From AES-128 to AES-192 and AES-256,
How to Adapt Differential Fault Analysis Attacks

Noémie Floissac and Yann L'Hyver

SERMA TECHNOLOGIES ITSEF
30, avenue Gustave Eiffel, 33608 Pessac, France
Email: {n.floissac;y.lhyver} @serma.com

Abstract

Since its announcement, AES has been subject to different DFA attacks. Most of these attacks
target the AES with 128-bit key. However, the two other variants are nowadays deployed in various
applications and are also submitted to the same attack path. In this paper, we adapt the DFA
techniques originally used on AES-128 in order to obtain the keys of AES-192 and AES-256. To
illustrate this method, we propose efficient attacks on AES-192 and AES-256 based on a known
DFA on KeyExpansion.

Keywords
DFA, fault injection, AES-192, AES-256, adaptation, extension, reproduction

I. Introduction

Initially introduced by D. Boneh and al. in [1], Differential Fault Analysis is an efficient attack
path allowing to discover a secret key handled by an embedded cryptographic algorithm. This
attack consists in corrupting intermediate states in order to produce faulty ciphers. The faults are
obtained by physical perturbations of the targeted device. The DFA attack is based on the analysis
of the differences between the faulty ciphers and the expected ones to obtain information on the
secret key.

Attacks on Advanced Encryption Standard can be split into two categories depending of the
fault location: the DFA on the State and the DFA on the KeyExpansion. In both cases, the AES-
128 variant has been widely covered with the DFA proposed in [2], [3], [4], [5], [6], [7] and [8] for
the first category, and [4], [9], [10], [11] and [12] for the second one.

Recent papers focus on DFA on the state for AES-192 and AES-256, see [13] and [14]. However,
from the best of our knowledge, no DFA attack on KeyExpansion has been explicitly published on
these two variants.

The aim of this paper is to propose a general method to perform a DFA on the AES-192 and
AES-256 by exploitation of the same techniques used on the AES-128. In several cases and after
some changes, the same DFA attack can be applied for all key sizes. We distinguish hereafter the
DFAs with a fault injected on the state and those with a fault injected on the KeyExpansion
algorithm. In the first case, we formalize a generic adaptation of DFA attacks on the state. The
second case is more complicated to treat due to the differences in the KeyExpansion algorithm
according to the key size. A specific analysis has to be considered for each variant. We propose a
DFA adaptation based on the attack of C. H. Kim and J.-J. Quisquater (see [10]).

This paper is organized as follows: the notations and vocabulary are defined in section II. In
section III, we present some problems encountered to adapt DFA attacks from AES-128 and the
different techniques to solve them. To illustrate this section, we propose an adaptation of attack
[10] in section IV. Finally, we present some results concerning these attack adaptations and we
give our conclusion in section V.

II1.

Notations, vocabulary and background

The AES is a symmetric block cipher standard based on iterations of four transformations
(AddRoundKey, SubBytes, ShiftRows and MixColumns). The number of iterations also called
rounds depends on the selected variant and so on the key length. Each transformation is performed
once by round except for the last round where the MixColumns tranformation is not included.

In the remainder of the paper, we use the following notations and vocabulary:

Ngr: Number of rounds. Its value depends on the size of initial key, see Table I.
Nyx: Number of 32-bit words used during the key schedule process. Its value depends on the
size of the initial key, see the following table:

[Variant | Ng [Nj |

AES-128 10 4

AES-192 12 6

AES-256 14 8
TABLE 1

t: one of the following transformations:

— SB: SubBytes

— SR: ShiftRows

— MC: MixColumns

— I_MC: inverse MixColumns

— L_.SR: inverse ShiftRows

— I_SB: inverse SubBytes

— ARK: AddRoundKey

— SW: SubWord

— RW: RotWord
S¢,r: State issued from the transformation t on round r
S¢r{i,j}: Byte {i,j} issued from state S¢ ,. A state is represented by an array of four lines and
four columns (32-bit words) where bytes are disposed as in Table II.
St i Faulty state issued from the transformation t on round r

St,r{0,0} | St{0,1} | St¢.{0,2 3
) } St,r{lal} St,r{172 St,r{173
Se.c{2,0F | Serd2, 1) | Sin{2,2 3
b Ser{3,1} | St,r{3,2 3
TABLE II

K,: Key of round r

K,{i,j}: The byte {i,j} issued from key K,. A round key is represented by an array of four
lines and four columns where bytes are disposed as a state.

K3 Faulty key of round r

Sb: Substitution table used by SubBytes and SubWord transformations
I_Sb: Inverse substitution table used by inverse SubBytes transformations
RCon: 32-bit constant word such as:

RConli] = (271,0,0,0)

xor (@): Exclusive-OR operation

Couple: A set composed with the correct and faulty ciphers
Differential: Exclusive-OR between two states or round keys

X [Y] or X mod Y: Modular reduction of X by Y

The AES cipher algorithm uses the round keys obtained from the KeyExpansion algorithm.

