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Abstract. Power Analysis has been widely studied since Kocher et al. pre-
sented in 1998 the initial Simple and Differential Power Analysis (SPA and
DPA). Correlation Power Analysis (CPA) is nowadays one of the most pow-
erful techniques which requires, as classical DPA, many execution curves
for recovering secrets. We introduce in this paper a technique in which we
apply correlation analysis using only one execution power curve during an
exponentiation to recover the whole secret exponent manipulated by the
chip. As in the Big Mac attack from Walter, longer keys may facilitate this
analysis and success will depend on the chip arithmetic characteristics. We
present the theory of the attack with some practical successful results on
an embedded device and analyze the efficiency of classical countermeasures
with respect to our attack. Our technique, which uses a single exponentia-
tion curve, cannot be prevented by exponent blinding. Also, contrarily to
the Big Mac attack, it applies even in the case of regular implementations
such as the square and multiply always or the Montgomery ladder. We
also point out that DSA and Diffie-Hellman schemes are no longer immune
against CPA. Then we discuss the efficiency of known countermeasures,
and we finally present some new ones.

Keywords: Public Key Cryptography, Side-Channel Analysis, Horizontal
and Vertical Power Analysis, Exponentiation, Arithmetic Coprocessors.

1 Introduction

Securing embedded products from Side-Channel Analysis (SCA) has become a
difficult challenge for developers who are confronted with more and more analysis
techniques as the physical attacks field is studied. Since the original Simple Side-
Channel Analysis (SSCA) — which include Timing Attacks, SPA, and SEMA —



and Differential Side-Channel Analysis (DSCA) — including DPA and DEMA —
have been introduced by Kocher et al. [18,19] many improvements and new SCA
techniques have been published. Messerges et al. were the first to apply these
techniques to public key implementations [21]. Later on, original DSCA has been
improved by more efficient techniques such as the one based on the likelihood test
proposed by Bevan et al. [4], the Correlation Power Analysis (CPA) introduced by
Brier et al. [5], and more recent techniques like the Mutual Information Analysis
(MIA) [14,24,25]. A common principle of all these techniques is that they require
many power consumption or electromagnetic radiation curves to recover the secret
manipulated. Hardware protections and software blinding [9, 18] countermeasures
are generally used and when correctly implemented they counteract these attacks.

Among all those studies the so-called Big Mac attack is a refined approach in-
troduced by Walter [26, 27] from which our contribution is inspired. This technique
aims at distinguishing squarings from multiplications and thus recovering the se-
cret exponent of an RSA exponentiation with a single execution curve. This can
be achieved by averaging and comparing the cycles of a device multiplier during
long integer multiplications.

We present in this paper another analysis which uses a single curve. We named
this technique horizontal correlation analysis, which consists of computing classical
statistical treatments such as the correlation factor on several segments extracted
from a single execution curve of a known message RSA encryption. Since this
analysis method requires only one execution of the exponentiation as the Big Mac
attack, it is then not prevented by the usual exponent blinding countermeasure.

The paper is organized as follows. Section 2 gives an overview of asymmetric
algorithms and the way to compute long integer multiplication in embedded im-
plementations. Section 3 reminds the reader of previous studies on power analysis
techniques discussed in this article. The horizontal correlation analysis is presented
in Section 4 with some practical results and a comparison between our technique
and the Big Mac attack. Known and new countermeasures are discussed in Sec-
tion 5. In Section 6 we deal with horizontal side channel analysis in the most
common cryptosystems. Finally we conclude this paper in Section 7.

2 Public Key Embedded Implementations

RSA is well known to be currently the most used public key cryptosystem in
smart devices. Other public key schemes such as DSA [12], Diffie-Hellman key ex-
change [11] protocols, and their equivalent in Elliptic Curve Cryptography (ECC)
— namely ECDSA and ECDH [12] — are also often involved in security products.
Interestingly, all of them are based on the modular exponentiation or the scalar
multiplication and in both cases the underlying operation is modular long integer
multiplication. Heavy efficiency constraints thus lie on this operation, especially in
the context of embedded devices. Many methods such as the Montgomery multipli-
cation [23] and interleaved multiplication-reduction with Knuth, Barrett, Sedlack
or Quisquater methods [10] can be applied to perform efficient modular multi-



plications. Most of them have in common that the long integer multiplication is
internally done with a loop of one (or more) smaller multiplier(s) operating on
t-bit words. An example is given in Alg. 2.1 which performs the schoolbook long
integer multiplication using a t-bit internal multiplier giving a 2¢-bit result. The
decomposition of an integer x in t-bit words is given by x = (x;_1x;_2 ... zg)p with
b = 2% and | = [logy(z)]. Other long integer multiplication algorithms may also
be used such as Comba [8] and Karatsuba [17] methods.

