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Abstract. We focus on the implementation and security aspects of cryp-
tographic protocols that use Type 1 and Type 4 pairings. On the imple-
mentation front, we report improved timings for Type 1 pairings derived
from supersingular elliptic curves in characteristic 2 and 3 and the first
timings for supersingular genus-2 curves in characteristic 2 at the 128-bit
security level. In the case of Type 4 pairings, our main contribution is a
new method for hashing into G2 which makes the Type 4 setting almost
as efficient as Type 3. On the security front, for some well-known proto-
cols we discuss to what extent the security arguments are tenable when
one moves to genus-2 curves in the Type 1 case. In Type 4, we observe
that the Boneh-Shacham group signature scheme, the very first protocol
for which the Type 4 setting was introduced in the literature, is trivially
insecure, and we describe a small modification that appears to restore
its security.

1 Introduction

Bilinear pairings have become an extremely useful instrument in the cryptogra-
pher’s toolbox. Initial breakthroughs such as the one-round tripartite key agree-
ment protocol of Joux [23] and a practical solution to the problem of identity-
based encryption by Boneh and Franklin [5] have led to an almost exponential
volume of research to find novel cryptographic applications of pairings.

At an abstract level, for three groups G1, G2 and GT , a pairing is a func-
tion e : G1 × G2 → GT that is bilinear and non-degenerate. For cryptographic
applications we also need the pairing to be efficiently computable. In concrete
settings such cryptographically suitable bilinear pairings can be realized over
elliptic curves or, more generally, over hyperelliptic curves and abelian varieties.
Naturally the groups G1,G2 and GT as well as the pairing function are con-
strained by the underlying mathematical structure over which they are defined.

⋆ An abbreviated version of this paper appeared in the proceedings of the WAIFI 2010
conference, Lecture Notes in Computer Science, 6087 (2010), 114-134.
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However, as noted by Galbraith, Paterson and Smart [17], protocol designers
sometimes treat the bilinear pairing as a “black box”. As a result the designers
may gloss over such important structural constraints and the subtleties they in-
troduce in the protocols and their security arguments. This in turn may lead to
erroneous or misleading claims about the efficiency and security of pairing-based
protocols. For example, protocols employing bilinear pairings sometimes assume
that the groups G1 and G2 also possess some additional properties such as effi-
cient hashing into G2 or the existence of an efficiently computable isomorphism
ψ : G2 → G1. Different types of pairings can be realized that possess the proper-
ties required of a particular protocol, but not all protocols can be implemented
using the same type of pairing.

This motivated a classification of bilinear pairings into different types based
on the concrete structures of the underlying groups [17]. The focus of that work
was on three types of pairings where the groups G1, G2 and GT are of the
same prime order n. When G1 = G2, the pairing is said to be symmetric (called
Type 1 in [17]). The pairing is asymmetric when G1 6= G2. If there is an efficiently
computable isomorphism ψ : G2 → G1 then the pairing is said to be of Type 2;
if no such isomorphism is known it is called a Type 3 pairing. In either case no
efficiently computable isomorphism from G1 to G2 is known.

Symmetric pairings (Type 1) are derived from supersingular (hyper)elliptic
curves whereas asymmetric pairings are derived from ordinary curves. Known
examples of such pairings are the Weil and Tate pairings and their modifications
such as the eta pairing [2], the ate pairing [22], and the R-ate pairing [25].

Cryptographic protocols employing pairings are usually described in the sym-
metric setting, allowing for a relatively simpler description of the protocol and its
security argument. However, current research indicates that, at higher security
levels, Type 1 pairings are expected to be slower on many platforms. So from the
point of view of efficient implementation, Type 2 and Type 3 are considered bet-
ter choices. And, for a protocol originally proposed in the symmetric setting, it is
usually possible to translate the protocol description and the security argument
to the asymmetric setting.1

In the asymmetric setting, current research suggests that Type 3 is overall a
better choice [17]. This is because of the reduced cost of pairing evaluation and
also the relatively smaller size of elements of G2 which in turn reduces the cost
of other operations such as group operations in G2 or testing membership in G2.
The major functional distinctions between the Type 3 and Type 2 settings are
that, first of all, in the former it is possible to hash into G2, which is infeasible in
the latter; and, secondly, whereas there is an efficiently computable isomorphism
ψ : G2 → G1 in Type 2, no such efficiently computable map is known for Type 3.
Because in some cases the description of a protocol or its security argument
employed the map ψ, it was earlier thought that either such protocols cannot be
implemented in Type 3 [17] or a stronger complexity assumption was needed [6,
33]. Contrary to this belief it has been recently argued that any protocol or

1 We are not aware of any protocol that has to be necessarily restricted to the sym-
metric setting.



3

security argument in Type 2 has a natural, efficient, and secure counterpart in
Type 3 [11]. Hence, in the asymmetric setting there appears to be no good reason
to use Type 2 instead of Type 3.

However, not all pairing-based protocols available in the literature can be
implemented in Type 3 (or Type 2). For example, consider the case of the group
signature scheme of Boneh and Shacham [7] with verifier-local revocation. In
this protocol a random element of G2 is first obtained through hashing into
G2 and then one applies the map ψ on this element to obtain the corresponding
element of G1. As observed in [33], the protocol cannot be implemented in Type 2
because in that setting we do not have any algorithm to securely hash into G2,
and furthermore cannot be implemented in Type 3 because in that case we do
not know how to compute ψ for a random element of G2.

Perhaps realizing this shortcoming of Type 2 (and Type 3), Shacham in his
PhD thesis [32] introduced a new kind of pairing. In this setting, while G1 and
GT are cyclic groups of prime order n, G2 is taken to be a group of exponent n,
whose order is some power of n. This was later termed a Type 4 pairing [12, 17].
Like Type 2 and Type 3, a Type 4 pairing can be realized over ordinary elliptic
or hyperelliptic curves. But unlike Type 2 or Type 3, here one can both hash
into G2 and also have an efficiently computable homomorphism ψ : G2 → G1.
However, the hashing into G2 is reported to be quite expensive and there is a
small probability that the pairing can be degenerate. The Boneh-Shacham group
signature scheme of [7] is described in the Type 4 setting in [32] with a standard
reductionist security argument. Several other protocols that use a Type 4 pairing
have been proposed [29, 8] based on the Boneh-Shacham scheme. Thus, protocols
that require hashing into G2 followed by an application of ψ can be implemented
in the Type 4 setting although the protocol description may require some special
care, and as noted in [12] the security argument can become cumbersome.

Protocols such as the Boneh-Shacham group signature scheme [7] can also be
easily implemented in Type 1 because here G1 = G2 and hashing into G1 is very
efficient. Also recall that most pairing-based protocols were originally proposed
in this setting.2 The main drawback of Type 1 is that the bitlengths of the ele-
ments of G1 will be larger (because of the smaller embedding degrees than what
is achievable with asymmetric pairings) and, as a result, pairing computation and
operations in G1 can be expected to be slower at high security levels. However,
instructions on next-generation processors such as the forthcoming Intel ma-
chines may make Type 1 in characteristic 2 (and 3) fields an attractive choice.
Some authors [2, 31] have also proposed to use genus-2 curves in the symmetric
setting and use degenerate divisors to speed the pairing computation.

Our contribution. For efficient and secure implementation of the majority of
pairing-based protocols it suffices to work in the Type 3 setting. However, as
the preceding discussion suggests, we also need to consider the issues of efficient
and secure implementation of protocols in the Type 1 and Type 4 settings.

2 We note that not all protocols can be implemented securely in Type 1, e.g., those
requiring the extended Diffie-Hellman problem (XDH or SXDH) to be hard [4, 9, 13].
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While the question of efficiency does not require any additional justification, we
draw attention to the question of security of a cryptographic protocol in these
settings for the following reasons. A protocol described in the Type 1 setting
which is implemented over a genus-2 curve may require a rewriting of the security
argument to check whether the original security assurance is indeed maintained
in this setting. Similarly, protocols described in the Type 4 setting may require
special scrutiny because of the structure of the group G2, in particular its effect
on the way the pairing is actually employed in the protocol. In this work we
report on both these aspects of efficiency and security in the Type 1 and Type 4
settings.

