry CH₂Cl₂ in the presence of CuCl was unsuccessful. An alternative successful route to amide derivatives of N-acyldehydroalanine involved the coupling of N-acyldehydroalanine with amines in the presence of DCCI and N-hydroxysuccinimide¹⁹. The isopropyl and benzyl amides of N-acetyldehydroalanine were thus prepared²⁰.

Syntheses of some protected dehydroal anine derivatives (such as N-Bz, N-Z and N-trimethylacetyl protected) by β -elimination reactions of serine derivatives^{9,30} were problematical because the dehydroal anine products are labile and decompose during the isolation³⁸.

Acknowledgement

The authors are grateful to the EPSRC Mass Spectrometry Unit (Swansea) for the mass spectra, to Mr M Nettle for NMR spectra, and the EPSCR for a grant for NMR equipment.

References

- 1. J.R. Parkhurst and D.S. Hodgins, Arch. Biochem. Biophys., 152, 597-605 (1972).
- 2. R.B. Wickner, J.Biol. Chem., 244, 6550-6552 (1969).
- 3. E. Gross, and J. Morell, J. Am. Chem. Soc., 89, 2791-2792 (1967).
- 4. E. Gross, J.L. Morell, and L.C. Craig, Proc. Natl. Acad. Sci. U.S.A., 62, 952-956 (1969).

- H. Allgaier, G. Jung, R.G. Werner, U. Schneider and H. Zahner, Angew. Chem., Int. Ed. Engl. 24, 1051-1053 (1985).
- R. Kellner, G. Jung, T. Horner, H. Zahner, N. Schnell, K.D. Entian and F. Gotz, Eur. J. Biochem., 177, 53-59 (1988).
- 7. K. Tori, K. Torika, K. Okabe, M. Ebata and H. Otsuka, Tetrahedron Lett., 185-188 (1976).
- 8. C. Pascard, A. Ducruix, J. Lunel and T. Prange, J. Am. Chem. Soc., 99, 6418-6423 (1977).
- 9. C. Pierce and K.L.Jr. Rinehart, J. Am. Chem. Soc., 101, 5069-570 (1979).
- 10. S. Ando, T. Kato and N. Izumiya, Int. J. Pept. Protein Res., 25, 15-26 (1985).
- B. Kundu, S.Y. Rizvi, W. Haq, R.P. Saxena, K.C. Saxena and K.B. Mathru, Indian J. Bichem. Biophys., 24, 129-132 (1987).
- 12. S. Banerjee and J.N. Hansen, J. Biol. Chem., 263, 9508-9514 (1988).
- 13. S. Bhatnagar, G.S. Rao and T.P. Singh, Biosystems, 34 (1-3), 143-8, (1995).
- 14. Y. Shimohigashi, S. Lee, T. Kato and N. Izumiya, Bull. Chem. Soc. Jpn., 51, 584 (1978).
- 15. S. Nomoto, A. Sano and T. Shiba, Tetrahedron Lett., 521-522 (1978).
- 16. E. Breitholle and C. H. Stammer. Tetrahedron Lett., 2381 (1975).
- 17. B.W.Bycroft, **Nature** (London), 224, 595 (1969).
- 18. M. Bergmann, J. Biol. Chem., 110, 471 (1935).
- 19. K. Harada and M. Takasaki, Bull. Chem. Soc. Jap., 57, 1427 (1984).
- 20. S. Suzen and J. M. Williams, J. Pep. Sci., 5, 283-286 (1999).
- 21. C. W. Wharton, A. C. Bowden, K. Brocklehurst and E. M. Crook, Biochem. J., 141, 371 (1974).
- 22. A. Srinivasan, R. W. Stephenson and R. K. Olsen. J. Org. Chem., 42, 2253 and 2256 (1977).
- 23. S. Ginsburg and I. B. Wilson, J. Amer. Chem. Soc., 86, 4716 (1964).
- 24. I. Photaki, J. Am. Chem. Soc., 85, 1123 (1963).
- 25. N. Boyd and R. H. Hauser, J. Am. Chem. Soc., 75, 5896 (1953).
- 26. U. Schimidt, A. Liberknecht and J. Wild, Synthesis, 159 (1988).
- 27. M. L. Wolfrom, D. L. Patin, R. M. Lederkremer, J. Chromatography 17, 488 (1965).
- H. Wojciechowska, R. Pawlowicz, R. Andruszkiewicz and J. Gryzbowska, Tetrahedron Lett., 4063-4064 (1978).
- 29. M. J. Miller, J. Org. Chem., 45, 3131 (1980).
- 30. J. P. Greenstein, M. Winitz, Chemistry of the amino acids, V2, (1961), John Wiley and Sons, Inc.
- 31. S. Cossu, G. Giacomelli, S. Conti and M. Falorni, Tetrahedron, 50, 5083-5090 (1994).
- 32. Y. Nakagawa, T. Tsuno and K. Nakajima, Bull. Chem. Soc. Jap., 45, 1162 (1972).
- 33. D. N. Schluter, G. Mamantov and J. R. Vercellotti, Carbohydr. Res., 38, 333 (1974).
- 34. T. L. Sommerfeld and D. Seebach, Helv. Chim. Acta., 76, 1702 (1993).
- 35. B. M. Anderson, E. H. Cordes and W. P. Jencks, J. Biol. Chem., 236, 455 (1961).
- 36. J. C. Sheehan, P. A. Cruickshank and G. L. Boshart, J. Org. Chem., 26, 2525 (1961).
- 37. A. Tartar and J. C. Gesquiere, J. Org. Chem., 44, 5000 (1979).
- 38. C. Shin, K. Okumura, A, Ito and Y. Nakamura, Chem. Soc. Jpn. Chem. Lett., 1301 (1994).