Algorithm 2.1 Long Integer Multiplication

INPUT: z = (21—121—2 . 960 by = Wi—1y1—2. .. yo)s
OuTPUT: LIg\/I(az y) = =z x

Step 1. for i from 0to 2l — 1 do w; =0
Step 2. for ¢ from 0 tol —1 do
c—20
for j from 0 tol—1 do
(W) — (wiy; + @ X y;) + ¢
Witj —— v and ¢ «—u
Wit < C
Step 3. Return(w)

We consider in this paper that a modular multiplication z X y mod n is per-
formed using a long integer multiplication followed by a Barrett reduction denoted
by BarrettRed(LIM(z,y),n).

Algorithm 2.2 Square and Multiply Exponentiation

INPUT: integers m and n sugh that m < n, v-bit exponent d = (dy—1dy—2...do)2
OutpruT: Exp(m,d,n) = m® mod n

Step 1. a «— 1
Step 2. Process Barrett reduction precomputations
Step 3. for i from v — 1 to 0 do

a < BarrettRed(LIM(a,a), n)

if d; =1 then a «— BarrettRed(LIM(a,m), n)
Step 4. Return(a)

Alg. 2.2 presents the classical square and multiply modular exponentiation
algorithm using Barrett reduction. More details on Barrett reduction can be found
in [20] and [3] and other methods can be used to perform the exponentiation such
as Montgomery ladder [22] and sliding window techniques [6].

We assume in the following of this paper that Alg. 2.2 is implemented in an
SPA resistant way, for instance using the atomicity principle [7].

While we have chosen to consider modular multiplication using Barrett reduc-
tion, and square and multiply exponentiation, the results we present in this paper
also apply to the other modular multiplication methods, long integer multiplication
techniques and exponentiation algorithms mentioned above.



3 Side-Channel Analysis

We have chosen to introduce in this paper the terms of vertical and horizontal side-
channel analysis to classify the different known attacks. The present section deals
with known vertical and horizontal power analysis techniques. Our contribution,
the horizontal correlation analysis on exponentiation is detailed in Section 4.

3.1 Background

Side-channel attacks rely on the following physical property: a microprocessor is
physically made of thousands of logical gates switching differently depending on
the executed operations and on the manipulated data. Therefore the power con-
sumption and the electromagnetic radiation, which depend on those gates switches,
reflect and may leak information on the executed instructions and the manipulated
data. Consequently, by monitoring the power consumption or radiation of a device
performing cryptographic operations, an observer may infer information on the
implementation of the program executed and on the secret data involved.

Simple Side-Channel Analysis In the case of an exponentiation, original SSCA
consists in observing that, if the squaring operation has a different pattern from
the one of the multiplication, the secret exponent can be read on the curve. Clas-
sical countermeasures consist of using so-called regular algorithms like the square
and multiply always or Montgomery ladder algorithms [22, 16], atomicity principle
which leads to regular power curves as presented in Appendix A Fig. 9.

Differential Side-Channel Analysis Deeper analysis such as DSCA [21] can
be used to recover the private key of an SSCA protected implementation. These
analyses make use of the relationship between the manipulated data and the power
consumption /radiation. Since this leakage is very small, hundreds to thousands of
curves and statistical treatment are generally required to learn a single bit of
the exponent. Usual countermeasures consist of randomizing the modulus, the
message, and/or the exponent.

Correlation Power Analysis This technique is essentially an improvement of
the Differential Power Analysis. Initially published by Brier et al. [5] to recover
secrets on symmetric implementations, CPA is also successful in attacking asym-
metric algorithms [2] with much fewer curves than classical DPA. The power con-
sumption of the device is supposed to vary linearly with H(D @ R), the Hamming
distance between the data manipulated D and a reference state R. The consump-
tion model W is then defined as W = p- H(D @ R) 4 v, where v captures both the
experimental noise and the non modelized part of the power consumption. The
linear correlation factor pco g = cov(C:H) 4o then used to correlate each power

curve C' with H(D @ R). The maximun correlation factor being obtained for the



right guess of secret key bits, an attacker can try all possible secret bits values and
select the one corresponding to the highest correlation value.

