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Abstract. The purpose of this paper is to study the difficulty of the so-called Goppa Code
Distinguishing (GD) problem introduced by Courtois, Finiasz and Sendrier in Asiacrypt 2001. GD
is the problem of distinguishing the public matrix in the McEliece cryptosystem from a random
matrix. It is widely believed that this problem is computationally hard as proved by the increasing
number of papers using this hardness assumption. To our point of view, disproving/mitigating
this hardness assumption is a breakthrough in code-based cryptography and may open a new
direction to attack McEliece cryptosystems. In this paper, we present an efficient distinguisher
for alternant and Goppa codes of high rate over binary/non binary fields. Our distinguisher
is based on a recent algebraic attack against compact variants of McEliece which reduces the
key-recovery to the problem of solving an algebraic system of equations. We exploit a defect of
rank in the (linear) system obtained by linearizing this algebraic system. It turns out that our
distinguisher is highly discriminant. Indeed, we are able to precisely quantify the defect of rank
for “generic” binary and non-binary random, alternant and Goppa codes. We have verified these
formulas with practical experiments, and a theoretical explanation for such defect of rank is also
provided. We believe that this work permits to shed some light on the choice of secure parameters
for McEliece cryptosystems; a topic thoroughly investigated recently. Our technique permits to
indeed distinguish a public key of the CFS signature scheme for all parameters proposed by
Finiasz and Sendrier at Asiacrypt 2009. Moreover, some realistic parameters of McEliece scheme
also fit in the range of validity of our distinguisher.

Keywords: public-key cryptography, McEliece cryptosystem, CFS signature, algebraic cryptanal-
ysis, distinguisher.

1 Introduction

Code-based public key cryptography appeared with McEliece’s pioneering work [23] where the author
proposed to use one-way trapdoor functions based on irreducible binary Goppa codes. The class of
Goppa codes represents one of the most important example of linear codes having an efficient decoding
algorithm [4, 28]. A binary Goppa code is defined by a polynomial Γ of degree r ≥ 1 with coefficients
in some extension field F2m of degree m > 1 over F2, and a n-tuple L = (x1, . . . , xn) of distinct
elements in F2m with n ≤ 2m. The trapdoor of the McEliece public-key scheme consists of a randomly
picked Γ which together with L provide all the information to decode efficiently. The public key is a
generator matrix of a randomly chosen Goppa code. A ciphertext is obtained by multiplying a plaintext
with the public generator matrix and adding a random error vector of prescribed Hamming weight.
The receiver decrypts the message thanks to the decoding algorithm that can be derived from the
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secrets. Niederreiter [26] brings a significant modification of the McEliece cryptosystem by proposing
to describe public linear codes through parity-check matrices. The resulting public key cryptosystem
is as secure as McEliece’s one. The first code-based signature scheme came out in [12] almost twenty
years McEliece’s proposal. The only difference between the encryption and the signature scheme lies in
the choice of the parameters of the binary Goppa codes. For signature, Goppa codes have to be chosen
such that they correct very few errors. This leads to a very high rate R = k/n with n is its length and
k being the dimension of the code. It holds that k = n − rm where by definition r is the number of
errors and generally n is chosen to be equal to 2m. For instance according to [18], an 80-bit security
signature scheme imposes r = 10 and m = 21 which leads to R = 0.9999.