Type 1. Following recent work of Beuchat et al. [3] and Aranha et al. [1], we
provide improved timings for software implementation of Type 1 pairings over
elliptic curves in characteristic 2 and characteristic 3 fields. We also report the
first pairing timings for supersingular genus-2 curves at the 128-bit security level.
We next take a look at the security arguments of some well-known protocols
when implemented with these genus-2 curves and with degenerate divisors. Our
analysis shows that for the Boneh-Lynn-Shacham (BLS) signature scheme [6]
one needs a new hardness assumption that is trivially equivalent to the security
of the scheme. In other words, the reductionist argument does not provide any
meaningful assurance about the actual security of the protocol in this setting.
A similar analysis is carried out for the Boneh-Franklin IBE scheme [5] and we
observe that here also one needs to modify the original security assumption.

Type 4. As already mentioned, the main motivation for working in Type 4 is
that it is possible to hash into G2. However, in terms of efficiency that appears
to be a major limitation of the Type 4 setting as hashing into G2 has been
reported to be computationally quite expensive [12, 17]. Here we propose a new
technique to hash into G2 which is surprisingly cheap. This method is built upon
the shorter representation of elements of G2 proposed in [10] in the context of the
Type 2 setting. We also report the performance benefits that can be obtained for
pairing evaluation and other operations involving elements of G2 in the Type 4
setting. As we have already noted, Type 4 pairings should be carefully used
in cryptographic protocols. We show that the Boneh-Shacham group signature
scheme as described in Shacham’s thesis [32] is trivially insecure. We describe a
small modification that appears to restore security. The signature now contains
an element of G2, however with our new representation of elements of G2 the
corresponding increase in the signature size is not very significant.

Organization. The remainder of the paper is organized as follows. In §2 we
report the pairing computation times in Type 1 when using degenerate divisors
in genus-2 curves over characteristic 2 fields at the 128-bit security level and
also discuss the security aspects of the BLS signature and Boneh-Franklin IBE
schemes in this setting. In §3 we describe the implementation aspects of Type 4
pairings derived from ordinary elliptic curves having even embedding degree
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and show how one can efficiently hash into G2. We then show that the Boneh-
Shacham group signature scheme as described [32] is insecure and how a small
modification appears to restore security without significant performance penalty.

Notation. In the remainder of this paper, the first component G1 of the domain
of a pairing e : G1 × G2 → GT is the order-n subgroup of E(Fq) or JC(Fq),
where E is an elliptic curve defined over Fq and JC is the divisor class group of
a genus-2 hyperelliptic curve C defined over Fq. If e is a Type 1 pairing, then
G2 = G1. If e is a Type 2, Type 3 or Type 4 pairing, then G2 = T, T0, E[n],
respectively, where E[n] is the n-torsion group of E, T0 is the Trace-0 subgroup
of E[n], and T is any order-n subgroup of E[n] different from G1 and T0; cf. §3
for further details.

2 Type 1 pairings on supersingular genus-2 curves

In this section, we give the context for performance comparisons at the 128-
bit security level for pairings based on supersingular genus-2 curves defined over
characteristic 2 finite fields against those built on elliptic curves. Security aspects
of the BLS signature scheme and the Boneh-Franklin IBE scheme are discussed
in the genus-2 setting.

2.1 Type 1 pairings

We briefly describe three specific symmetric pairings derived from supersingular
elliptic and hyperelliptic curves defined over fields of small characteristic; see
[2] for details. The elliptic curves E are defined over F21223 and F3509 , and have
embedding degrees 4 and 6, respectively. The genus-2 curve C is defined over
F2439 and has embedding degree 12. The pairings are e : G1 × G1 → GT , where
G1 is the subgroup of prime-order n of E(F21223), E(F3509) or JC(F2439), and GT

is the order-n subgroup of F∗
24·1223 , F∗

36·509 or F∗
212·439 , respectively. These pairings

attain the 128-bit security level because Pollard’s rho method for computing
discrete logarithms in E(F21223), E(F3509 ) and JC(F2439) has running time at
least 2128, as do the index-calculus algorithms for computing discrete logarithms
in the extension fields F24·1223 , F36·509 and F212·439 [27].

For genus 2, we focus on the most favourable case where the pairing is on
degenerate divisors, each of which is essentially a point on the curve. The pairing
algorithms given in [2] for the cases under consideration are similar in the sense
that there is a “Miller evaluation” loop, followed by an exponentiation in the
extension field to select a canonical representative. The final exponentiation is
relatively inexpensive, and so the pairing cost can be estimated by counting field
multiplications in the main loop.

Elliptic curve over characteristic 2 field. Let q = 21223. We chose the
representation F21223 = F2[z]/(z

1223+z255+1). Squaring is inexpensive relative to
multiplication, and square roots are likewise inexpensive in this representations



6

since
√
z = z612 +z128 and

√
c =

∑

c2iz
i +
√
z

∑

c2i+1z
i for c =

∑

ciz
i ∈ F21223 .

The extension field Fq4 is represented using tower extensions Fq2 = Fq[u]/(u
2 +

u+ 1) and Fq4 = Fq2 [v]/(v2 + v + u).
The supersingular elliptic curve E1/F21223 : y2 + y = x3 + x has embedding

degree 4. We have #E1(F21223) = 5n where n = (21223 +2612 +1)/5 is a 1221-bit
prime. The doubling formula is (x, y) 7→ (x4 +1, x4 + y4 +1), and hence the cost
of doubling a point is relatively small.

Barreto, Galbraith, Ó hÉigeartaigh and Scott [2] give an algorithm for com-
puting the ηT pairing, with cost estimated as 612× 7 = 4284 Fq-multiplications.
The estimate is based on the number of multiplications in the main loop, and
ignores the relatively minor cost of the final exponentiation (1 inversion in Fq4 ,
3 multiplications in Fq4 , and 612 squarings in Fq).

Elliptic curve over characteristic 3 field. Let q = 3509. We chose the
representation F3509 = F3[z]/(z

509−z318−z191+z127+1). Cubing is inexpensive
relative to multiplication, and the choice of reduction polynomial enables cube
roots to be computed significantly faster than an Fq-multiplication since z1/3 =
z467 +z361−z276 +z255 +z170 +z85 and z2/3 = −z234 +z128−z43. The extension
field Fq6 is represented using tower extensions Fq3 = Fq[u]/(u

3 − u − 1) and
Fq6 = Fq3 [v]/(v2 + 1).

The supersingular elliptic curve E2/F3509 : y2 = x3 − x + 1 has embedding
degree 6. We have #E2(F3509) = 7n where n = (3509 − 3255 + 1)/7 is an 804-bit
prime. The tripling formula is (x, y) 7→ (x9 − 1,−y9), and hence the cost of
tripling a point is relatively small.

The algorithm of Barreto, Galbraith, Ó hÉigeartaigh and Scott [2] for com-
puting the ηT pairing has a cost estimate of 255× 14 = 3570 Fq-multiplications.
As in the characteristic 2 case, the relatively minor cost of the final exponentia-
tion has been ignored.

Genus 2 curve over characteristic 2 field. Let m = 439 and q = 2m. We
chose the representation F2439 = F2[z]/(z

439 + z49 + 1). Squaring and square
root are inexpensive relative to multiplication in this representation, with

√
z =

z220 + z25. The extension field Fq12 is represented using tower extensions Fq6 =
Fq[w]/(w6 + w5 + w3 + w2 + 1) and Fq12 = Fq6 [s]/(s2 + s+ w5 + w3).

The curve C/F2439 : y2 + y = x5 + x3 has embedding degree 12. The divisor
class group JC has #JC(Fq) = 22m + 2(3m+1)/2 + 2m + 2(m+1)/2 + 1 = 13n,
where n is an 875-bit prime. The pairing is defined for divisors D = (P1) +
(P2)−2(∞) where Pi are points on the curve; however the computation is faster
for degenerate divisors where the support consists of a single point [2, 26]. If D =
(P )−(∞) is such a degenerate divisor (with P ∈ C(Fq)), then it is not necessarily
the case that jD is degenerate; however, 8D is degenerate [2]. Furthermore, this
octupling is relatively inexpensive, and is given by 8D = (φπ6P ) − (∞) where
π(x, y) = (x2, y2) and φ(x, y) = (x + 1, y + x2 + 1). Exploiting this octupling,
the algorithm in [2] for ηT on degenerate divisors has an approximate cost of
219 · 69 = 15111 Fq-multiplications (see [30] for additional details).
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Comparisons. Barreto et al. [2] give experimental data for pairing times at
the “950-bit” and “1230-bit” security levels, where the level is in terms of the
bitsize of the extension field Fqk . Times (in milliseconds) for the ηT pairing in
the 1230-bit case on a 3GHz Intel Pentium 4 are given in Table 1.