The key schedule consists in diversifying a previous round key in order to obtain a new round
key. This transformation can be performed before AES cipher algorithm, see the pseudo-code given
in Algorithm 1, or on the fly during the AES cipher computation.

Algorithm 1 KeyEzpansion pseudo-code
Input: K, the initial key of length Ny
Output: K; with i =0,..., Ny, the round keys

fori=0to Ny —1by 1do
Wi) < [K{0,1}, K {1}, K{2,i}, K {3,}]
end for
for i = Nj to (4% (Ng+1))—1) by 1 do
T+ Wi —1]
if (i mod Ni) == 0 then
T+ SW(RW(T)) ® RCon[ﬁ]
else if (N, > 6) and (i mod Ni) == 4 then
T+ SW(T)
end if
Wi < W[i— Ny]®T
. end for
: for i =0 to Ny by 1 do
K+ W[4, Wlixd+1],W[i*x4+ 2], W[i*4+ 3]
: end for

— e e e e

The interested reader can obtain more information on the AES in document [15].

III. Adaptations of DFA to AES-192 and AES-256

Commonly, the AES-128 is faulted on the last rounds to retrieve the complete last round key or
a subset of it. With this knowledge, the initial 128-bit key is calculated thanks to the computation
of the inverse KeyExpansion algorithm.

We define by adaptation the generalization of such DFA attack to AES-192 or AES-256. The
adaptation can be decomposed into two phases described below: an extension and a reproduction.

A. FEaxtension and reproduction

As all the AES variants are based on the same structure, a first idea consists in applying known
DFA attacks on AES-128 to the two other variants with the aim to retrieve the last round key
KnNg - The identified strategy is to inject fault(s) on rounds having the same position from the end
of AES as those targeted by the DFA attack on AES-128 and to exploit the differential faults with
the same techniques. We call this phase an extension.

For AES-192 and AES-256, the last round key is not sufficient to obtain the initial key: it is
required to know respectively the last 8 bytes and 16 bytes of penultimate round key Kny —1. The
extension of the DFA attack is not enough to determine all the missing bytes.

The second phase of the adaptation, called reproduction, consists in reiterating the DFA attack
in order to retrieve the penultimate key Kny—1. To do that, a method is to exploit the differential
fault at the end of the penultimate round. The goal is to reduce the AES algorithm by neutralizing
its last round. Hence, the DFA attack could be applied on a shorter AES cipher algorithm, the
penultimate round becoming the last one.

The AES reduction is performed by reversing a cipher back up to the output of the round Ng — 1
with the knowledge of the last round key. In order for the penultimate round to be equivalent to
the last round, the MixColumns transformation must be missing. However, this transformation
operates on the state Sgr n,—1 and, at the end of the round Ng — 1, we have the equation below:

Sarr,Ng—1=MC(Ssr,Nr-1) D Knp—1 (1)

For cancelling the effect of MixColumns transformation, we apply its inverse on the state Sarx, Np—1
as presented in paper [14]. Due to the linear property of this transformation, we obtain a cipher

C’ as follows:
C’/ZI,MC(SARK’NRfﬂ ZSSR’NR71EBI,MC(KNR,1) (2)

The key used by the new AddRoundKey transformation becomes I MC(Kny—1) instead of
Knpg—1. Thus, the reproduction phase on the new couples actually returns the inverse MixColumns
transformation applied to the key Kng—1.

In conclusion, the adaptation consists in applying twice the original attack: once during the
extension phase (attack on the last round), then during the reproduction phase (attack on the
penultimate round). In the remainder of this paper, we discuss whether this general method can
be applied more or less easily to different kinds of published DFA attacks.

B. Adaptation of DFA on state

For each key length, the AES cipher algorithms have the same sucessive transformations on the
last rounds, only the number of rounds changes. Thereby, the fault diffusion will be the same for
each AES variant and the adaptation of a known DFA attack is obvious to perform.

This technique has been previously used by A. Barenghi and al. [14] to adapt the attack of
G. Piret, and J-J. Quisquater [2] on AES-192 and AES-256 variants. It can be generalized to the
other published DFAs targeting the AES state.

In terms of time and number of couples, the cost of the adaptation of DFA attack to AES-192
and AES-256, including both extension and reproduction phases, is twice that needed to perform
the DFA attack on the AES-128 algorithm returning the last round key.

For example, the DFA [5], an attack with faults injected on round 8, allows finding the round
key K19 of AES-128. The same kind of fault respectivelly applied on round 10 and 12 of AES-192
and AES-256 during extension phase returns the last round key Kio and Ki4. Then the fault
injection respectivelly targets the round 9 and 11 of AES-192 and AES-256 and the reproduction
of attack reveals the round keys K11 and Ki3. The adaptation allows retrieving the whole AES
key with only 4 couples in the most efficient case.