All these cryptographic primitives base their security under two assumptions: the intractability of
decoding random linear codes [3], and the difficulty of recovering the private key or an equivalent
one. The problem of decoding an unstructured code is a long-standing problem whose most effective
algorithms [19, 20, 31, 10, 5] have an exponential time complexity. Thus, one may reasonably not expect
much progress in this direction. On the other hand, no significant breakthrough has been observed
during the last thirty years regarding the problem of recovering the private key. Indeed, although
some weak keys have been identified in [21], the only known key-recovery attack is the exhaustive
search of the secret polynomial Γ of the Goppa code, and applying the Support Splitting Algorithm
(SSA) [29] to check whether the Goppa code candidate is permutation-equivalent to the code defined
by the public generator matrix. Despite the fact that there still does not exist a practical attack
against McEliece’s proposal of using binary Goppa codes, one should not exclude the possibility of
breakthrough in that field. The authors of [12] alleviated the McEliece assumptions by introducing
the Goppa Code Distinguishing (GD) problem. They assume that no polynomial time algorithm exists
that distinguishes a generator matrix of a Goppa code from a random generator matrix. This is a
classical belief in code-based cryptography. For instance, according to [12], proving or disproving the
hardness of the GD problem will have a significant impact : “Classification issues are in the core of
coding theory since its emergence in the 50’s. So far nothing significant is known about Goppa codes,
more precisely there is no known property invariant by permutation and computable in polynomial
time which characterizes Goppa codes. Finding such a property or proving that none exists would be
an important breakthrough in coding theory and would also probably seal the fate, for good or ill, of
Goppa code-based cryptosystems”. Currently, the only known algorithm that solves GD problem is
based on the enumeration of Goppa codes and the SSA algorithm [29], as explained below. The time
complexity of this method is O (2mr) assuming that the cost of the SSA algorithm is negligible (which
is a reasonable assumption for Goppa codes, but not for all linear codes).

As a consequence, it is widely believed that distinguishing the public matrix in McEliece from a
random matrix is computationally hard. Furthermore, the hardness of the Goppa Code Distinguishing
(GD) problem is mandatory to prove the semantic and CCA2 security of McEliece in the random
oracle model and in the standard model [27, 15, 8], the security in the random oracle model against
existential forgery [12, 13] of the CFS signature [12] scheme, the provable security of several primitives
such as a threshold ring signatures scheme [14], an identity-based identification scheme [11], which
are build upon CFS. Therefore, showing that the Goppa Code Distinguishing problem is easier than
expected will “unprove” most of the provable primitives based on McEliece, and more importantly will
be the first serious cryptographic weakness observed on this scheme since thirty years. The purpose of
this paper is to study the difficulty of the Goppa Code Distinguishing (GD) problem:

Definition 1 (Goppa Code Distinguishing (GD) Problem). Let n and k be two integers such
that k ≤ n. We denote by Goppa(n, k) the set of k × n generator matrices of Goppa codes. Similarly,
Random(n, k) is the set of k × n random generator matrices. A distinguisher D is an algorithm that
takes as input a matrix G and returns a bit. We say that D solves the GD problem if it wins the
following game:

– b
R← {0, 1} If b = 0 then G R← Goppa(n, k) otherwise G R← Random(n, k)

– If D(G) = b then D wins the games else D loses.
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The probability that D outputs 1 when G is chosen as a random binary generator matrix of a Goppa
code is denoted by Pr[G R← Random(n, k) : D(G) = 1] and the probability that it outputs 1 when G

is chosen randomly in Random(n, k) is denoted by Pr[G R← Random(n, k) : D(G) = 1]. We define the
advantage of a distinguisher D as:

AdvGD(D) =
∣∣∣Pr[G R← Goppa(n, k) : D(G) = 1]− Pr[G R← Random(n, k) : D(G) = 1]

∣∣∣ .
In this paper, we present a deterministic polynomial-time distinguisher for solving the GD problem
defined below with advantage close to 1 for codes of high rate. Along the way, we also solve the code
distinguishing problem for alternant codes. The key ingredient is a new algebraic technique introduced
in [17] to attack two variants [1, 24] of McEliece. It has been observed [17] that a key recovery attack
against these cryptosystems, as well as the genuine McEliece’s system, can be reduced to solving the
following algebraic set of equations:{

gi,1Y1X
j
1 + · · ·+ gi,nYnX

j
n = 0

∣∣∣∣ i ∈ {1, . . . , k}, j ∈ {0, . . . , r − 1}

}
(1)

where the unknowns are the Xi’s and the Yi’s and the gi,j ’s are known coefficients (with 1 ≤ i ≤ k, 1 ≤
j ≤ n) which are nothing but the coefficients of the public generator matrix of the scheme. Finally,
k is equal to n − mr here, where m is some divisor of s. In other words we have 2n unknowns and
rk = r(n−mr) polynomial equations. In the cases of [1, 24], additional structures permit to drastically
reduce the number of variables and solve (1) efficiently using dedicated Gröbner bases techniques [17].
For McEliece’s cryptosystem, solving (1) seems to be out of the scope of such dedicated techniques.