Table 1. Times (in milliseconds) from [2] for the ηT pairing at the “1230-bit security
level” on a 3GHz Intel Pentium 4.

C(F2
103)

E(F2
307) E(F3

127) degenerate general

3.50 5.36 1.87 6.42

Their work shows significant incentive to use genus-2 curves in the case that
the pairing is on degenerate divisors. However, field multiplication for F2103 ex-
ploited 128-bit single-instruction multiple-data (SIMD) registers on the Pentium
4, while the other fields used only 32-bit registers. The rationale for limiting the
wide registers to the genus-2 case was that “Great potential savings can be real-
ized if an element of the base field can be represented in a single machine word,
rather than using a multi-precision representation” and a factor 2 acceleration
was reported for field multiplication via the wide registers.

This difference in implementations is especially significant since the Pentium
4 is 32-bit. The techniques are perhaps less elegant when applied to larger fields,
but similar acceleration can be obtained via wide registers for the fields in the
other pairings. For example, [20] examined the acceleration offered by SIMD
registers for pairings at a higher security level using the fields F21223 and F3509 ,
but did not consider an example from genus 2. Beuchat et al. [3] and Aranha et al.
[1] subsequently demonstrated significantly faster field arithmetic on platforms
considered in [20].

In short, the implementation techniques for the times in [2] favour the genus-
2 curve. If the registers used in F2103 were applied to F2307 , then we would expect
that the pairing times would be significantly closer. On the other hand, we are
interested in the 128-bit security level, where the higher embedding degree of the
genus-2 curve is an advantage. Our intent here is to give a meaningful comparison
at the 128-bit security level among the various pairings on a “reference platform”
using whatever methods are believed to be fastest in each scenario. The Pentium
4 is no longer of primary interest, and so we chose the popular 64-bit Intel Core2.

Timings for our implementations appear in Table 2. Pairings for the Barreto-
Naehrig (BN) curve (see §3.1) over a prime field are expected to be fastest at
this security level, in part because the embedding degree is 12 and the platform
possesses a relatively fast integer multiplier on 64-bit operands. Details on this
timing using the MIRACL library appear in [20].

Beuchat et al. [3] discuss optimization strategies and set benchmarks for
pairing times in the elliptic curve cases over characteristic 2 and 3. As in [1],
a focus is on parallelizing the pairing computation, although the times for a
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Table 2. Timings (in clock cycles) on an Intel Core2. Field operations in characteristic
2 and 3 use 128-bit SIMD registers and exploit shift and shuffle instructions introduced
with SSSE3. The timing for the BN curve is from [20].

Field, curve, and pairing Field mult Pairing

E/Fp256, R-ate .31 10
E/F3

509 , ηT 3.86 15.8
E/F2

1223 , ηT 3.84 19.0
C/F2

439 , ηT on degenerate divisors .86 16.4

Units: 103 cycles 106 cycles

single-core computation were also impressive. The times in Table 2 are faster,
but are consistent in the sense that characteristic 3 offers an advantage. On the
other hand, this advantage is not as large as in [3], mainly due to the difference
in characteristic 2 multiplication.

Compared with [2], applying the wide registers across fields has narrowed
differences. Genus 2 has lost much of the performance advantage, although it may
still be attractive from an implementation and keysize perspective for protocols
having pairings on degenerate divisors. The gap between the pairing from the BN
curve and those over characteristic 2 and 3 is perhaps narrower than expected.3

The experimental data in Table 1 gives a factor 3.4 penalty for a pair-
ing on general divisors. In special cases, the cost will be less. Nondegener-
ate divisors (P1) + (P2) − 2(∞) are of two forms, either Pi ∈ C(Fq) or P1

and P2 are conjugates in C(Fq2 ) \ C(Fq). A pairing on divisors can be calcu-
lated as a product of pairings on points; e.g., in the case where Pi ∈ C(Fq),
ηT ((P1) + (P2) − 2(∞), (P ) − (∞)) = ηT (P1, P )ηT (P2, P ) at twice the cost of
a pairing on degenerate divisors. However, this approach may not be the most
efficient when points lie in C(Fq2) \ C(Fq) [2]. Lee and Lee [26] give explicit
formulas for the pairing on general divisors, with estimated cost (from field mul-
tiplications, where an Fq12 -multiplication is counted as 45 Fq-multiplications) as
a factor 4 over the pairing on degenerate divisors.

Implementation notes. Compared with [3] and [20], the characteristic 2 mul-
tiplier (described in [1]) uses twice as much data-dependent precomputation but
fewer shift operations. Some of the improvement against [20] was achieved by
reducing the number of move operations (a weakness underestimated in [20]),
although a portion of the acceleration was obtained by exploiting a shift opera-
tion introduced with the Supplemental Streaming SIMD Extension 3 (SSSE3).4

The faster shift is also useful in characteristic 3 – additions are more expensive

3 The comparison in [3] is against the slower ate pairing, which gives the timing for
the BN curve as 15 × 106 cycles.

4 SSSE3 was also exploited in [1] to obtain very fast squaring and root for a parallel
implementation that performed these operations in excess; these accelerations give
only minor reduction in pairing times here (e.g., 6% for the pairing over F2

1223).
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than in characteristic 2, but field multiplication performs more shifting. Multi-
plication for F21223 is via one application of Karatsuba where elements are split
at 616 bits (a multiple of 8 that allows fast shifting and eliminates the “fixup”
required in combing on n-word input when both inputs have length greater than
nW − w for word-length W and comb width w). Multiplication in the 439-bit
field is via combing directly on field elements. Combing uses two tables, each of
16 elements.

The strategies for characteristic 2 and 3 are similar, in part because an F3-
element is represented as a pair (a0, a1) of bits and addition involves only bitwise
operations. Harrison et al. [21] proposed an addition using 7 xor (⊕) and or

(∨) operations via the sequence: t ← (a0 ∨ b1) ⊕ (a1 ∨ b0), c0 ← (a1 ∨ b1) ⊕ t,
c1 ← (a0 ∨ b0) ⊕ t. The number of operations was reduced to 6 by Kawahara
et al. [24] who reported 7–8% improvement in field multiplication on an AMD
Opteron (a processor similar to the Intel Core2) using “non-standard” encodings
of F3-elements. They also gave a 6-operation addition in the encoding suggested
by [21] using xor and andn (x ∧ ȳ).

The SIMD instruction set on the Core2 includes andn, although Beuchat et
al. [3] reported that the 7-op addition “consistently yields a shorter computation
time” than the 6-op variant with andn, and speculated that andn on the Core2
“is implemented less efficiently” than xor and or. However, these instructions
have the same timings [14], and our experimental data is that field multiplication
is faster with the 6-op variant. We suspect that the discrepancy is due to register
allocation strategy in the accumulation portion of the multiplication method. A
variation on the formulation in [21] is proposed in [3]: t← (a0∨a1)∧(b0∨b1), c0 ←
(a0∨b0)⊕t, c1 ← (a1∨b1)⊕t. Specifics are not given on why this resulted in faster
code, but we note that it permits simpler register tracking in the accumulation
portion of field multiplication and has one operation on accumulator registers
only. In this sense, the formulation in [21] and the 6-op variant for c ← c + b
are less pleasant. Compilers can be quite sensitive to the precise form of the
code; however, the 6-op variant can be coded without increasing dependency
chains, and we expect this formulation to be fastest provided that unnecessary
moves are avoided. Experimentally, we observed roughly 10% faster times for
field multiplication.

As in [3], we use the loop-unrolling technique of [19] along with the F36m

multiplication of [18] (requiring 15 multiplications and 67 additions in F3m) to
accelerate the pairing computation in characteristic 3. This reduces the cost from
14 to an effective 12.5 F3m multiplications in each iteration of the Miller loop.
Some incremental accelerations noted in [3] were not implemented; for example,
a few tables of precomputation in the evaluation loop of the pairing computation
can be reused (a width-4 comb requires 81 elements of precomputation, although
half are obtained by simple negation).

Timings were done on a 2.4GHz Intel Core2-quad running Sun Solaris, using
the GNU C 4.1 compiler with some fragments written in assembly. Most of
the SIMD operations are via intrinsics, with SSSE3 instructions accessed via
assembly.
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2.2 Security of protocols using degenerate divisors

The principal motivation for considering hyperelliptic curves and degenerate di-
visors for pairing-based protocols is to speed the pairing computation at higher
security levels. Naturally we need the assurance that the protocol, when imple-
mented in this setting, maintains its original security guarantee. The question of
security received some attention in [15, 2], however the main emphasis in those
works is on efficient pairing computation. Here we take a closer look at the se-
curity argument of two well-known protocols when implemented in the setting
of §2.1.