In some particular cases, the DFA attack leads to obtaining a subset of solution for the last
round key, for example the attack proposed in paper [7]. Thereby, the reproduction phase of the
DFA attack must take into account each hypothesis on the last round key. The number of faults
does not increase but the time required to exploit the differential faults is the square of the time
taken to perform the DFA attack on AES-128 variant. Indeed, the reproduction phase is based
on the knowledge of the last round key and, therefore, the DFA performed in order to reveal the
penultimate round key Knpy—1 should be repeated for each element of the subset of solutions.
The retrieval of the initial key requires to compute the inverse KeyExpansion algorithm for each
element of the subset containing the penultimate round key.

C. Adaptation of DFA on KeyFEzxpansion

In the case of the KeyExpansion, the algorithm differs for each variant. The main differences
between AES-192 and AES-128 KeyExpansion algorithms are the following:

e The RotWord and SubWord transformations are not applied on the last column of round key
KNp-2-

e The two first columns of the last round key depend on the two last columns of round key
Kngp-2-

o The two last columns of the round key Kng,—1 do not impact the two last columns of round
key KNR-

Concerning the AES-256 variant, the differences with AES-128 are:

e Only the SubWord transformation is applied on the last column of round key Kng —2.

o All the columns of the last round key depend on the four columns of round key Kny, —2.

o The columns of the round key Kng—1 do not impact the columns of round key Kny, except
the last one, on which the RotWord and SubWord transformations are applied.

Due to these differences, the fault diffusion will not be the same for each variant. We distinguish
three main problems that have to be solved to lead the adaptation successfully.

First problem

The aim of the extension phase is to reveal the last round key Kny by applying the methodology
used on AES-128. However, the fault diffusion does not follow the same paths for each AES variant
due to the differences in KeyExpansion algorithms. In order to achieve the extension phase, the
faults for the three variants must be sufficiently similar.

In some cases, the faults propagation differs too much to solve this problem and the adaptation
cannot be performed. For example, applying [11] on AES-128 leads to retrieve one by one the bytes
of the last round key, all the bytes being linked. The attack is similar to a resolution of chained
equations. In the case of AES-192 and AES-256, the faults layout implies that the bytes searched
do not correspond to the ones of AES-128 any more. Thus, the chained equations cannot be solved
and the extension phase cannot be performed.

In favourable cases, the problem could be solved with few changes from the original attack
without modifying its main strategy.

Second problem

The objective of the reproduction phase is to reduce the AES algorithm to cancel its last round.
The first step of this phase consists in operating the inverse transformations on the cipher until
the end of round Ng — 1. With the help of the last round key, the inverse transformations are
directly performed on the correct cipher.

Concerning the faulty result, the constraint comes from the diffusion of the injected fault. The
effect of diffused faults on the last round key has to be cancelled during the inverse transformation
process. Thus, the second problem consists in obtaining the faulty round key Ky ..

In some cases, the propagated faults on the last round key are hidden by those obtained on the
internal states of the AES cipher algorithm. Indeed, during the last AddRoundKey transformation,
the faulty result can include a mix of faults on the key and on the state. In the worst case, the
faults occur on the same bytes and the xor operation hides them in the output cipher.

This problem could sometimes be solved because the concealed fault of the last round key can
be expressed from a differential analysis of internal state or be deduced from other corrupted bytes
of the faulty cipher.

When the round key Kg;_ is determined, all the inverse transformations can be applied on the
faulty computation back up to the expected transformation output.

Third problem

The final step of reproduction phase consists in applying the trick of the inverse MixColumns
transformation on SArk,Ng-1 and Sjgpk np—1 I order to reproduce the attack on the re-
duced form of AES algorithm. The keys used by the new AddRoundKey transformation become
K' =1L MC(Kng-1) and K" = T MC(K{Y,)

The third problem is linked to the inverse MixColumns transformation properties:

o The linearity implies that the key K" is faulted by I MC(Kny -1 ® KX, 1)

e The diffusion properties increase the number of faulted bytes in K'* in comparison with

KXy 1

o At the inverse MixColumns output, a byte depends on the four bytes in the same column of

the input. Thus the faults in K’* are linked in a more complex manner than in Kl*\IRil.

Depending on cases, these properties could or not defeat the reproduction phase.

Whenever this problem is solved, the DFA technique previously used during the extension phase
is applied to the reduced AES to reveal the round key Kng 1.

In conclusion, the attack adaptation on KeyExpansion algorithm from AES-128 to AES-192 and
AES-256 is more complex than the adaptation of DFA on state. All problems must be successively

solved to obtain respectively the 24 and 32 bytes of the last round keys and to finally compute the
initial key.

IV. Example : Adaptation of C .H. Kim J.-J. Quisquater DFA attack

In this section, we detail the adaptation of the DFA attack on KeyFExpansion algorithm proposed
by C. H. Kim and J.-J. Quisquater in [10]. This is the most recent paper targeting the key
diversification and using only four couples to reveal the last round key in the most efficient version.