However, this algebraic approach can be used to construct an efficient distinguisher. To do so, we
consider the dimension of the solution space of a linear system deduced from (1). This linear system
is obtained by linearization of the algebraic system (1). Linearization introduces many new unknowns.
Consequently, this strategy makes sense if the number of equations k is greater than the number of
newly introduced unknowns. This is for instance the case for the parameters proposed in CFS [12] but it
turns out that the linearized system is not of full rank. Although this is an obstacle to break the system,
this particular feature permits to construct an efficient distinguisher for alternant codes and Goppa
codes over any field. Note that the distinguisher is efficient since we only have to compute the rank of
a linear system. Additionally, the distinguisher is highly discriminant. We provide in Section 5 explicit
formulas for “generic” random, alternant, and Goppa code over any alphabet. We performed extensive
experiments to compare our theoretical results on valid McEliece public keys. They confirm that the
generic formula are accurate. We emphasize that the Goppa Code Distinguishing problem has been
widely considered as a hard problem in code-based cryptography as proved by the increasing number
of papers using this assumption [27, 15, 8, 12–14, 11]. To our point of view, disproving/mitigating this
hardness assumption is a breakthrough in code-based cryptography and may open a new direction to
attack the McEliece cryptosystem. Although our attack remains theoretical, we believe that this work
also permits to shed some light on the choice of secure parameters for McEliece cryptosystems; a topic
thoroughly investigated recently [6, 7, 25, 18]. Our technique permits to indeed distinguish a public
key of the CFS signature scheme for all parameters proposed by Finiasz and Sendrier [18]. Moreover,
some realistic parameters of McEliece scheme also fit in the range of validity of our distinguisher like
a binary Goppa code of length n = 213 that corrects r = 19 errors. Fot these parameters, the scheme
has a 90-bit security.

Organisation of Paper. In Section 2, we briefly recall the McEliece public-key cryptosystem as
well as the Courtois-Finiasz-Sendrier CFS signature [12]. In Section 3, we recall several key features
of Goppa and alternant codes. In Section 4, we precisely explain how we can mount an algebraic
cryptanalysis against McEliece-like schemes i.e. namely how the algebraic system (1) is constructed.
The distinguisher is presented in Section 5. Section 6 deals with the consequences of the existence of
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a distinguisher in code-based cryptography. Finally, in Section 7 we explain how the formulas used
in Section 5 have been obtained. To do so, we use together combinatorial properties of the linearized
system and distinguishing features of Alternant/Goppa codes.

2 Code-Based Public-Key Cryptography

The main cryptographic primitives in code-based public-key cryptography are the McEliece encryption
and the CFS signature [12]. We recall that a linear code over a finite field Fq of q elements defined by a

k×n matrix G (with k ≤ n) over Fq is the vector space C spanned by its rows i.e. C
def=
{
uG | u ∈ Fkq

}
.

G is chosen as a full-rank matrix, so that the code is of dimension k. The rate of the code is given
by the ratio k

n . Code-based public-key cryptography focuses on linear codes that have a polynomial
time decoding algorithm. The role of decoding algorithms is to correct errors of prescribed weight. We
say that a decoding algorithm corrects t errors if it recovers u from the knowledge of uG + e for all
possible e ∈ Fnq of weight at most t.