BLS signature scheme. We first describe the BLS signature scheme [6] us-
ing symmetric pairings (Type 1). We then present two variants of the scheme
depending upon which particular elements are chosen to be degenerate and ex-
amine the resulting effect on the security argument.

Let e : G1 × G1 → GT be a Type 1 pairing on a genus-2 curve, and let
H : {0, 1}∗ → G1 be a hash function. Let P1 be a generator of G1. The public
parameters of the system are 〈G1,GT , H, P1〉.

Alice’s private key is an integer x ∈R [0, n− 1] and her corresponding public
key is X = xP1. To sign a message M , Alice computes Q = H(M) and then
σ = xQ as her signature on M . To verify, Bob computes Q = H(M) and accepts
σ as a valid signature on M if and only if

e(σ, P1) = e(Q,X). (1)

Correctness of the verification algorithm follows because of the bilinearity
property of e, i.e.,

e(σ, P1) = e(xQ,P1) = e(Q, xP1) = e(Q,X).

Security of the scheme is based on the hardness of the computational Diffie-
Hellman problem (DHP) in G1 assuming H to be a random oracle. Recall that
the DHP in G1 = 〈P1〉 is the following: given X (where X = xP1 for some
x ∈R [0, n − 1]) and Q ∈R G1, compute xQ. The essential ideas behind the
reductionist security argument are as follows. Given a DHP instance (X,Q),
the simulator sets the challenge public key as X and runs the BLS adversary
A. The simulator responds to all hash queries H(M) made by A, except for a
randomly chosen distinguished query, by selecting a ∈R [0, n − 1] and setting
H(M) = aP1; the response to the distinguished hash query H(M∗) is H(M∗) =
Q. The simulator responds to signing queries M 6= M∗ by setting σ = aX . If A
eventually produces a forged signature σ∗ on M∗, then the simulator has been
successful in obtaining the solution σ∗ to the DHP instance (X,Q).

Recall from §2.1 that C is a supersingular genus-2 curve over Fq, q = 2m,
and G1 is the set of n-torsion points in JC(Fq) where n ≈ q2 is prime. Let
D be the set of degenerate divisors in G1; then #D ≈ q since #C(Fq) ≈ q.
For efficient implementation we would like to have some (if possible all) of the
elements of G1 used in the protocol to lie in D. However, the choice is constrained
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by how these elements are actually generated in the protocol, and whether the
protocol environment can be properly simulated in the security argument. We
further elaborate on these issues based on the following two versions of BLS. We
use calligraphic fonts for degenerate divisors to distinguish them from general
divisors.

BLS-1a: The key generation algorithm chooses a random element P1 of D as the
system parameter and a hash function H : {0, 1}∗ → D. Both these tasks can
be accomplished without any security penalty and is as efficient as working in
the elliptic curve setting.5 Then, with overwhelming probability, Alice’s public
key xP1 will not be a degenerate divisor. Since the range of H is D, Q =
H(M) is a degenerate divisor. But σ = xQ will likely be non-degenerate (with
overwhelming probability). As a result, one of the arguments in each of the
two pairing computations in the verification equation (1) is a degenerate divisor
while the other is non-degenerate. This still makes the pairing computation faster
compared to the case when both arguments are general divisors.

Next we investigate to what extent the original security argument of BLS
is applicable in the case of BLS-1a. The DHP (with respect to the generator
P1 of G1) is the problem of determining xQ, given X = xP1 ∈ G1 for some
unknown x ∈R [0, n − 1] and Q ∈R G1. The natural choice would be to argue
security of BLS-1a based on the hardness of the following variant of DHP. Given
X = xP1 ∈ G1 for some unknown x ∈R [0, n − 1] and Q ∈R D, compute xQ
— we call this problem DHP∗. The following shows that DHP and DHP∗ are
computationally equivalent.

Lemma 1. The DHP and DHP∗ problems are computationally equivalent.

Proof. It is clear that DHP∗ reduces to DHP. To prove the converse, suppose
that we are given a DHP instance (X,Q) and an oracle for solving DHP∗. If
Q ∈ D then the DHP∗-oracle can be used to compute xQ. If Q 6∈ D, say Q =
(P1)+(P2)−2(∞), there are two cases to consider. Let us say that Q is of type A
if P1, P2 ∈ C(Fq) and of type B if P1, P2 ∈ C(Fq2 ) \ C(Fq).

Suppose first that Q is of type A. This case can be recognized because the
Mumford representation (see [28]) of Q will take the form (a, b), where a, b ∈
Fq[x] with deg(a) = 2, deg(b) ≤ 1, and where the roots of a belong to Fq. More
explicitly, if a(x) = (x − u1)(x − u2) with u1, u2 ∈ Fq, then P1 = (u1, v1) and
P2 = (u2, v2) where v1 = b(u1) and v2 = b(u2). Thus, we can efficiently write
Q = Q1 + Q2, where Q1 = (P1) − (∞) and Q2 = (P2) − (∞) are degenerate
divisors. The DHP∗-oracle can then be used to compute xQ1 and xQ2, from
which xQ = xQ1 + xQ2 is immediately obtained.

5 In [16, §7] the concern was raised that hashing to the set of degenerate divisors in
JC(Fq) instead of to the set of general divisors can lead to a loss security. This is
because hash collisions in the former case can be found in O(q1/2) time using generic
algorithms, whereas collision finding in the latter case takes O(q) time. However, the
concern is not an issue in our setting with q = 2439 because then

√
q ≈ 2219 which

is significantly greater than the target security level of 2128.
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Suppose now thatQ is of type B. In this case, we can multiplyQ by randomly-
selected integers ℓ ∈ [1, n − 1] until the resulting divisor Q′ is of type A. The
expected number of trials is 2, since the number of type A divisors in JC(Fq) is
approximately q2/2, as is the number of type B divisors in JC(Fq) (this follows
because #C(Fq) ≈ q and #C(Fq2) ≈ q2). As above, one can then compute xQ′

and hence xQ = ℓ−1(xQ′). �

Now, given a DHP∗ instance (X,Q), the simulator sets the challenge public
key as X and interacts with the BLS-1a adversary A. To properly answer A’s
signing query on a messageM , the simulator has to “program” the random oracle
in such a way that it outputs some H ∈R D for which the simulator knows the
discrete log with respect to P1. Recall that this was trivially accomplished for
the original protocol — the simulator first chose a ∈R [0, n−1] and then returned
aP1. However, to apply this strategy in the simulation of BLS-1a, the simulator
must satisfy the additional constraint that aP1 lies in D.

The simulator could easily satisfy this condition if given some fixed P ∈ D
she has some mechanism to choose a random a such that aP also belongs to
D. The only known way to guarantee this in our genus-2 setting is to choose a
to be a power of 8, i.e., if P ∈ D then 8iP is also a degenerate divisor for any
integer i. However, as the following lemma indicates, the hash output will then
be confined to an extremely small subset of D (and thus the simulation will fail).

Lemma 2. Let P be a degenerate divisor of order n in JC(Fq), where C is the
supersingular genus-2 curve over Fq (with q = 2m) defined in §2.1. Then there
are exactly 4m degenerate divisors of the form 8iP.

Proof. We have q12 ≡ 1 (mod n), and so 84m ≡ 1 (mod n). Hence, the order
of 8 modulo n is in {1, 2, 4,m, 2m, 4m}. Since n > 84, 8m 6≡ 1 (mod n) and
82m 6≡ 1 (mod n), the order of 8 modulo n must be 4m. �

One way to circumvent this problem is to define a new problem which we call
DHP∗ with oracle access and denote by DHP∗

O
. In addition to the DHP∗ instance

X = xP1 and Q, the solver (i.e., the BLS-1a simulator in the present context)
is given access to an oracle O. Each time it is invoked, the oracle O returns a
random P ∈ D along with xP . It is easy to argue that the security of BLS-
1a is equivalent to the hardness of DHP∗

O
. For example, when reducing DHP∗

O

to the problem of breaking BLS-1a, the simulator returns P when A queries
the random oracle on some message M , and subsequently xP in response to a
signature query on M (where the simulator obtains (P , xP) from its oracle O).
At some point, A returns a valid forgery on some message M∗ whose hash value
has been set to Q. The simulator returns this signature as the solution to the
given DHP∗

O
instance.