In [2], Amiel et al. apply the CPA to recover the secret exponent of public key
implementations. Their practical results show that the number of curves necessary
to an attack is much lower compared to DPA: less than one hundred of curves is
sufficient. It is worth noticing that the correlation is the highest when computed
on t bits, ¢ being the bit length of the device multiplier.

The authors shows the details [2, Fig. 8] of the correlation factor obtained for
every multiplicand ¢-bit word A; during the squaring operation A x A using a
hardware multiplier. Interestingly a correlation peak occurs for H(A;) each time a
word A; is involved in a multiplication A; x A;.

We present in the next section our horizontal correlation analysis which takes
advantage of this observation.

Collision Power Analysis The Doubling attack from Fouque and Valette [13]
is the first collision technique published on public key implementations. It is orig-
inally presented on elliptic curve scalar multiplication but can be applied on ex-
ponentiation algorithms. It recovers the whole secret scalar (exponent) with only
a couple of curves. Other collision attacks have been presented in [1, 15, 28]. They
all require at least two power execution curves, therefore the classical exponent
randomization (blinding) countermeasure counterfeits those techniques.

Notations Let C* denote the portion of an exponentiation curve C correspond-
ing to the k-th long integer multiplication, and C{fj denote the curve segment

corresponding to the internal multiplication x; X y; in Ck.

Big Mac Attack Walter’s attack needs, as our technique, a single exponentiation
power curve to recover the secret exponent. For each long integer multiplication,
the Big Mac attack detects if the operation processed is either a X a or a x m. The
operations x; X y; — and thus curves C;fj — can be easily identified on the power
curve from their specific pattern which is repeated [? times in the long integer
multiplication loop.

A template power trace T}, is computed (either from the precomputations or
from the first squaring operation) to characterize the message value m manipula-
tion during the long integer multiplication.

An example of such calculation is given in the following: for each ¢-bit word

m; of the message m, compute Tﬁl = %Zé‘;o Ci{j by averaging the [ subcurves
1
Cly...Cl .
Then the template curve T}, is the concatenation of curves T, ..T,, . In

the exponentiation loop, at each k-th long integer multiplication, the curve T*
is computed in the same manner. The Euclidean distance between T* and T}, is
computed. If it exceeds a threshold the multiplication is supposed to be a squaring,
and a multiplication by m otherwise.



The attack is innovative and has been presented by Walter with theoretical
and simulation results. The efficiency of the attack increases with the key length
and decreases with the multiplier size.

Cross-Correlation Cross correlation technique has been used in [21] to try to
recover the secret exponent in a single curve. However the cross correlation curve
obtained by the authors did not allow distinguishing a multiplication from a squar-
ing. More generally no successful practical result for cross correlation using a single
exponentiation power curve has been yet published.

3.2 Vertical and Horizontal Attacks Classification

We refer to the techniques analyzing a same time sample in many execution curves
— see Fig. 1 — as vertical side-channel analysis. The classical DPA and CPA tech-
niques thus fall into this category. We also include in the vertical analysis class the
collision attacks mentioned above. Indeed even if many points on a same curve are
used by those techniques, they require at least two power execution curves and
manipulate them together.

All those attacks are avoided with the exponent blinding countermeasure pre-
sented by Kocher [18, Section 10].
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Fig. 1. Vertical Side Channel Analysis Fig. 2. Horizontal side-channel analysis

We propose the horizontal side-channel analysis denomination for the attacks
using a single curve. First known horizontal power analysis is the classical SPA.
Cross-correlation and Big Mac attacks are also horizontal techniques.

Our attack, we present in the next section, computes the correlation factor
on many curve segments extracted from a single consumption/radiation curve as
depicted in Fig. 2. It thus contrasts with vertical attacks which target a particular
instant of the execution in several curves. The exponent blinding is not an efficient
countermeasure against horizontal attacks.



4 Horizontal Correlation Analysis

We present hereafter our attack on an atomically protected RSA exponentiation
using Barrett reduction.