Secret key: the triplet (S,Gs,P) of matrices defined over a finite field Fq over q elements, with q being
a power of two, that is q = 2s. Gs is a full rank matrix of size k×n, with k < n, S is of size k× k and
is invertible. P is a permutation matrix of size n × n. Gs is chosen in such a way that its associated
linear code (that is the set of all possible uGs with u ranging over Fkq ) has a decoding algorithm which
corrects in polynomial time t errors.

Public key: the matrix G = SGsP.

Encryption: A plaintext u ∈ Fkq is encrypted by choosing a random vector e in Fnq of weight at most
t. The corresponding ciphertext is c = uG + e.

Decryption: c′ = cP−1 is computed from the ciphertext c. Notice that c′ = (uSGsP + e)P−1 =
uSGs +eP−1 and that eP−1 is of Hamming weight at most t. Therefore the aforementioned decoding
algorithm can recover in polynomial time uS and therefore the plaintext u by multiplication by S−1.

What is generally referred to as the McEliece cryptosystem is this scheme together with a particular
choice of the code, which consists in taking a binary Goppa code. This class of codes belongs to a more
general class of codes (see Section 3, namely the alternant code family ([22, Chap. 12, p. 365]). The
main feature of this last class of codes is that they can be decoded in polynomial time.

Another important code-based cryptographic primitive is the CFS scheme [12], which is the first
signature scheme based on the security of the McEliece cryptosystem. In this kind of scheme, a user
whose public key is G and who wishes to sign a message x ∈ Fk2 has to compute a string u such that
the Hamming weight of x − uG is at most t. Anyone (a verifier) can publicly check the validity of
a signature. Unfortunately, this approach can only provide signatures for messages x that are within
distance t from a codeword uG. The CFS scheme suggests to modify the message by appending a
counter incremented until the decoding algorithm can find such a signature. The efficiency of this
scheme heavily depends on the number of trials. It is suggested in [12] to choose as in the McEliece
cryptosystem, binary Goppa codes for this purpose with the following parameters n = 2m and k =
n−mt. The number of trials is of order t! in this case, which leads to choose a very small t and therefore
to take a very large n in order to be secure. Notice that the code rate is then equal to 2m−tm

2m = 1− mt
2m

which is for large n (that is for large values of 2m) and moderate values of t quite close to 1. Thus,
the major difference between the McEliece cryptosystem and the CFS scheme lies in the choice of
the parameters. An 80-bit security CFS scheme requires n = 221 and t = 10 whereas the McEliece
cryptosystem for the same security needs n = 211 and t = 32 ([18]). The code of the CFS scheme is of
rate 1 − 10×21

221 ≈ 0.9999. We see here that the CFS scheme depends on very high rate binary Goppa
codes.
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3 Basic Facts about Alternant and Goppa Codes

As explained in the previous section, the McEliece cryptosystem relies on Goppa codes which belong
to the class of alternant codes and inherit an efficient decoding algorithm from this. It is convenient to
describe this class through a parity-check matrix over an extension field Fqm of Fq over which the code
is defined. In other words, the parity check matrix is an r × n matrix H with coefficients in Fqm and
the associated alternant code A is the set of vectors of Fnq which belong to the right kernel of H, i.e.

A = {c ∈ Fnq | HcT = 0}. (2)

r satisfies in this case the condition r ≥ n−k
m where k is the dimension of A . For alternant codes,

there exists a parity-check matrix with a very special form related to Vandermonde matrices. For
reasons which will be made clear in Section 4, it will be convenient to work with the projective plane
Fqm

def= Fqm ∪ {∞} and to consider the class of projective alternant codes (which are slightly more
general than classical alternant codes). More precisely, any projective alternant code has a parity
check matrix which is of the form

V r(x,y) def=


y1 · · · yn
y1x1 · · · ynxn
...

...
y1x

r−1
1 · · · ynxr−1

n

 . (3)

where x = (x1, . . . , xn) ∈ (Fqm)n and y = (y1, . . . , yn) in (Fqm)n . When xi =∞ we use the convention

that the i-th column of V r(x,y) is equal to


0
...
0
yi

.