However, there is a circularity in the whole argument — the assumption that
it is hard to solve DHP∗

O
is nothing but a rephrasing of the assertion that it is

hard to forge a BLS-1a signature. Currently we do not know any way out of this
circularity based on the known security argument for BLS. Neither is there any
evidence to suggest that BLS-1a is insecure.
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Remark 1. Let P be a degenerate divisor of order n in JC(Fq) with n ≈ q2, and
let D denote the set of all degenerate divisors in 〈P〉. The set of degeneracy-
preserving multipliers is DPM = {ℓ ∈ [0, n− 1] : ℓP ∈ D}. Lemma 2 says that
{8i mod n : 0 ≤ i < 4m} ⊆ DPM, while one would expect that #DPM ≈ n/q.
The interesting question is whether one can efficiently select an integer uniformly
at random from DPM. If yes, then it easy to see that DHP∗ and DHP∗

O
are

computationally equivalent, and thus the security of BLS-1a can be proven based
on the assumptions that DHP is hard and that H is a random function.

BLS-1b: Alternatively, we can keep the range of the hash function H to be G1

and choose only the fixed system parameter P1 to be a degenerate divisor. With
this modification, we still make some efficiency gains in the verification algorithm
namely in the evaluation of e(σ,P1). The known security argument for BLS with
respect to DHP can now be easily adapted for BLS-1b.

Boneh-Franklin identity-based encryption scheme. The situation is sim-
ilar for the BF-IBE scheme [5]. We assume the reader is familiar with the basic
idea of the protocol. Suppose that the public parameters are 〈G1,GT , H, P1〉,
the Key Generation Centre’s public key is Dpub ∈ G1, and the public key cor-
responding to an arbitrary identity ID is obtained as QID = H(ID). Encryption
involves the computation of a pairing value e(Dpub, QID). The hardness of BF-
IBE is based on the so-called bilinear Diffie-Hellman (BDH) problem — given
aP1, bP1, cP1 for a, b, c ∈R [0, n− 1], compute e(P1, P1)

abc.
In [2], Barreto et al. suggest that without loss of security it is possible to

choose both Dpub and QID to be degenerate divisors so that encryption involves
pairing of two degenerate divisors. We note that the known security argument of
BF-IBE suffers from the same problem that we encountered in BLS-1a, namely
it is not possible to simulate the random oracle H with range D. The security
argument does however go through if one chooses only Dpub to be degenerate.
Now in the encryption algorithm only one of the arguments to the pairing func-
tion is a degenerate divisor while the other is a general divisor. In this case, the
corresponding instance of the BDH problem contains one degenerate divisor and
two general divisors. As was done in Lemma 1, one can prove that this variant
of BDH is equivalent to the original BDH problem.

Remark 2. We have not found any pairing-based protocols in the literature that
can be implemented so that both arguments to one or more of the pairing func-
tions are degenerate divisors, and where the original security argument in the
elliptic curve setting can be carried over to the genus-2 setting. Thus, the speed
benefits of using pairings in the genus-2 setting where both arguments are de-
generate divisors do not seem to be directly applicable to known protocols.

3 Type 4 pairings

Let E be an ordinary elliptic curve defined over the finite field Fq. Let n be
a prime divisor of #E(Fq) satisfying gcd(n, q) = 1, and let k (the embedding
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degree) be the smallest positive integer such that n | qk − 1. We will assume
that k is even. Since k > 1, we have E[n] ⊆ E(Fqk). We will further assume that
n3 ∤ #E(Fqk). Let GT be the order-n subgroup of F∗

qk . The (full) Tate pairing
is a non-degenerate bilinear function ê : E[n] × E[n] → GT and can be defined
as follows:

ê(P,Q) =

(

fn,P (Q+R)

fn,P (R)

)(qk
−1)/n

, (2)

where R ∈ E(Fqk) with R 6∈ {∞, P,−Q,P −Q}, and where the Miller function
fn,P is a function whose only zeros and poles in E are a zero of order n at P
and a pole of order n at ∞.

Let G1 = E(Fq)[n]. If the first component of the domain of ê is restricted
to G1, then the definition of ê : G1 × E[n] → GT simplifies to ê(P,Q) =

(fn,P (Q))(q
k
−1)/n. Such a mapping ê is called a Type 4 pairing [32] because the

second component of the domain of ê is the full n-torsion group E[n]. The Trace

function Tr defined by Tr(P ) =
∑k−1

i=0 π
i(P ), where π denotes the q-th power

Frobenius, is an efficiently-computable homomorphism from E[n] to G1. The
kernel of Tr, called the Trace-0 group, is an order-n subgroup of E[n]. Hashing
onto G1 can be efficiently computed by first hashing to an x-coordinate of E(Fq),
then solving a quadratic equation over Fq to find the corresponding y-coordinate,
and finally multiplying the resulting point by the cofactor h1 = #E(Fq)/n to
obtain an n-torsion point. Hashing onto E[n] can be accomplished in a similar
fashion, by first hashing onto a random point in E(Fqk) and then multiplying
by the cofactor hk = #E(Fqk )/n2. However, hashing onto E[n] is considerably
more expensive than hashing onto G1 since computations now take place in the
larger field Fqk instead of in Fq, and moreover the cofactor hk ≈ qk−2 can be
quite large. For the case of BN curves, Chen, Cheng and Smart [12] estimated
that the cost of hashing onto E[n] is about 540 times that of performing a point
multiplication in G1 (and estimated the cost of hashing onto G1 as “free”). This
expensive hashing is a major drawback of Type 4 pairings. In the next section,
we show that the representation for E[n] introduced in [10] can be used to speed
hashing into E[n]. In particular, for the case of BN curves, we estimate that
our new method for hashing into E[n] is less than 3 times as costly as a point
multiplication in G1.

3.1 On efficient implementation

Following [17], we denote by D the CM discriminant of E and set

e =







gcd(k, 6), if D = −3,
gcd(k, 4), if D = −4,
2, if D < −4,

(3)

and d = k/e. Then E has a unique degree-e twist Ẽ defined over Fqd such that
n | #Ẽ(Fqd) [22]. Let P̃2 ∈ Ẽ(Fqd) be a point of order n, and let T̃0 = 〈P̃2〉.
Then there is a monomorphism φ : T̃0 → E(Fqk) such that P2 = φ(P̃2) 6∈ G1.
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The group T0 = 〈P2〉 is the Trace-0 subgroup of E[n]. The monomorphism φ can
be defined so that φ : T̃0 → T0 can be efficiently computed in both directions;
therefore we can identify T̃0 and T0, and consequently T0 can be viewed as
having coordinates in Fqd (instead of in the larger field Fqk).

We have E[n] ∼= G1 × T0. Define the homomorphism ψ : E[n] → G1 by
ψ(Q) = 1

kTr(Q). Then it is easy to verify that Q− ψ(Q) ∈ T0 for all Q ∈ E[n]
and consequently the map ρ : Q 7→ Q−ψ(Q) is a homomorphism from E[n] onto
T0. Thus, the map φ : E[n] → G1 × T0 defined by φ(Q) = (ψ(Q), ρ(Q)) is an
efficiently-computable isomorphism, whose inverse, given by (Q1, Q2) 7→ Q1+Q2,
is also efficiently computable. Hence, without loss of generality, the elements of
E[n] can be represented as pairs of points (Q1, Q2), where Q1 ∈ G1 and Q2 ∈ T0.

With this representation for E[n], hashing onto E[n] can be defined as
H(m) = (H1(m), H2(m)), where H1 and H2 are hash functions with ranges
G1 and T0, respectively. This is expected to be faster than the conventional
hashing method outlined in the beginning of this section because hashing onto
G1 and T0 requires arithmetic in Fq and Fqd , respectively, rather than in Fqk .
Observe that if H1 and H2 are modeled as random oracles, then H is also a
random oracle.

The ate [22] and R-ate [25] pairings are fast Type 3 pairings from G1 × T0

to GT defined by e3(P,Q) = ê(Q,P )N for some fixed integer N . Now, define
the Type 4 pairing e4 : G1 × E[n] → GT by e4(P,Q) = e3(P, Q̂), where Q̂ =
Q−πk/2(Q). Note that ifQ = (Q1, Q2), then Q̂ = (∞, 2Q2). Thus, e4 is a bilinear
pairing and can be computed in essentially the same time as the Type 3 pairing
e3. The pairing e4 is non-degenerate in the sense that (i) for each P ∈ G1 \ {∞},
there exists Q ∈ E[n] such that e4(P,Q) 6= 1; and (ii) for each Q ∈ E[n] \ G1,
there exists P ∈ G1 such that e4(P,Q) 6= 1.