4.1 Recovering the Secret Exponent with One Known Message
Encryption

As in vertical DPA and CPA on modular exponentiation, the horizontal correlation
analysis reveals the bits of the private exponent d one after another. Each expo-
nent bit is recovered by determining whether the processing of this bit involves
a multiplication by m or not (cf. Alg. 2.2). The difference with classical vertical
analysis lies in the way to build such hypothesis test.

Computing the long integer multiplication z x y using Alg. 2.1 requires {2 ¢-bit
multiplier calls. The multiplication side-channel curve thus yields [? curve segments
C{fj available to an attacker.

Assuming that the first s bits dy,_1dy—2...d,—s of the exponent are already
known, an attacker is able to compute the value ag of the accumulator in Alg. 2.2
after processing the s-th bit. The processing of the first s bits corresponds to the
first s’ long integer multiplications with s’ = s+ H(d,_1dy—2 . ..d,_s) known from
the attacker. The value of the unknown (s + 1)-th exponent bit is then equal to 1
if and only if the (s’ + 2)-th long integer multiplication is as? x m.

X m
Qs

At this point there are several ways of determining whether the multiplication
by m is performed or not.

First, one may show that the series of consumptions in the set of I2 curve seg-
ments is consistent with the series of operand values m; presumably involved in
each of these segments. To this purpose the attacker simply computes the correla-
tion factor between the series of Hamming weights H(m;) and the series of curve
segments C’fj;r2 —i.e. taking D = m; and R = 0 in the correlation factor formula.
In other words we use the curve segments as they would be in a vertical analysis if
they were independent aligned curves. A correlation peak reveals that d,_,_1 =1
since it occurs if and only if m is actually handled in this long multiplication.

Alternatively one may correlate the curves segments with the intermediate
results of each ¢-bit multiplication z; X y;, cf. Alg. 2.1, with x = a, and y = m, or
in other words take D = a; x m;. This method may also be appropriate since the
words of the result are written in registers at the end of the operation. Moreover
in that case [? different values are available for correlating the curve segments



instead of [ previously. This diversity of data may be necessary for the success of
the attack when [ is small. Note that other intermediate values may also lead to
better results depending on the hardware leakages.

Another method consists of using the curve segments C; ;*3 of the next long
integer multiplication and correlating them with the Hamming weight of the words
of the result a2 x m. If the (s’ 4 2)-th operation is a multiplication by m then the
(s’ + 3)-th operation is a squaring as12, manipulating the words of the integer
as2 x m in the t-bit multiplier.

As pointed out by Walter in [27] for the Big Mac attack, the longer the integer
manipulated and the smaller the size ¢ of the multiplier, the larger the number /2
of curve segments. Thus longer keys are more at risk with respect to horizontal
analysis.

For instance in an RSA 2048 bit encryption, if the long integer multiplication
is implemented using a 32-bit multiplier we obtain (2048/32)% = 4096 segments
C{fj per curve C*. In Appendix B Table 1 proposes examples of values for [ and

12 for different sizes of the modulus n and different sizes ¢ of the multiplier.

Remark  The series of Hamming weights H(m;) is not only correlated with the
series of curve segments in Cs'+2 (provided that d,_s—1 = 1), but also with the
series of curve segments in each and any C* corresponding to a multiplication by
m. Defining a wide segment C7 ; as the set of segments C’f”j for all k£ on the curve C
and correlating the series of H(my;) with the series of wide segments C7 ; (instead of

the series of segments C’f”;rz) will produce a wide segment correlation curve with
a peak occurring for each k corresponding to a multiplication by the message.
It is thus possible to determine in one shot the exact sequence of squarings and
multiplications by m, revealing the whole private exponent with only one curve
and only one correlation computation.

4.2 Practical Results

This section presents the successful experiments we conducted to demonstrate the
efficiency of the horizontal correlation analysis technique. We used a 16-bit RISC
microprocessor on which we implemented a software 16 x 16 bits long integer
multiplication to simulate the behavior of a coprocessor. We aim at correlating a
single long integer multiplication with one or both operands manipulated — i.e. y;
or r; X yj.

The measurement bench is composed of a Lecroy Wavepro oscilloscope, and
homemade softwares and electronic cards were used to acquire the power curves
and process the attacks.

