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Abstract: In [1], the authors introduced an important new information theoretic numerical measure

for assessing a system’s resistance to unknown-message side-channel attacks and computed a formula

for the limit of the numerical values defined by this measure as the number of side-channel observations

tends to infinity. Here, we present corresponding quantitative (exponential) bounds that yield an

actual rate-of-convergence for this limit, something not given in [1]. Such rate-of-convergence results

can potentially be used to significantly strengthen the utility of the limit formula of [1] as a tool

to reduce computational complexity difficulties associated with calculating the side-channel attack

resistance measure presented there. In addition, our arguments here show how the arguments used in

[1] to prove the limit formula can be substantially simplified.

1 Introduction

In a side-channel attack, the attacker attempts to circumvent the security of cryptographic

algorithms by exploiting information inadvertently exposed within the concrete context of their

actual, real-world implementations. Such possibly indirect yet nonetheless potentially quite
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relevant information might include that revealed by running time characteristics [2], cache

behavior [4], electromagnetic signals [5], or other electronic or physical properties or emanations.

In an unknown-message side-channel attack scenario, the attacker cannot see or control the

input that is decrypted (or encrypted) by the system. An example of such an unknown message

attack is a timing attack against systems employing advanced countermeasures such as message

blinding.

In [1], the authors propose an important new information theoretic measure for quantifying

the resistance of systems to unknown-message side channel attacks. Their measure, denoted

Λ = Λ(n) (see (6) below), is a quantitative benchmark for measuring the reduction in the

attacker’s uncertainty (i.e., the corresponding information gain) regarding the attacked system’s

designated cryptographic key after n side-channel observations. In addition, in their Theorem

1 in [1], they compute an explicit formula for the limit of Λ(n) as n →∞ (restated here as (7)

below).

Our own Theorem 1 in §3 below not only recovers the qualitative result limn→∞Λ(n) ap-

pearing in [1] but very significantly strengthens and improves on it by establishing quantitative

(exponential) bounds on the corresponding rate-of-convergence (see (8) below), something not

addressed in [1]. Additionally, in Example 1 in §3, we show how our numerical estimate in (8)

can actually be applied in a concrete, if somewhat abstract, setting. Also, we believe that an

additional important contribution of our work here is that the proof of our Theorem 1 involves

what we believe to be a much-simplified argument relative to that used in [1] to establish (7).

In [1] (see the Full Version of that paper), a relatively involved argument is invoked using some-

what elaborate and perhaps esoteric results from information theory to compute limn→∞Λ(n).

Here, our simplified argument is entirely self-contained aside from an appeal to the well-known,

classical Hoeffding inequality. In fact, to simply identify the limit limn→∞Λ(n) as is done in [1]

without also proving our own quantitative bound in (8), we would have actually only needed,

using an argument exactly analogous to the one we use to prove our Theorem 1, just the

traditional, standard Law of Large Numbers (in its weak form) from probability theory.

In [1], the authors also introduce a precise algorithm for facilitating the computation of
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Λ(n). However, as they themselves point out, the time complexity of the algorithm is expo-

nential in n, rendering computation for large values of n infeasible. In fact, they promote their

determination of the limit limn→∞Λ(n) in their Theorem 1 as a way to remedy this compu-

tational complexity problem since it allows one to compute limits for the resistance to side

channel attacks without being confronted with the exponential increase in n. We believe that

the quantitative bound we present here in the statement of our own Theorem 1, by giving the

associated rate-of-convergence, has the potential to dramatically strengthen this computational

complexity remediation strategy since it shows, of course, exactly how large n must be for

limn→∞Λ(n) to be a good approximation of Λ(n). In fact, the bound shows that the exponen-

tial increase in the time complexity of the algorithm given in [1] for computing Λ(n) is actually

offset by an exponential decrease in the numerical error resulting from using limn→∞Λ(n) as an

approximation for it.

The rest of this article is organized as follows. In the next section, we give the necessary

background on unknown message side channel attacks and relevant information theoretic con-

cepts. In the final section, we state and prove our fundamental new result, Theorem 1, and

present an example, Example 1, that directly applies it, as discussed above.

2 Some Preliminaries on Unknown Message Attacks and

Information Theory

Our framework here is based on that of [1]. Let K be a finite set of keys, M a finite set

of messages, and D an arbitrary set. We consider systems that compute functions of type

F : K × M → D, and we assume the attacker can make physical observations about the

implementation IF of F that are associated with the computation of F (k, m). We assume

that the attacker can make one observation per invocation of the function F and that no

measurement errors occur. A side-channel is a function fIF
: K ×M → O, where O denotes

the set of possible observations. Since K and M are finite we can assume, without loss of

generality, that O too is finite, and we write O = {o1, ..., oI} for some positive integer I. We
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assume the attacker has full knowledge regarding the implementation IF , i.e., f = fIF
is known

to the attacker.