The attack adaptation is subject to the three mentioned problems. We answer to the first one
by the extension phase on both AES-192 and AES-256. The analysis of the fault propagation has
led to study the adaptation on AES-256 first and then the adaptation on AES-192. As we will see,
the AES-256 adaptation has to overcome the second problem whereas the AES-192 adaptation is
subject to the third problem. To illustrate each problem, we succesively treat the cases of AES-256
and AES-192.

A. The original attack

The basic attack exploits a fault injection corrupting one byte during the computation of the
9*h round key. The full attack requires eight couples to retrieve the 16 bytes of the last round key.
Whenever the fault injection impacts several bytes, the number of required couples is reduced to
four. For simplicity reasons, only the adaptation of the one-byte perturbation is described because
fault repercussion is easier to treat.

The fault injection targets the first column of the round key Kn, —1. We denote by a the random
fault value and by i the line index where the fault is injected. Hence, the faulty round key can be
written:

KNy 1110} = Kng -1{i,0} © a (3)

During the KeyExpansion computation, each word of key comes from a linear transformation
depending on a part of the previous word. Thereby, the fault is propagated on each column of the
key Kng -1 such that all bytes of line i are impacted by the same fault value a. The equation (3)
applies to all columns j as below:

KI*\IR—I{ihi} = KNR—l{iaj} S3) a, (4)
where j € [0..3]

The faults present on the round key Ky, _; contaminate the state following the AddRoundKey
transformation of round Ng — 1. As the AddRoundKey transformation is linear (xor operation
between round key and state bytes), the fault value a is transferred onto each byte of line i of state
SARK,NR—L We obtain:

S*ARK,NR—I{ivj} = SARK7NR—1{ivj} D a, (5)
where j € [0..3]
The non-linear SubBytes transformation is applied to S} gk ng—1- This transforms the fault
value a to a new value that is unpredictable without the prior knowledge of S} gy np—1-
Finally, the last AddRoundKey transformation induces a new fault value b on all the bytes

of line (i — 1) mod 4 due to SubWord and RotWord transformations. The fault value b can be
expressed from a as follows:

b = Sb(Kny_1{i,3} @ a) @ Sb(Kny _1{i,3}) (6)

The result C* of the faulted computation corresponds to the expected result C with exactly two
lines entirely faulted.

The DFA attack on KeyExpansion exploits several couples (C, C*) to reveal the last round
key Kng. All intermediate states can be expressed from the cipher. It is the same for the states
SArRK Ng-1 and Sigpg N, 1 that can be respectively written from the obtained ciphers C and
C* as follows:

Sark,Ng-1 = LSB(LSR(C & Kny)) (7)
SArk,Ng-1 = ISB(LSR(C* ® Ky,)) (8)

For the bytes on line i, the previous equations become:

Sark Np-1{l;j} = LSb(C{i, (j — 1)[4]} © Knp {1, (G — 1) [4]}) (9)
Sark Ng-1{Lj} = L.Sb(C™{i, (j — 1)[4]} & Ky {1, G — 1) [4]}) (10)

The equations (5), (9) and (10) give a new equation where unknown values are a and Kny, {1, j}:

a = 1Sb(C{i,j — if4]} & Knp i, — i[4]}) © LSb(C"{i,j — il]} & Ky (L5 — {4}, (1)
where j € [0; 3]

The equation (11) can be simplified, as:

o K {i,j} = Kng{i,j}, whenever the column j equals to 1 or 3;

o K {i,j} = Kng{i,j} © a in both other cases.

Thus, to solve the equation, it is necessary to know the fault value a when j is equal to 0 or 2.
The equation is solved by an exhaustive search on each Kny, {i,j} value, beginning with the cases
where j is equal to 1 or 3.

At this step, the attack returns a subset of possible quadruplets for the four bytes of the last
round key. To retrieve the expected quadruplet of key bytes, two couples (C, C*) and (D, D*)
coming from a random fault on the same localization are sufficient. Indeed, only the correct values
of key bytes verify the equations obtained from different couples.

The fault injection is reiterated for the three other lines i of the first column to reveal the whole
key Kny with eight couples.

B. First problem

The first step of the adaptation is the eztension phase. Concerning the C. H. Kim and J.-
J. Quisquater’s attack, this is trivially processed. Small differences on the fault diffusion appear
whenever the original attack is applied on both AES-192 and AES-256 variants. All the faults are
identically propagated like for AES-128 algorithm except that:

o In the case of AES-192, the byte Ki_ {i,0} is not faulted,

o In the case of AES-256, the bytes K {i,0} and K{, {i, 2} are not faulted.

The equation (11) needs to be adapted to take into account the fault value a on the identified
bytes of K. Nevertheless, it does not have a large impact because the C. H. Kim and J.-
J. Quisquater attack does not exploit the faults in the last round key. The Algorithm 2 details
the different steps of this extension phase.