Firstly we performed a classical vertical correlation analysis to characterize our
implementation and measurement bench, and to validate the correlation model;
then we processed with the horizontal correlation analysis previously described.

Vertical Correlation Analysis This analysis succeeded in two cases during the
operation x x y. We obtained correlation peaks by correlating power curves with



Fig. 3. Beginning of a long integer multiplication power curve, lines delimitate each C{f j

values z; and y; and also by correlating the power curves with the result value of
operation x; X y;. Fig. 4 and Fig. 5 show the correlation traces we obtained for
both cases with 500 power curves.

Fig. 4. Vertical CPA on value y;. Fig. 5. Vertical CPA on value z; X y;.

This suggests that one can perform horizontal correlation as explained pre-
viously either using y; values or using result values z; x y; for correlating with
segment curves of the long integer multiplication.

Horizontal Correlation Analysis We have chosen to test our technique within
a 512-bit multiplication LIM(z, y). This allows us to obtain 1024 curve segments
C{fj of 16-bit multiplications to mount the analysis, which should be enough for
the success of our attack regarding the vertical analysis results.

From the single power curve we acquired, we processed the signal in order to
detect each set of cycles corresponding to each t-bit multiplication x; x y; and
divide the single power curve in 1024 segments Cik,j as depicted in Fig. 3.

We performed horizontal analysis as explained in Section 4 for the two cases
D = a; xm; and D = m; and recovered the operation executed as shown in Fig. 6



and Fig. 7. In each figure, the grey trace shows a greater correlation than the black
one and thus corresponds to the correct guess on the operation.

Since our attack actually enabled us to distinguish one operation from another,
it is then possible to identify a squaring a x a from a multiplication a X m in the
Step 3 of Alg. 2.2. The secret exponent d used in an exponentiation can thus be
recovered by using a single power trace, even when the exponentiation is protected
by an atomic implementation.
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Fig. 6. Horizontal CPA on value a; x m;. Fig. 7. Horizontal CPA on value m;.

We have presented here a technique to recover the secret exponent using a
single curve when the input message is known and have proven this attack to be
practically successful. Although the attack is tested on a software implementation,
results obtained by Amiel et al. [2, Fig. 8] prove that correlation techniques are
efficient on hardware coprocessors (with multiplier size larger than 16 bits), and
enable to locate each little multiplication involved in a long integer multiplication.
We thus consider that our attack can also threaten hardware coprocessors.

4.3 Comparing our Technique with the Big Mac Attack

We now compare our proposed horizontal CPA on exponentiation with the Big
Mac attack which is the most powerful known horizontal analysis to recover a
private exponent. A common property is that both techniques counteract the ran-
domization of the exponent.

A first difference between both methods is that the Big Mac templates are
generated by averaging the leakage dependency from a not targeted argument. It is
thus implicitly accepted to lose the information brought by this auxiliary data. On
the other hand, horizontal correlation exploits the knowledge of both multiplication
operands a and m (under assumption on the exponent bit) to correlate it with all
12 segments Cik) ;- This full exploitation of the available information included in the
12 curve segments tends us to expect a better efficiency of the correlation method
particularly when processing noisy observations.

But the main difference is not there. What fundamentally separates the Big
Mac and correlation methods is that the former deals with templates — which the
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attacker tries to identify — while the later rather consider intermediate results —
whose manipulation validates a secret-dependent guess. With the Big Mac tech-
nique an attacker is able to answer the question Is this operation of that particular
kind? (squaring, multiplication by m or a power thereof) while the correlation
with intermediate data not only brings the same information but also answers the
more important question Is the result of that operation involved in the sequel of
the computation? The main consequence is that horizontal CPA is effective even
when the exponentiation implementation is reqular with respect to the operation
performed. This is notably the case of the square and multiply always* and the
Montgomery ladder exponentiations which are not threaten by the Big Mac attack.
In this respect we can say that our horizontal CPA combines both the advantage
of classical CPA which is able to validate guesses based on the manipulation of
intermediate results (but which is defeated by the randomization of the exponent)
and that of horizontal techniques which are immune to exponent blinding.

On the other hand the limitation of the Big Mac attack — its ignorance of the
intermediate results — is precisely the cause of its noticeable property to be appli-
cable also when the base of the exponentiation is not known from the attacker.
The Big Mac attack thus applies when the message is randomized and/or in the
case of a Chinese Remainder Theorem (CRT) implementation of RSA. While the
horizontal correlation technique does not intrinsically deals with message random-
ization, we give in the next section some hints that allow breaking those protected
implementations when the random bit-length is not sufficiently large.