In a side-channel attack, the attacker collects side-channel observations f(k, m1), ..., f(k, mn)

for ascertaining the key k or narrowing down its possible values. Such an attack is unknown-

message if the attacker cannot observe or choose the messages mi ∈ M . (By way of contrast, an

attack is known-message if the attacker can observe but cannot influence the choice of mi ∈ M ,

and an attack is chosen-message if the attacker can choose mi ∈ M .)

Now let pK : K → R and pM : M → R be probability distributions on the sets of keys K and

messages M respectively. These immediately give rise to random variables K and M modeling

the respective random choices of keys and messages. We assume that pK = pK and pM = pM

are known to the attacker. For positive integers n, let the random variable On : K ×Mn →
On be defined by On(k, m1, ...,mn) = (f(k,m1), ..., f(k, mn)), where pKMn(k, m1, ..., mn) =

pK(k)pM(m1)...pM(mn) is the probability distribution on K ×Mn. Also, we write O = O1.

Now naturally for each key k ∈ K, the random variable O gives rise to a probability

distribution pO|K=k on O. For k, k′ ∈ K, define k ≡ k′ if and only if pO|K=k = pO|K=k′ . Then, ≡
is an equivalence relation on K, and V

def
= K/ ≡ denotes the (finite) set of equivalence classes

and |V | its cardinality. The random variable V : K → V defined by V(k) = [k] maps every key

to its equivalence class with respect to ≡.

Now for any random variable X assuming values in the set X, we of course have the infor-

mation theoretic (Shannon) entropy

H(X ) = − ∑

x∈X

pX (x)log2(pX (x)). (1)

If Y is another random variable defined on the same probability space taking values in some set

Y , then, for y ∈ Y , we denote by H(X|Y = y) the entropy of X with respect to the distribution

pX|Y=y. As in [1], we then define the conditional entropy as

H(X|Y) =
∑

y∈Y

pY(y)H(X|Y = y). (2)
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We have the identity

H(XY) = H(Y) + H(X|Y) (3)

where XY is the random variable defined via XY(k) = (X (k),Y(k)).

Similar to the definition in [1], we also define the type ton of a sequence on ∈ On to be the

vector of respective numbers of occurrences of each element oi ∈ O in the sequence on. Thus

we have ton = (t1, ..., tI) where, for all i = 1, ..., I,

ti = |{onj|onj = oi, j = 1, ..., n}|, (4)

with on = (on1, ..., onn) and | · | denoting the cardinality of the enclosed set. Finally, in the next

section, we will also require a measure of how far apart, in a sense, the distributions of the form

pO|V=B, B ∈ V are. So, for this, set

εV = minB1,B2∈V maxi=1,...,I

|pO|V=B1(oi)− pO|V=B2(oi)|
3

. (5)

From the definition of V = K/ ≡, it is clear that εV > 0.

3 An Exponential Bound on Side-Channel Observation

Information Gain

In [1], the authors introduce, employing the notation in (2) above,

Λ(n)
def
= H(K|On), n a positive integer, (6)

as a practical measure for potentially quantifying the resistance of systems against unknown

message side channel attacks. In addition, they prove that

limn→∞H(K|On) = H(K|V). (7)

Our own Theorem 1 below recovers the qualitative result (7) above that appears in [1] but

very significantly strengthens and improves on it by establishing a quantitative (exponential)

estimate for the difference H(K|On) − H(K|V) (see (8) below). This yields a bound on the
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corresponding convergence rate, something not given in [1]. Moreover, we believe that an

additional important contribution of our work here is that the proof of our Theorem 1 involves

a much-simplified argument relative to that used in [1] to establish (7), as discussed in more

detail in the Introduction.

So, without further ado, our numerical estimate on information gain after repeated unknown

message side-channel measurements is given in the following theorem.

Theorem 1.We have

0 ≤ H(K|On)−H(K|V) ≤ 2|V |2Iexp(−2nε2
V ). (8)

We illustrate the result of Theorem 1 with the following example.

Example 1.The framework for this example is based on that of Example 3, again from [1]. Let

K = {0, 1}j and M = {1, ..., j}, j being any positive integer, and set O = {0, 1}. We assume the

probability distributions pK : K → R and pM : M → R to be uniform distributions. Consider

the function f : K ×M → O defined via f(k, m) = km, where k = (k1, ..., kj). For computing

H(K|V), notice that for k, k′ ∈ K, pO|K=k = pO|K=k′ if and only if the numbers of 1-bits in k and

k′ are equal, i.e., if k and k′ have the same Hamming weight. The number of j-bit values with

Hamming weight h is given by
(

j

h

)
= j!