Remark 3. In cryptographic applications of Type 4 pairings, one can ensure
that hash values H(m) = (H1(m), H2(m)) do not lie in G1 or T0 by defining H1

and H2 to have ranges G1 \ {∞} and T0 \ {∞}, respectively. This ensures that
ψ(H(m)) 6=∞ and e4(P,H(m)) 6= 1 for P 6=∞.

For concreteness, we consider the BN curve E/Fp : Y 2 = X2 + 3 with BN
parameters z = 6000000000001F2D that was studied in [10]. This curve has
the property that n = #E(Fp) is a 256-bit prime, and the embedding degree
is k = 12. For this particular curve, Table 3 lists the bitlengths of elements in
G1, T0, E[n] and GT , and the estimated costs of performing essential operations
in these groups; for detailed explanations see [10]. Table 3 demonstrates that
Type 4 pairings have very similar performance attributes as Type 3 pairings.

3.2 On secure implementation

As we have observed earlier, the only motivation to consider the Type 4 setting
for implementation of a protocol is when the protocol requires hashing into the
second component G2 of the pairing’s domain followed by an application of ψ on
the hash output. However, for Type 4 pairings, G2 = E[n] has order n2, which
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Table 3. Bitlengths of elements in G1, T0, E[n] and GT , and estimated costs (in terms
of Fp multiplications) of basic operations for Type 3 and Type 4 pairings derived from
a particular BN elliptic curve.

Type 3 Type 4
Bitlength of elements in G1 257 257

Bitlength of elements in T0/E[n] 513 770
Bitlength of elements in GT 1,024 1,024

Compressing elements in G1 free free
Compressing elements in T0/E[n] free free

Decompressing elements in G1 315m 315m
Decompressing elements in T0/E[n] 674m 989m

Addition in G1 11m 11m
Doubling in G1 7m 7m

Addition in T0/E[n] 30m 41m
Doubling in T0/E[n] 17m 24m

Exponentiation in G1 1,533m 1,533m
Exponentiation in T0/E[n] 3,052m 4,585m

Fixed-base exponentiation in T0 718m 718m
Fixed-base exponentiation in T0/E[n] 1,906m 2,624m

Hashing into G1 315m 315m
Hashing into T0/E[n] 3,726m 4,041m

en/Rn Pairing 15,175m 15,175m

Testing membership in G1 free free
Testing membership in T0/E[n] 3,052m 3,052m

can be a fundamental distinction affecting the functionality and security of a
protocol in the Type 4 setting. We demonstrate this with the very first protocol
for which the Type 4 setting was introduced in the literature.

Boneh-Shacham group signature scheme. In a group signature scheme
every member of the group has a secret key but there is a single public key for the
entire group. The signer-anonymity property of such a scheme finds application,
for example, in privacy preserving attestation [7]. Revocation of a user may be
critical for such an application, e.g., when the user’s secret key is compromised.

Boneh and Shacham proposed a short group signature scheme [7] with an
interesting property that given a list of revoked users a verifier can locally check
whether the signature has been generated by one of them. This is called a verifier-
local revocation (VLR) group signature. They defined a security model for VLR
group signature, proposed a construction based on asymmetric pairings, provided
a security proof, and discussed the efficiency of the scheme in the elliptic curve
setting.

The original description [7] of the Boneh-Shacham group signature scheme
(BS-VLR) includes a hash function whose range is G2 × G2 and also employs
the map ψ on the components of the outputs of this hash function. As noted
elsewhere [33, 11], this protocol cannot be implemented in either the Type 2 or
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the Type 3 setting. Later in his Ph.D. thesis [32], Shacham introduced Type 4
pairings and reproduced the BS-VLR scheme in that setting without further
modification.

Here we take another look at the BS-VLR scheme from [32] and demonstrate
that the protocol as described does not achieve its desired functionality and
in fact is not secure. The protocol description is quite involved and so is its
security proof. We recall only those parts of the protocol that are relevant to
our discussion. Interested readers are referred to §7.4 of Shacham’s thesis [32] as
well as the original paper of Boneh and Shacham [7] for the elaborate details.

BS-VLR group signature scheme: The protocol employs a Type 4 pairing e : G1×
E[n]→ GT . In order to maintain consistency with [7, 32], we use multiplicative
notation for G1 and E[n]. The group public key is gpk = (g1, g2, w), where g2 ∈R

E[n], g1 = ψ(g2), and w = gγ
2 for some γ ∈R [1, n− 1]. Suppose that the group

consists of N members. The private key of the ith member is gsk[i] = (Ai, xi)

where xi ∈R [1, n− 1] and Ai = g
1/(γ+xi)
1 . The revocation token corresponding

to this private key is Ai which is made public in a revocation list (RL) when
membership of i is revoked from the group.

The signer i computes, among other items, two elements T1, T2 ∈ G1 in the
following way:

1. (û, v̂)← H0(gpk,M, r) where M is the message to be signed, r ∈R [1, n− 1]
is a nonce, and H0 is a hash function with range E[n] × E[n] (treated as a
random oracle in the security proof); cf. Remark 3.

2. u← ψ(û) and v ← ψ(v̂).
3. T1 ← uα and T2 ← Aiv

α, where α ∈R [1, n− 1].

T1, T2 and r are then sent as part of the group signature σ on M . Note that
given r, the verifier can easily obtain û and v̂.

Verification is a two-step procedure — signature check and revocation check.
The signature is accepted as valid only if both these checks are successful. We
do not describe the first step where the verifier performs the standard check for
validity of the signature σ on M under the group public key gpk. The insecurity
of the protocol lies in the revocation check step, which we reproduce verbatim
from [32].

Revocation check. For each element A ∈ RL, check whether A is en-
coded in (T1, T2) by checking if

e(T2/A, û)
?
= e(T1, v̂). (4)

If no element of RL is encoded in (T1, T2), the signer of σ has not been
revoked.

In other words, suppose the group member i who generated the signature
has already been revoked, i.e., Ai ∈ RL. Then for A = Ai, the left side of (4)
becomes

e(T2/Ai, û) = e(vα, û) = e(v, û)α,
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while the right side becomes

e(T1, v̂) = e(uα, v̂) = e(u, v̂)α.

It is assumed that e(v, û)α and e(u, v̂)α are equal, in which case equation (4)
holds. As a result the verifier can link the signature to the revoked member i
and hence reject it.

In fact, for a signature generated by a revoked user, equation (4) trivially
holds if we are in the Type 2 or Type 3 settings where G1 and G2 are cyclic
groups of the same prime order n. (Simply write û = v̂x for some x ∈ [0, n− 1],
and note that u = ψ(û) = ψ(v̂x) = vx.) But recall that the protocol is now
described in the Type 4 setting where G2 = E[n] is a group of order n2. Notice
that E[n] has n + 1 different subgroups of order n, two of which are G1 and
T0. Suppose that T is any order-n subgroup of E[n] other than G1 and T0. In
the Type 4 setting, if û and v̂ are in the same subgroup T, then equation (4)
holds. Conversely, if û and v̂ are in different subgroups T, then equation (4) only
holds with negligible probability. However, û and v̂ are obtained through hashing
to random points in E[n], and so the probability that they both belong to the
same subgroup T is negligible. In fact, the inability to deterministically hash to
a particular subgroup T is the sole reason to describe the protocol in the Type 4
setting instead of Type 2. So with an overwhelming probability equation (4) will
not be satisfied and a signature generated by the revoked member i will pass the
revocation check.

The security definition of the BS-VLR signature scheme requires that the
protocol must satisfy the correctness, traceability, and selfless-anonymity prop-
erties, of which the first two are relevant to our discussion. Informally speaking,
correctness means that every properly generated signature is accepted as valid if
and only if the corresponding signer is not revoked, whereas traceability means
that an adversary should not be able to forge a signature that cannot be traced to
a revoked user. Neither of these is satisfied for the BS-VLR signature scheme as
we have already explained. The wrong assertion in Theorem 7.4.4 of [32] regard-
ing the correctness of the scheme renders the proof of Theorem 7.4.8 regarding
traceability meaningless.