Algorithm 2 FEatension phase on AES-192 and AES-256

Input: i, the index of the line corrupted by the fault on Kng -1, 2 couples (C, C*) and (D, D*)
with fault injected on line i
Output: Knp{i,j}, with j =0,..,3

Let ko,k1,ko and ks be the respective values of Kn,{i,0},Kn,{i, 1}, Kn,{%,2} and Kn,{i,3}

1: for k&1 =0 to 255 by 1 do

2 for k3 =0 to 255 by 1 do

3 e1 = I.Sb(C{i,1} @ k1) ® I_S6(C*{i, 1} @ k1)

4 es = I_Sb(C{i,3} @ ks) ® I_Sb(C*{i,3} @ ks)

5: if e, == e3 then

6: for kg =0 to 255 by 1 do

7 eo = I_Sb(C{i,0} @ ko) ® I_Sb(C*{i,0} @ ko)

8 if eg == e; then

9: for ko =0 to 255 by 1 do

10: if AES-256 then

11: es = I_Sb(C{i,2} ® ko) ® I_Sb(C*{i,2} P ko)
12: else

13: €9 ZI,Sb(C{Z,Q}EBkQ) @LSb(C’*{i,Q}@ng@el)
14: end if

15: if e == ¢; then

16: f1=1_S6(D{i,1} ® k1) & I_Sb(D*{i, 1} ® k1)
17: f3=1_Sb(D{i,3} @ ks) ® I_Sb(D*{i,3} & k3)
18: fo=1_5b(D{i,0} @ ko) ® I_Sb(D*{i,0} @ ko)
19: if AES-256 then

20: fo=1_Sb(D{i,2} @ ko) ® 1_Sb(D*{i,2} & k2)
21: else

22: fo=1_S6(D{i,2} @ ka) ® I_Sb(D*{4,2} ® ka2 & f1)
23: end if

24: if fo == f1 == fg == f3 then

25: return [k, k1, ko, ks3]

26: end if

27: end if

28: end for

20: end if

30: end for

31: end if

32: end for

33: end for

With this algorithm and faults injected twice on each line i, the round key Kny is fully
discovered.

Furthermore, the four bytes of last column of Kng—1 can be deduced from the resolution of
equation (6). The fault values a and b are known and so each byte value of Kny —11{i, 3} is retrieved
by an exhaustive search.

Thus, the extension phase of the DFA attack allows finding the whole key Kny and the four
last bytes of the key Knp—1-

C. Second problem: case of AES-256

At this step, a part of the final key is henceforth known. Twelve more bytes need to be revealed
with the reproduction phase.

Suppose that a random fault value denoted a occurs on line i on the first column of Kng —2.
We illustrate in figure 1 the propagation of a fault injection on line 1.

Fig. 1. Reproduction phase on AES-256

The computation of the three following columns results in the diffusion of this fault on the entire
line. We obtain the equation below:

KI*\IR—2{i7j} = KNR—Z{iaj} D a, (12)
where j € [0..3]

As the round key Kng—1 is computed from the previous key Ky —2, the injected fault also
corrupts the key of round Ngr — 1. The obtained faulty key K _; presents the following charac-
teristics: its first column is the result of the xor operation between columns 3 and 0 of round keys
KX, 2 and KNy -3 respectivelly.

The corresponding equation can be written as below:

KNy -111,0} = Sb(Kny 21,3} © a) & KNy —3{i, 0} (13)

Let b be the fault value issued from the SubWord transformation on K3, 5. The relation
between the two faults can be expressed as follows:

b = Sb(KNRfZ{ia 3} D a) D Sb(KNR72{i7 3}) (14)

The whole line i of K{, ; is corrupted by b.

Finally, the key K, is computed from Kg 5 and Ky, ;. The KeyExpansion algorithm of
AES-256 implies that the last column of Ky, , is affected by the SubWord and the RotWord
transformations. Thus, the fault on line i induces a new fault value on line (i — 1) mod 4. We
denote by c the fault issued from b before the SubWord transformation and giving the following
equation:

c= Sb(KNR_l{i, 3} D b) D Sb(I(NR_l{i7 3}) (15)

In addition to fault ¢, the round key K is impacted by the result of xor operation between
fault a and Ky, o, on all the bytes of line i. As each column of the round key is the result of a xor
operation depending on the previous column, fault a is present in columns 0 and 2 and is absent
from columns 1 and 3.

Fault a is introduced in the state following the AddRoundKey transformation of round Ng — 2.
The following SubBytes transformation changes the fault value a to four new values that are
unpredictable without the prior knowledge of SArk ng—2. They correspond to the shaded cases
of figure 1.

Next, all the bytes of the state issued from the MixColumns transformation are modified by the
diffusion of the previous faults.

The faults continue their propagation until the cipher output. The resulting cipher C* is inte-
grally faulted.

In order to perform the reproduction phase, and particularly to reduce the AES, the knowledge
of the round key Ky is required. However, the faults occurring in Ky, cannot be directly
determined from the faulty cipher. They are xored during the last AddRoundKey transformation
with the unpredictable faults issued from the last ShiftRows transformation. Thus, the values ¢
and a cannot be directly extracted from the cipher and we are confronted to the second problem.