(j−h)!h!
. Since, in general, H(K|V) = 1

|K|
∑

B∈V |B|log2|B|
for uniformly distributed keys k, the statement of our Theorem 1 implies that

1

2j

j∑

h=0

(
j

h

)
log2

(
j

h

)
≤ H(K|On) ≤ 1

2j

j∑

h=0

(
j

h

)
log2

(
j

h

)
+ 4j2exp

(
− 2n

9j2

)
. (9)

Lemma 1 and its proof which follow just below essentially appear within the proof of Lemma

1 of [1]. The argument establishing (10) in essence involves only careful manipulation of relevant

definitions.

Lemma 1.We have

H(K|On)−H(K|V) = H(V|On). (10)

Proof.Note that pO|K=k = pO|V=[k], so that H(On|K = k) = H(On|V = [k]) and

H(On|K) =
∑

k∈K

pK(k)H(On|K = k) =
∑

k∈V

∑

k∈B

pK(k)H(On|K = k)

=
∑

B∈V

pV(B)H(On|V = B) = H(On|V). (11)
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Now observe that H(KV) = H(K), since V is determined byK. Hence, invoking (3), H(K|On)−
H(K|V) = (H(On|K)+H(K)−H(On))−(H(KV)−H(V)) = H(On|K)+H(V)−H(On). Using

(11), it now follows that H(On|K) + H(V) = H(On|V) + H(V) = H(OnV). As H(OnV) −
H(On) = H(V|On), (10) immediately follows.

Proof of Theorem 1.By Lemma 1 above, it is sufficient to show that H(V|On) ≤ 2|V |2Iexp(−2nε2
V ).

Note first that from the definitions (1) and (2), it follows that

H(V|On) =
∑

on∈On

pOn
(on)(− ∑

B∈V

pV|On=on
(B)log2(pV|On=on

(B))). (12)

Now, for each i = 1, ..., I, let pni = pni(oi,on) = ti
n
, where ti is as in (4), and, for each

B ∈ V = K/ ≡ and on ∈ On where n is any positive integer, write

m(on, B)
def
= maxi=1,...,I |pni(oi,on)− pO|V=B(oi)|. (13)

Note that, by iterated application of the classical Hoeffding’s inequality (see, for example,

Theorem 2.3(a) in [3]), it follows that, for any B ∈ V and ε > 0,

p(m(On, B) > ε) ≤ 2Iexp(−2nε2). (14)

In fact, (14) directly follows from the Hoeffding inequality because, for each i ∈ I, we can

define indicator random variables that are set to 1 if onj = oi where on = (on1, ..., onn) but

0 otherwise, so that the expectation in the statement of Hoeffding’s inequality is simply the

probability pO|V=B(oi). In any case, notice as well that

p(m(On,V) ≤ ε) = 1− p(m(On,V) > ε)

= 1− ∑

B∈V

p({V = B} ∩ {m(On, B) > ε})

≥ 1− 2I|V |exp(−2nε2). (15)

Now consider that the definition of V = K/ ≡ clearly implies that, if ε is small enough, in

particular if ε = εV with εV defined as in (5) above, then, for any on ∈ On, any B ∈ V satisfying

m(on, B) ≤ ε (if such B ∈ V does exist) must be unique, and we denote this corresponding

unique equivalence class B via Bon . Hence, for such small ε, the random variable V is fully
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determined by the random variable On under m(·, ·) and in fact we have V = BOn
. So, for

ε = εV , we can rewrite the conclusion of (15) as

p(m(On, BOn
) ≤ εV ) ≥ 1− 2I|V |exp(−2nε2

V ). (16)

It therefore follows that, with probability 1− 2I|V |exp(−2nε2
V ) over all on ∈ On,

pV|On=on
(Bon) = 1 and pV|On=on

(B) = 0 for B ∈ V,B 6= Bon . (17)

Thus, with probability 1− 2I|V |exp(−2nε2
V ) over all on ∈ On,

− ∑

B∈V

pV|On=on
(B)log2(pV|On=on

(B)) = 0. (18)

Hence, since for x ∈ (0, 1], |xlog2(x)| ≤ 1, it follows directly from (12) along with (18) that

0 ≤ H(V|On) ≤ 2|V |2Iexp(−2nε2
V ). (19)
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