4.4 Horizontal Analysis on Blinded Exponentiation

To protect public key implementations from SCAdevelopers usually include blind-
ing countermeasures in their cryptographic codes. The most popular ones on RSA
exponentiation are:

— Additive randomization of the message and the modulus: m* = m+r; -n mod
ro-n =m+4u-n with r1, 72 being A-bit random values different each time the
computation is executed, and v = r; mod 7.

— Multiplicative randomization of the message: m* = r
random value and e the public exponent,

— Additive randomization of the exponent: d* = d + r - ¢(n) with r a random
value.

¢ . mmodn with r a

All these countermeasures prevent from the classical vertical side-channel analysis
but the efficiency of the implementations is penalized as the exponent and modulus
are extended of the random used bit lengths.

4 Referring to the description given in 4.1 the method using the curve segments Ci;+3
validates that the value produced by the multiplication by m is involved or not in the
next squaring operation. A similar technique also applies to the Montgomery ladder.
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Guessing the randomized message m* In this paragraph we consider that the
message has been randomized by an additive (or multiplicative) method, the secret
exponent has also been randomized and the message is encrypted by an atomic
multiply always exponentiation. We analyze the security of such implementation
against horizontal CPA. The major difference with vertical side-channel analysis
is that the exponent blinding has no effect since we analyze a single curve and
recovering d* is equivalent to recovering d.

Assuming that the entropy of u is A bits, there are 2* possible values for the
message m* knowing m and n. The first step of an attack is to deduce the value
of the random w. This is achieved by performing one horizontal CPA for each
possible value of u on the very first multiplication which computes (m*)2. Since
this multiplication is necessarily computed, the value of u should be retrieved as
the one showing a correlation peak. Once u is recovered, the randomized message
m* is known and recovering the bits of the exponent d is similar to the non blinded
case using m* instead of m.

Consequently, the entropy of u must be large enough (e.g. A > 32) to make the
number of guess unaffordable and prevent from horizontal correlation analysis.

The actual entropy of the randomization In the case of additive randomiza-
tion of the message, m* depends on two A-bit random values 1 and 5. Obviously,
the actual entropy of this randomization is not 2\ bits, and interestingly it is even
strictly less than A bits. The reason is that m* = m + u - n with v = r; mod ro,
and thus smaller u values are more probable than larger ones.

Assuming that r; and r9 are uniformly drawn at random in the ranges [0, 2N — 1]
and [17 2N — 1] respectively, statistical experiments show that the actual entropy
of u is about A — 0.75 bits®.

A consequence of this bias on the random w is that an attacker can exhaust
only a subset of the smaller guesses about w. If the attack does not succeed, then
he can try again on another exponentiation curve. For A = 8 guessing only the 41
smaller u will succeed with probability %

An extreme case, which optimizes the average number of correlation curve
computations, is to guess only the value v = 0 6. This way, only 38 and 5352
correlation curve computations are needed in the mean when A is equal to 8 and
16 respectively.

These observations demonstrate that the guessing attack described in the pre-
vious paragraph is more efficient than may be trivially expected. This confirms
the need to use a large random bit length A.

® The loss of 0.75 bits of entropy is nearly independent of X for typical values (A < 64).
5 Or u = 1 if the implementation does not allow u = 0.
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5 Countermeasures

Having detailed the principle and the threats of our horizontal side-channel analysis
on exponentiation, we now study the real efficiency of the classical side channel
countermeasures and propose new countermeasures.

5.1 Hardware Countermeasures

Classical countermeasures consisting in perturbing the signal analysis e.g. clock
jitters, frequency clock dividers or dummy cycles, may considerably complicate
the analysis but should not be the only countermeasures since efficient signal pro-
cessing could bypass them depending on their real efficiency.

Techniques consisting in balancing the power consumption of the chip with dual
rail, precharge logics or other methods, if really efficient, could be a better solution.
However they are expensive countermeasures from the chip surface point-of-view.

5.2 Blinding

All SSCA resistant algorithms that can be used to implement the exponentiation —
either those protected with atomicity principle or regular ones as square and mul-
tiply always and Montgomery ladder — are threatened by the horizontal analysis.
It is then necessary to randomize the data manipulated during the computation.