The trick

The Ky, key is faulted by c on the entire line (i—1) mod 4 and by a on columns 0 and 2 of
line i. It means that the second problem is reduced to finding the values ¢ and a and the index i
of the impacted line.

Fortunately, the faults obtained on the KeyExpansion algorithm are linked together due to
reiteration of a linear transformation. Thus, fault ¢ can be expressed from a with the help of
equations (14) and (15) as follows:

c= Sb(KNR—l{ia 3} D Sb(KNR—2{i7 3} ® a) D Sb(KNR—2{i’ 3})) @ Sb(KNR—l{i7 3}) (16)

Moreover, column 3 of Kng—2 is obtained by xor operation between columns 2 and 3 of Knp
and column 3 of Kny —1 previously found during the extension phase. In conclusion, only values a
and i need to be found to solve the second problem. This can be performed by a quick exhaustive
search because only 255 values of a and four values of i have to be guessed.

In order to validate or not a hypothesis, we consider the following assumption:

The entire line i on the state following the AddRoundKey transformation of round 12 is faulted
by a.

Only a correct hypothesis verifies this assumption.

The assumption on the entire line i cannot be checked because the couple (C, C*) cannot
be deciphered until the state SaArk Ng—2. Only the following data are known from the inverse
transformation and the knowledge of the last column of Kng—1:

« the whole state Smc,Ng—1,
o the last column of inverse MixColumns transformation applied on Symc Ng—1;

o the bytes {3,0}, {2,1}, {1,2} and {0,3} after the inverse ShiftRows and inverse SubBytes
transformations on Sypc,Ng—1-

The assumption is reduced to the four known values of Ssr Ny —1:
The byte on line i is faulted by a and the three others are not faulted.

The Algorithm 3 details this trick.

10

Algorithm 3 Attack adaptation on AES-256

Input: (C, C*) with fault injected on line i of the first column of Kng -2, the round key Knp,
the last column of Kny_,

Output: a, b, c, i

1: for i =0 to 3 by 1 do

2: for a=1to 255 by 1 do

3: b= Sb(KNR_Q{i,3} @a) @Sb(KNR_Q{i,3})

4: ¢=Sb(Kn,-1{i,j} ®b) ® Sb(Kn,-1{i,3})
// Compute K} :

5: for j=0to 3 by 1 do
6 Ky (- DALG} = Kna{(i— D4, j} @ c
7 end for
8: K;{,R{’L.,O} :KNR{i,O}@a
9: K;,R{’L',Q} :KNR{i,2}69a
// Compute Ky :
10: Ky, 13,3} = Knp-1{i,3} © b
11: 80 = Sark,Np-2{0,3} ® Shpw nyp—210:3}
122 s1=Sark Np-2{1,2} @ Shpk Ny 2{1 2}
13: 52 = SArK Np—2{2,1} & Shpk Ny 2121}
14: 3 = SArk,Np—2{3,0} ® SZRK,NR—Q{Sﬂ 0}
// Test the assumption:
15: if s; ==a and s; == 0 with j ! = ¢ then
16: return a, b, c, i
17: end if
18: end for
19: end for

Only one value a and one line index i answer to the previous assumption. Thus, by applying once
the Algorithm 3, the faulty key K%, is easily obtained and the second problem is solved. The
adaptation on AES-256 does not involve the third problem. The key K’* issued from the inverse
MixColumns transformation on K _; is integrally faulted. However, as we know the fault value
b, we can remove the faults in K’* by applying the xor operation with I_MC(Ky,_1 ® K}"\,R_l).

End of the adaptation

Once the keys Kny and Ky, are known, the ciphers C and C* are reversed back up to the
output of the round Ng — 1. The inverse MixColumns transformation is applied on both outputs.
Thus, we have a new couple (C’, C'*) corresponding to the couple (C, C*) without their last
round. From that, we are able to discover . MC(Kny—1) instead of Kng—1.

The faults repercussion on the keys and so on the states is quite different, but the equation (11)
is still verified by changing the targeted key and the used couple. We obtain:

a=1LSb(C'{i,(j—-1)[4]} @ K'{i,(j—1)[4]}) @ LSb(C™{i, - D[4} o K'{i, - 1)[4]} & b()i7)
where j € [0; 3]

The resolution of these equations is easier than for the original attack because the faults values
a and b are known in this context. The equation presents only one unknown value found by an
exhaustive search. The solution to the previous equation is not unique but, once again, the use of
two couples reduces the set of solutions to one element.

The whole key K’ is obtained by reiteration of the attack with three other pairs of couples. Each
pair comes from a random fault injected on each index of line.

Finally, the Kng—1 is found with the MixColumns transformation and the initial key can be
computed from the inverse KeyExpansion algorithm.