Modified BS-VLR signature scheme in Type 4: We now describe a small modifi-
cation to the protocol that appears to restore security. One apparent drawback is
that the signature in the modified protocol contains an element of E[n] and may
no longer be considered as “short”, which was one of the original motivations
of the construction. Fortunately, our new representation of E[n] as discussed in
§3.1 (cf. Table 3) helps to maintain the relatively small signature length.

To begin with, we note that the problem with the original protocol [32]
does not stem from any intrinsic structural weakness. Rather, it is because of
a technical issue related to the structure of G2. For example, it is possible to
securely implement the protocol in the Type 1 setting (where G2 = G1) though
the signature length increases. To keep this length short one has to work in the
asymmetric setting; and since the protocol requires both hashing into G2 and the
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map ψ, the only known option is Type 4. However, that means G2 is no longer a
cyclic group of prime order n, but a group of order n2. Hence, we cannot expect
that two (or more) randomly generated elements will lie in the same order-n
subgroup T of G2.

Keeping this in mind, the problem of the BS-VLR signature scheme in Type 4
can be easily fixed with a simple modification. The essential idea is the following.
For û, v̂ ∈R E[n], even though in general one cannot expect that e(ψ(v̂), û) will
be equal to e(ψ(û), v̂), bilinearity of e ensures that

e(ψ(v̂)α, û) = e(ψ(v̂), ûα) (5)

for all α ∈ [0, n− 1]. So we make the following changes to the protocol.

1. The key generation algorithm remains unchanged. But note that g2 is a
random order-n element of E[n] which can be obtained by hashing into E[n]
as discussed in §3.1.

2. The hash function H0 has range E[n]×G1 (instead of E[n]× E[n]).
3. In the signing algorithm, compute (û, v) = H0(gpk,M, r) and T̂1 = ûα. Then

use T̂1 and û to compute the helper value R3 = T̂ rx

1 · û−rδ ∈ E[n], and use T̂1

to compute the challenge value c. Send T̂1 (not T1) as part of the signature.
4. In the verification algorithm, use T̂1 and û (instead of T1 and u) to rederive
R3 ∈ E[n], use T1 = ψ(T̂1) to rederive R1 in the signature check process, and
use T̂1 to rederive the challenge value c. Use T̂1 (not T1) in the revocation
check step, i.e., for each A ∈ RL, determine whether A is encoded in (T̂1, T2)
by checking if

e(T2/A, û)
?
= e(v, T̂1). (6)

The only noticeable differences with the original scheme is that the signature now
contains T̂1 ∈ E[n] instead of T1 ∈ G1 and the revocation check is performed
based on T̂1. We briefly analyze the resulting effect on the security.

It is easy to check that the modified scheme satisfies the correctness prop-
erty. For a signature generated by an honest user, the original argument of The-
orem 7.4.4 in [32] applies when T̂1 (and not T1) is sent as part of the signature.
In particular, for a signature generated by a revoked member, equation (6) is
exactly in the form of (5) and hence that signature will not pass the revocation
check and will be rejected.

The selfless-anonymity and traceability properties of the original scheme are
established through involved reductionist security arguments in Lemma 7.4.7 and
Theorem 7.4.8 of [32]. Recall that the traceability property is violated because
the correctness property does not hold for the original scheme. In fact we do not
find any flaw per se in the proofs of these two theorems if we assume that G2 is
a group of prime order n.

However, in the Type 4 setting G2 is the set of all n-torsion points E[n], which
is a group of order n2. Still it is possible to carry over the original security argu-
ments with some modifications. We do not reproduce the complete arguments
here but only emphasize that in the selfless-anonymity game (Lemma 7.4.7) the
following variant of the Decision Linear problem should be used: Given a 6-tuple
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(u0, u1, h0 = ua
0 , h1 = ub

1, v, Z), where u0, u1 ∈R E[n], a, b ∈R [1, n−1], v ∈R G1,
and either Z = va+b or Z ∈R G1, decide whether Z = va+b. Furthermore, the
elements u0 and u1 have to be appropriately randomized when answering signa-
ture queries on behalf of users i0 and i1. This randomization is possible because
elements of E[n] can be represented as described in §3.1. A complete descrip-
tion of the modified protocol and arguments for its security are provided in the
Appendix.

We have identified two other protocols in the literature that extend or apply
the idea of the BS-VLR signature scheme. These are the VLR signature with
backward unlinkability due to Nakanishi and Funabiki [29] and the remote bio-
metric authentication protocol due to Bringer et al. [8]. All our observations
regarding the BS-VLR scheme apply to these protocols as well.

Protocols that employ asymmetric pairings and which utilize hashing into
G2 followed by an application of the map ψ can only be instantiated in the
Type 4 setting. In fact, to the best of our understanding, one should only resort
to Type 4 for these kinds of protocols, since any other protocol employing an
asymmetric pairing can be more efficiently instantiated in the Type 3 setting.
However, when describing a protocol in the Type 4 setting or arguing its security,
protocol designers should be cautious of the fact that G2 is no longer a prime-
order group like G1 or GT . Not doing so may critically affect the functionality
and security of the protocol as illustrated by the examination of BS-VLR.

4 Concluding remarks

We presented the first timings for Type 1 pairings derived from supersingular
genus-2 curves in characteristic 2 at the 128-bit level, and showed that hashing
to the group G2 in Type 4 pairings is not nearly as costly as previously believed.
Furthermore, we demonstrated some pitfalls that can arise when designing pro-
tocols and formulating reductionist security arguments in the Type 1 and Type 4
settings.
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A Appendix

A.1 The modified Boneh-Shacham group signature protocol

The protocol employs a Type 4 pairing e : G1 × E[n] → GT and two hash
functionsH0, H whereH0 : {0, 1}∗ → E[n]×G1 andH : {0, 1}∗ → [1, n−1]. Note
that an element Q ∈ E[n] is represented as a pair of points (Q1, Q2) ∈ G1 ×T0,
where T0 is the Trace-0 group of E[n] and ψ(Q) = Q1, which means ψ can be
evaluated free of cost.

KeyGen(N): The algorithm takes as input N , the number of members in the
group and proceeds as follows.

1. Select g2 ∈R E[n] and set g1 = ψ(g2).
2. Select γ ∈R [1, n− 1] and set w = gγ

2 .
3. For each user i, generate the private key (Ai, xi) by selecting xi ∈R [1, n−1]

such that γ + xi 6= 0 and then setting Ai = g
1/γ+xi

1 .

The group public key is gpk = (g1, g2, w) while user i’s private key is the tuple
gsk[i] = (Ai, xi). The revocation token corresponding to gsk[i] is grt[i] = Ai.
The algorithm outputs (gpk,gsk,grt) where gsk (resp. grt) is the set of private
keys (resp. revocation tokens) of the N members of the group. Note that the
secret value γ is known only to the private key issuer.

Sign(gpk,gsk[i],M): The algorithm proceeds as follows.

1. Pick a random nonce r ∈ [1, n− 1] and compute (û, v) = H0(gpk,M, r) and
set u = ψ(û).
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2. Compute T̂1 = ûα and T2 = Aiv
α, where α ∈R [1, n− 1].

3. Set δ = xiα mod n and select blinding values rα, rx, rδ ∈R [1, n− 1].

4. Compute R1 = urα , R̂3 = T̂ rx

1 û−rδ and

R2 = e(T2, g2)
rxe(v, w)−rαe(v, g2)

−rδ .

5. Compute c = H(gpk,M, r, T̂1, T2, R1, R2, R̂3).

6. Compute sα = rα + cα, sx = rx + cxi and sδ = rδ + cδ mod n.

The algorithm outputs the signature σ = (r, T̂1, T2, c, sα, sx, sδ).

Verify(gpk, σ,M , RL): Note that RL is the set of revocation tokens (each an
element of G1). The algorithm proceeds in two phases.

1. Signature Check: Check that σ is a valid signature on M as follows.

(a) Compute (û, v) = H0(gpk,M, r), which also gives u = ψ(û).

(b) Rederive R1, R2, R̂3 as R̃1 = usα/T c
1 where T1 = ψ(T̂1), R̃3 = T̂ sx

1 û−sδ

and

R̃2 = e(T2, g2)
sxe(v, w)−sαe(v, g2)

−sδ (e(T2, w)/e(g1, g2))
c
.

(c) Check that the challenge c is correct:

c
?
= H(gpk,M, r, T̂1, T2, R̃1, R̃2, R̃3).

If it is accept, otherwise, reject.

2. Revocation check: For each element A ∈ RL, regard A as encoded in
(T̂1, T2) if

e(T2/A, û) = e(v, T̂1).