As said previously the blinding of the exponent is not an efficient countermea-
sure here, it is thus highly recommended to implement a resistant and efficient
blinding method on the data manipulated, for instance by using additive message
randomization with random values larger or equal to 32 bits.

As regard to the previous analysis on the actual entropy of u, an additional
solution consists in eliminating the bias on u by setting r to a constant value, for
instance 2% — 1.

5.3 New Countermeasures

We suggest protecting sensitive implementations from this analysis by introduc-
ing blinding into the ¢-bit multiplications, by randomizing their execution order
or by mixing both solutions. These countermeasures are presented on modular
multiplication using the Barrett reduction.

Blind Operands in LIM A full blinding countermeasure on the words z; and
y; consists in replacing in Alg. 2.1 the operation (wit; + ; X y;) + ¢ by (wit; +
(i — 1) X (y; —r2)) + 71 Xy; +7r2 X 2; —ry Xry+c with r; and ry two t-
bit random values. For efficiency purposes, the values r; X x;, 72 X y;, r1 X 12
should be computed once and stored. Moreover, these precomputations must also
be protected from correlation analysis. For example, performing them in a random

13



order yields (2 4 1)! different possibilities. In this case the LIM operation requires
12 +21+1 t-bit multiplications and necessitates 2(n+ 2t) bits of additional storage.

In the following we improve this countermeasure by mixing the data blind-
ing with a randomization of the order of the internal loops of the long integer
multiplication.

Randomize One Loop in LIM and Blind This countermeasure consists in
randomizing the way the words z; are taken by the long integer multiplication
algorithm. In other words it randomizes the order of the lines of the schoolbook
multiplication. Then computing correlation between z; and Ck does not yield
the expected result anymore. On the other hand it remains necessary to blind the
words of y. An example of implementation is given in Alg. 5.3.

The random permutation provides I! different possibilities for the execution
order of the first loop. For example, using a 32-bit multiplier, a 1024-bit long
integer multiplication has about 2''7 possible execution orders of the first loop
and with 2048-bit operands it comes to about 2296 possibilities.

Algorithm 5.3 LIM with lines randomization and blinding

INPUT: @ = (T—1%1—2 ... T120)b, Y = (Yi—1Yi—2 - - - Y150 )b
OUTPUT: LlnesRandLIM(az,y) =T Xy

Step 1. Draw a random permutation vector a = (aj—1... o) in [0, — 1]
Step 2. Draw a random value r in [1, 2t — 1}
Step 3. for i from 0to 2l —1 do w; =0
Step 4. for h from 0tol—1 do
i ap, Ti <1 Xx;and ¢« 0
for j from 0 tol—1 do
(W) — (wiy; + @ X (y; —7) +¢) + 7
Witj — v and ¢ — u
while ¢ # 0 do
UV — Witj + €
Witj — v, c+—uand j«—j+1
Step 5. Return(w)

Compared to the previous countermeasure, Alg. 5.3 requires only 12 + [ t-bit
multiplications and 2t bits of additional storage.

Remark One may argue that in the case of very small [ values such a countermea-
sure might not be efficient. Remember here that if [ is very small, the horizontal
correlation analysis is not efficient either because of the small number of curve
segments.

Randomize the Two Loops in LIM We propose a variant of the previous
countermeasure in which the execution order of the both internal loops of the
long integer multiplication are randomized. This means randomizing both lines
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and columns of the schoolbook multiplication. The main advantage is that none
of the operands x; or y; needs to be blinded anymore. The number of possibilities
for the order of the I? internal multiplication is increased to (I!)2. An example of
implementation is given in Alg. 5.4.

Unlike the two previous countermeasures, Alg. 5.4 requires no extra t-bit multi-
plication compared to LIM. It is then an efficient and interesting countermeasure,
while the remaining difficulty for designers consists in implementing it in hard-
ware.