11

D. Third problem: case of AES-192

The reproduction phase of adaptation on AES-192 involves the third problem. In section IV-B,
we determined the whole key Kny, and the last column of Kny —1. Only four bytes (third column
of Kng—1) miss to finalize the DFA attack. Our adaptation is based on eight new couples, but an
exhaustive search is also reasonable.

To be compliant with the reproduction phase, a random fault a is injected on a line noted i on

the first column of Kng 2. Figure 2 illustrates the propagation whenever the fault occurs on line
1.

KeyExpansion:

Fig. 2. Reproduction phase of AES-192

The KeyExpansion algorithm of AES-192 implies that the RotWord and SubWord transforma-
tions are applied on the second column of Kng —2. So, the fault value a only impacts the first and
second columns of Ky _2 instead of the entire line i.

Due to the RotWord and SubWord transformations, the fault value a becomes a new fault named
b such that:

b = Sb(Knyg—2{i,1} ® a) @ Sb(Kng —2{i, 1}) (18)

The RotWord and SubWord transformations are not applied on the last word of Kny —2 during
the computation of Kny_1. Due to the xor operations, the fault value b is present on the two
last columns of KNy —2 and on the whole line (i — 1) mod 4 of Kng 1. Furthermore, the fault a
of the first column of Kny_2 is propagated on line i of the third column of Kng—1. During the
last round key generation, the fault value b induces a new fault value c issued from SubWord and
RotWord transformations on the last column of Kng—1. The relation between these two faults
can be expressed as:

¢ = Sb(Kny-1{(i - 1)[4],3} ©®b) ® Sb(Kny-1{(i - 1)[4],3}) (19)

Furthermore, line (i —1) mod 4 of round key Ky, is corrupted by fault b due to the xor
operation with K3, ;. As each column of the round key results from a xor operation with the
previous column, fault b only appears on the first and the third columns.

12

The faults of round key K. 5 are propagated onto the different internal states during the cipher
computation. These faults are transformed and are diffused all over the states. The obtained cipher
is not wholly faulted. Depending on the line index i of the injected fault, the differential of cipher
presents the following features:

e C*{1,1} = 0 and C*{2,0} = ¢, when i = 0;

e C*{1,0} = C*{2,3} =0 and C*{3,2} = ¢, when i = 1;

e C*{3,1} = C*{2,2} = 0 and C*{0,0} = ¢, when i = 2;

e« C*{3,0} = C*{0,3} = 0 and C*{1,2} = ¢, when i = 3.

The knowledge of fault value ¢ present on the differential (C', C*) is very helpful. Indeed, the
round key Ky, is faulted by values ¢ and b. From the equation (19) and the values of Kng -1,
we determine the fault value b. Furthermore, the line index i is trivially determined due to the
safe bytes localization (see above). It follows that the positions of the different propagated faults
are known. In conclusion, the adaptation on AES-192 of C. H. Kim and J.-J. Quisquater’s DFA
attack is not affected by the second problem.

The knowledge of b, ¢ and i is not sufficient to determine the fault value a present on K 4
The equation (18) contains too many unknown values which prevent its resolution.

Furthermore, an entire line of K3, _; is faulted by b. Thus, K’ issued from the inverse Mix-
Columns of Ky, _; is integrally faulted and some faults are unknown. We cannot remove the
faults in K™ by applying the xor operation of I_MC(Ky,—1 @ K3, —1)- In conclusion, we are
confrontated to the third problem.

The trick

Fortunately, the unknown fault value a impacts a single byte of K{_ ;. As all the elements of
a column influence each resulting element of the inverse MixColumns transformation, we do not
perform this transformation on the column where the fault a is present. The inverse MixColumns
transformation is only applied on the three other columns (0, 1 and 3) of states SArk, Ng—1 and

*
SARK Np—1-

Furthermore, we are able to determine the bytes of first and second columns of Kny —1 with the
properties of KeyExpansion algorithm and the known bytes of the key. These values are provided
respectively by the xor operation between:

o the second and the third columns of Kny,,

o the third and the fourth columns of Kny,.

The columns 0, 1 and 3 of SArRK Ng—1 and SKRK’NR& are deciphered until states SARK, Ng -2
and Shgk Ny -2+ The differential between these two resulting states returns the fault value a.
Thereby, the differential Kng -1 © K, _; is known and the third problem is solved.

End of the adaptation

In order to finalize the reproduction phase, the third column of Kny_1 needs to be discovered.
To do that, the DFA attack could be reproduced. However, in this specific case, we use an easier
alternative.

The column 2 of KNy —1 is expressed from the AES-192 KeyExpansion algorithm as:

Knp-1{m,2} = Kng—2{m,1} ©® Kng-1{m, 3}, (20)
where m € [0; 3]

The column 3 of Kng—1 has already been found. When m is equal to i, we resolve the equation
(18) to determine Knp —2{i, 1}. The resolution is performed by exhaustive search on Kng —2{i, 1}.
As the solution is not unique, the equation is solved with a second couple to reduce the set of
solutions to one element.