If no element of RL is encoded in (T̂1, T2), the signer of σ has not been
revoked.

The algorithm outputs valid if both phases accept, otherwise it outputs invalid.

A.2 Security

Security of a VLR group signature scheme requires that the protocol must satisfy
three properties: correctness, selfless-anonymity and traceability. (See [7, 32] for
the exact definition of security.) We discuss how each of these properties is
maintained by the modified protocol as described in Appendix A.1.
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Correctness. This property mandates that, for all (gpk,gsk,grt) generated by
KeyGen algorithm, every signature generated by Sign algorithm should verify
as valid, except when the signer is revoked. Formally,

Verify(gpk, Sign(gpk,gsk[i],M),M,RL) = valid⇐⇒ grt[i] /∈ RL.

In the modified protocol, a signature is accepted as valid in the first verifica-
tion phase if the output of H equals c. A signature includes all the inputs to H
except R1, R2, R̂3 which are rederived by the verifier as follows.

R̃1 = usα/T c
1 = urα+cα/ucα = urα = R1

R̃3 = T̂ sx

1 û−sδ = T̂ rx+cxi

1 û−(rδ+cδ) = R̂3T̂
cxi

1 ûcδ = R̂3

R̃2 = e(T2, g2)
sxe(v, w)−sαe(v, g2)

−sδ (e(T2, w)/e(g1, g2))
c

= R2e(T2, g2)
cxie(v, w)−cαe(v, g2)

−cxiα (e(T2, w)/e(g1, g2))
c

= R2

(

e(T2v
−α, wgxi

2 )

e(g1, g2)

)c

= R2

(

e(Ai, wg
xi

2 )

e(g1, g2)

)c

= R2.

So only a valid signature will be accepted in the first phase (except with a
negligible probability of hash collision).

Now, a signature is rejected in the second phase when e(T2/A, û) = e(v, T̂1)
for some A ∈ RL. This happens only if A is used in the generation of the signature
component T2.

Selfless-anonymity. The selfless-anonymity property is established through a
game between a challenger and an adversary. In this game, the adversary’s goal
is to determine which of two users of her choosing generated a signature. She is
not given access to the private key of any of these two users.

The selfless-anonymity property of the modified protocol can be established
through a reductionist argument. In particular, given an adversary A that wins
the selfless-anonymity game one can construct an algorithm B that solves the
following variant of the Decision Linear problem in E[n] and G1.

B is given a 6-tuple (u0, u1, h0 = ua
0 , h1 = ub

1, v0, Z), where u0, u1 ∈R E[n],
a, b ∈R [1, n − 1], v0 ∈R G1, and either Z = va+b

0 or Z ∈R G1. B’s task is to
decide whether Z = va+b

0 .

Given this Decision Linear problem instance, B simulates the protocol envi-
ronment for A to play the selfless-anonymity game.
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Setup:

1. B picks g2 ∈R E[n] and sets g1 = ψ(g2). B also picks γ ∈R [1, n− 1] and sets
w = gγ

2 and gives A the group public key gpk = (g1, g2, w).
2. B selects two random users i0, i1 ∈ [1, . . . , N ] and keeps i0, i1 secret. For all

the other users it uses the standard key generation algorithm to generate the
corresponding private key.

In the simulation B pretends as if the revocation token for i0 is Ai0 = Z/va
0

and that for i1 is Ai1 = vb
0. Note that, B cannot compute Ai0 or Ai1 since it does

not know va
0 or vb

0. Also note that Ai0 = Ai1 when Z = va+b
0 .

Random oracle queries: Each query to the random oracle H0 or H is answered
with random values from the appropriate set while maintaining consistency.

Phase 1: A can issue signing, corruption or revocation queries for any user i. If
i 6= i0, i1 then B responds with an appropriate answer based on the corresponding
private key gsk[i]. A query corresponding to i0 or i1 is answered as follows.

– Signing query: Given a message M ∈ {0, 1}∗ and user i ∈ {i0, i1} B proceeds
as follows.
• To generate a signature on M under the private key of i0:

1. B picks random s, t, l, c ∈ [1, n− 1].
2. Let u0 = (u01

, u02
) ∈ G1 × T0; then h0 = ua

0 = (ua
01
, ua

02
). B makes

the following assignments: ū0 = (u01
, uc

02
), h̄0 = (ua

01
, uac

02
) = ūa

0 .
3. From v0, Z, ū0 = (ū01

, ū02
) and h̄0 = (h̄01

, h̄02
), B derives û = ūl

0,
T̂1 = h̄0ū

s
0, v = (v0ū

t
01

)l and T2 = Zvs
0h̄

t
01
ūst

01
.

Letting α = (a+ s)/l, we have T̂1 = ûα and T2 = Ai0v
α.

• To generate a signature on M under the private key of i1:
1. B picks random s, t, l, c ∈ [1, n− 1].
2. Let u1 = (u11

, u12
) ∈ G1 × T0; then h1 = ub

1 = (ub
11
, ub

12
). B makes

the following assignments: ū1 = (u11
, uc

12
), h̄1 = (ua

11
, uac

12
) = ūa

1 .
3. From v0, ū1 = (ū11

, ū12
) and h̄1 = (h̄11

, h̄12
), B derives û = ūl

1,
T̂1 = h̄1ū

s
1, v = (ūt

11
/v0)

l and T2 = h̄t
11
ūst

11
/vs

0.

Letting α = (b + s)/l, we have T̂1 = ûα and T2 = Ai1v
α.

Thus in both cases we have T̂1 = ûα and T2 = Aiv
α for some α ∈R

[1, n − 1] and random and independent û ∈ E[n], v ∈ G1. B now picks
random values r, c, sα, sx, sδ ∈ [1, n− 1] and computes R1, R2, R̂3. If A has
already queried random oracle H0 with the input (gpk,M, r) or H with
(gpk,M, r, T̂1, T2, R1, R2, R̂3) then B aborts the game with failure. Note that
the probability of this is negligibly small as r is chosen at random from
[1, n − 1]. Otherwise, B makes the assignments H0(gpk,M, r) = (û, v) and
H(gpk,M, r, T̂1, T2, R1, R2, R̂3) = c.
B provides σ = (r, T̂1, T2, c, sα, sx, sδ) as the signature on M under the pri-
vate key of user i ∈ {i0, i1}.

– Corruption and revocation queries: B aborts the game with failure if A issues
a corruption or revocation query on i0 or i1.
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Challenge: At this stage, A outputs a message M ∈ {0, 1}∗ and two target users
i∗0, i

∗
1. If {i∗0, i∗1} 6= {i0, i1} then B aborts with failure. Otherwise, suppose i∗0 = i0

and i∗1 = i1. B picks a bit β uniformly at random and generates a signature σ∗

under the private key of i∗β using the signature generation method for i0 or i1 as
illustrated above and gives it to A.

Phase 2: A makes additional queries as in Phase 1 with the restriction that it
cannot ask for the corruption or revocation of i∗0 and i∗1.

Output: Finally, A outputs its guess β′ of β. B outputs 0 if β = β′ implying Z
is a random element of G1. Otherwise, B outputs 1 implying Z = va+b

0 .
For simplicity assume that B does not abort the game. We obtain a perfect

simulation of the selfless-anonymity game when Z is a random element of G1.
On the other hand, when Z = va+b

0 both i∗0 and i∗1 have the same private key and
so the bit β is information theoretically hidden from A. Hence any adversary A
with an advantage ǫ in the selfless-anonymity game can be used to construct an
algorithm B that solves the Decision Linear problem with advantage ǫ/2.

Traceability. A VLR group signature scheme is traceable if no adversary can
win the traceability game as defined in [7, 32]. Informally speaking, the adver-
sary’s goal in this game is to produce a valid nontrivial signature that cannot be
traced to one of the users in her coalition (i.e., users corrupted by the adversary).

The traceability property is established in [7, 32] by an involved reductionist
argument that proceeds through several stages. First an interaction framework is
described for simulating the protocol environment for an adversary A that wins
the traceability game. Next it is shown how one can instantiate this framework
appropriately to obtain a solution to an instance of the underlying strong Diffie-
Hellman (SDH) problem. We note that the original argument carries over for
the modified protocol when the interaction framework is described to simulate
the modified protocol. In particular, each query to the random oracle H0 returns
û, v ∈ E[n]×G1 and the signature component T1 ∈ G1 in the original argument
is replaced by T̂1 ∈ E[n] in the simulation for the modified protocol.