Algorithm 5.4 LIM with lines and columns randomization

INPUT: & = (z; T1%0)b, Y = (Yi—1Yi—2 - - - Y1%0)b
OUuTPUT: MatrlxRandLIM(az,y) =z Xy

Step 1. Draw two random permutation vectors a, 3 in [0,1 — 1]
Step 2. for i from 0to 2l — 1 do w; =0
Step 3. for h from O0tol—1 do
7 — [677%
for j from 0to 2/ —1 do ¢; =0
for k from 0 tol —1 do
J = B
(wv)p = Witj + i X Y5
Witj — v and Ciqjt1 — U
u«—0
for sfromi+1to20—1 do
(uv)p = ws +cs +u
Ws — v

Step 4. Return(w)

6 Concerns for Common Cryptosystems

We presented our analysis on straightforward implementations of the RSA signa-
ture and decryption algorithms which essentially consist of an exponentiation with
the secret exponent.

In the case of an RSA exponentiation using the CRT method our technique
cannot be applied since the operations are performed modulo p and ¢ which are
unknown to the attacker.

On the other hand DSA and Diffie-Hellman protocols were until now consid-
ered immune to DPA and CPA because the exponents are chosen at random for
each exponentiation. Indeed it naturally protects these cryptosystems from verti-
cal analysis. However, as horizontal CPA requires a single execution power trace
to recover the secret exponent, DSA and Diffie-Hellman exponentiations are prone
to this attack and other countermeasures must be used in embedded implementa-
tions.

It is worth noticing that ECC cryptosystems are theoretically also concerned
by the horizontal side-channel analysis. However since key lengths are considerably
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shorter — for instance ECC 224 bits is considered having equivalent mathemati-
cal resistance than RSA 2048 — very few curves per scalar multiplication will be
available for the attack. On the other hand, scalar multiplication involves point
doublings and point additions instead of field multiplications and squarings. Each
point operation requires about 10 modular multiplications and thus correlation
computation could take advantage of all the corresponding curves. Nevertheless,
a factor of about 10 should not balance the key length reduction which has a
quadratic influence on the number of available curve segments.

7 Conclusion

We presented in this paper a way to apply classical power analysis techniques such
as CPAon a single curve to recover the secret key in some public key implementa-
tions — e.g. non CRT RSA, DSA or Diffie-Hellman — protected or not by exponent
randomization. We also applied our technique in practice and presented some suc-
cessful results obtained on a 16-bit RISC microprocessor. However even with bigger
multiplier sizes (32 or 64 bits) this attack can be envisaged depending on the key
size, cf. Section 4.1. We discussed the resistance of some countermeasures to our
analysis and introduced three secure multiplication algorithms.

Our contribution enforces the necessity of using sufficiently large random num-
bers for blinding in secure implementations and highlights the fact that increasing
the key lengths in the next years could improve the efficiency of some side-channel
attacks. The attack we presented threatens implementations which may have been
considered secure up to now. This new potential risk should then be taken into
account when developing embedded products.

Further work could target the use of other values and distinguishers for the
horizontal correlation analysis and then improve its efficiency. Possible ideas in-
clude: using more intermediate values, some likelihood tests, guessing simultane-
ously many bits of the secret exponent to increase the number of available curves
for the analysis, using different models like the bivariate one for correlation factor
computation on curves.
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A Square and Multiply Power Curves Examples

The following figures illustrate the SPA as described in Section 3.1. Fig. 8 corre-
sponds to the power curve execution of a classical square and multiply algorithm.
We can observe that the multiplication operation has a different pattern from the
squaring one. The multiplications can then be identified and the secret exponent
be recovered.

On Fig. 9, the implementation analysed uses the atomicity principle. It allows
the exponentiation to be SSCA resistant since we cannot distinguish anymore the
squarings from the multiplications.

B Examples of I and 12 values

In this paragraph, we illustrate with examples the property: the longer the keys,
the more efficient the horizontal correlation analysis. The following table proposes
examples of values for [ and [? using different key lengths and different multiplier
sizes.

Considering that [ > 500 should be enough to perform the horizontal correla-
tion analysis, many implementations may be subject to this attack.
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Fig. 8. Power curve of a leaking square
and multiply algorithm

Fig. 9. Power curve of an atomic square
and multiply algorithm

length n in bits | multiplier size t | [ ?
2048 32 64 | 4096
2048 64 32 | 1024
1536 32 48 | 2304
1536 64 24 | 576
1024 16 64 | 4096
1024 32 32 | 1024
1024 64 16 | 256
512 16 32 | 1024
512 32 16 | 256

Table 1. Examples of n, ¢, and I values with the number of available segments
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