13

Finally, we are able to solve the equation (20) when m is equal to i using two couples impacted
by a fault on line index i. Exactly one byte of the searched third column of Kny -1 is found with
two couples, the faults corrupting the same line i. In conclusion, at least eight couples are sufficient
to retrieve the entire missing column and finally the initial key.

V. Results and conclusion

Through this paper, we generalize a technique to adapt the DFA attack on AES-128 to the
variants AES-192 and AES-256. This technique makes many of the articles published on AES-128
adaptable to these variants. However, the adaptation does not always lead to a solution.

We distinguish two main parts in the adaptation: the first one consists in extending the original
attack and the second one in reproducing this attack on an anterior round.

The adaptation of the DFA on KeyExpansion with this methodology is more complex than the
DFA on state and each attack has to be considered as a specific case. For this kind of DFA, we
evidence three main problems to be solved to obtain enough round key bytes in order to reveal
the initial key.

In the case of the C. H. Kim and J.-J. Quisquater’s attack, we succeed in adapting the original
attack by using two specific tricks. Our adaptation requires 16 couples for both 192-bit and 256-bit
keys variants corresponding to the double of AES-128 number of needed couples.

Acknowledgment

This article is the result of work accomplished during a training period at SERMA TECHNOLO-
GIES ITSEF in 2009. We would like to especially thank all the persons who helped us during our
research and all the reviewers without whom this article could not be published.

References

[1] D. Boneh, R. DeMillo, and R. Lipton, “On the Importance of Eliminating Errors in Cryptographic Computa-
tions,” in EUROCRYPT, vol. LNCS, vol. 1233. Berlin, Heidelberg: Springer-Verlag, 1997, pp. 37-51.

[2] G. Piret and J.-J. Quisquater, “A Differential Fault Attack Technique against SPN Structures, with Application
to the AES and KHAZAD,” in CHES 2003, vol. 2779. Berlin, Heidelberg: Springer-Verlag, 2003, pp. 77-88.

[3] P. Dusart, G. Letourneux, and O. Vivolo, “Differential Fault Analysis on AES,” in Applied Cryptography and
Network Security, vol. 2846. Berlin, Heidelberg: Springer, 2003, pp. 293-306.

[4] C. Giraud, “DFA on AES,” in Advanced Encryption Standard - AES, 4th International Conference, AES 2004,
vol. 3373. Berlin, Heidelberg: Springer, 2005, pp. 27-41.

[5] D. Mukhopadhyay, “An Improved Fault Based Attack of the Advanced Encryption Standard,” in
AFRICACRYPT ’09: Proceedings of the 2nd International Conference on Cryptology in Africa, vol. 5580.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 421-434.

[6] D. Saha, D. Mukhopadhyay, and D. RoyChowdhury, “A Diagonal Fault Attack on the Advanced Encryption
Standard,” Cryptology ePrint Archive, Report 2009/581, 2005, http://eprint.iarc.org/.

[7] M. Tunstall and D. Mukhopadhyay, “Differential Fault Analysis of the Advanced Encryption Standard using a
Single Fault,” Cryptology ePrint Archive, Report 2009/575, 2009, http://eprint.iarc.org/.

[8] A. Moradi, M. T. M. Shalmani, and M. Salmasizadeh, “A Generalized Method of Differential Fault Attack
against AES Cryptosystem,” in CHES 2006, vol. 4249. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 91-100.

[9] C.-N. Chen and S.-M. Yen, “Differential Fault Analysis on AES Key Schedule and some Countermeasures,” in
ACISP 2003, vol. 2727. Berlin, Heidelberg: Springer-Verlag, 2008, p. 217.

[10] C. H. Kim and J.-J. Quisquater, “New Differential Fault Analysis on AES Key Schedule: Two Faults Are
Enough,” in CARDIS ’08: Proceedings of the 8th IFIP WG 8.8/11.2 international conference on Smart Card
Research and Advanced Applications, vol. 5189. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 48—60.

[11] D. Peacham and B. Thomas, “A DFA attack against the AES key schedule,” SiVenture White Paper 001, 2006.

[12] J. Takahashi, T. Fukunaga, and K. Yamakoshi, “DFA Mechanism on the AES Key Schedule,” in FDTC ’07:
Proceedings of the Workshop on Fault Diagnosis and Tolerance in Cryptography. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 62-74.

[13] J. Takahashi and T. Fukunaga, “Differential Fault Analysis on AES with 192 and 256-bit Keys,” Cryptology
ePrint Archive, Report 2010/023, 2010, http://eprint.iarc.org/.

[14] A. Barenghi, G. Bertoni, L. Breveglieri, M. Pellicioli, and G. Pelosi, “Low Voltage Fault Attacks to AES and RSA
on General Purpose Processors,” Cryptology ePrint Archive, Report 2010/130, 2010, http://eprint.iarc.org/.

[15] FIPS 197 : Announcing the Advanced Encryption Standard, National Institute of Standards and Technology,
Novembre 2001.

14