Definition 2 (Projective and classical alternant code). The projective alternant code of order
r over Fq associated to x = (x1, . . . , xn) ∈ (Fqm)n (where all xi’s are distinct) and y = (y1, . . . , yn) ∈(
F∗qm

)n, denoted by Ar(x,y), is defined by

Ar(x,y) = {c ∈ Fnq |V r(x,y)cT = 0}. (4)

A classical alternant code corresponds to the case where all xi’s are different from ∞.

The class of Goppa codes is a subfamily of alternant codes which are given by:

Definition 3 (Projective and classical Goppa codes). The projective Goppa code G (x, Γ ) over
Fq associated to a polynomial Γ (x) of degree r over Fqm and a certain n-tuple x = (x1, . . . , xn) of
distinct elements of Fqm satisfying Γ (xi) 6= 0 for4 all i, 1 ≤ i ≤ n, is the alternant code Ar(x,y) of
order r with yi being defined by yi = Γ (xi)−1. A classical Goppa code corresponds to the case xi ∈ Fqm

for all i in {1, . . . , n}.

It should be noted that the public code in the McEliece cryptosystem is also an alternant code. This is a
simple consequence of the fact that {uSGsP | u ∈ Fkq} is obtained from the secret code {uGs | u ∈ Fkq}
by permuting the coordinates in it with the help of P, since multiplying by an invertible matrix S of
size k × k leaves the code globally invariant.

4 We define Γ (∞)
def
= γr for Γ (X) =

Pr
i=0 γiX

i.
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4 Algebraic Cryptanalysis of McEliece-like Cryptosystems

In this part, we explain more precisely how we construct the algebraic system described in (1). This
algebraic system is the main ingredient of the distinguisher. We recall a key feature of alternant codes.

Fact 1. There exists a polynomial time algorithm decoding all errors of Hamming weight at most r
2

for an alternant code of order r once a parity-check matrix H of the form H = V r(x,y) is given for
it.

The variants of McEliece’s cryptosystem based on general alternant codes or on non binary Goppa
codes, such as [1, 24] for instance, add errors which are of weight smaller than or equal to r/2. In this
case, it is possible to break these variants by finding x∗ and y∗ in Fnqm such that:

{xG | x ∈ Frq} = {y ∈ Fnq | V r(x∗,y∗)yT = 0}. (5)

According to Fact 1, the knowledge of V r(x∗,y∗) permits to efficiently decode the public code, i.e. to
recover u from uG + e. By the very definition of the public code G, we have:

V r(x∗,y∗)GT = 0.

This is the key observation of the algebraic approach used in [17] to cryptanalyze dyadic and quasi-
cyclic variants of McEliece. Let X1, . . . , Xn and Y1, . . . , Yn be 2n variables corresponding to the x∗i ’s
and the y∗i ’s. Observe that such x∗i ’s and y∗i ’s are a particular solution of the following system:{

gi,1Y1X
j
1 + · · ·+ gi,nYnX

j
n = 0

∣∣∣∣ i ∈ {1, . . . , k}, j ∈ {0, . . . , r − 1}

}
(6)

where the gi,j ’s are the entries of the known matrix G. In the cases of [1, 24], additional structures
permit to drastically reduce the number of variables allowing to solve (1) efficiently using dedicated
Gröbner bases techniques [17].
For binary Goppa codes, it is essential to recover its description as a Goppa code and not only the xi’s
and the yi’s giving its description as an alternant code. This is a consequence of the following result.

Fact 2. [28] There exists a polynomial time algorithm decoding all errors of Hamming weight at most
r in a Goppa code G (x, Γ ) when Γ has degree r and has no multiple roots, if x and Γ are known.

If we recover only the xi’s and the yi’s we can decode only r/2 errors. The issue is now, once a possible
description of a Goppa code has been found as an alternant code, that is once a solution x = (xi)1≤i≤n
and y = (yi)1≤i≤n of the system (6) has been found, does there exist a polynomial Γ (X) of degree r
such that yi = Γ (xi)−1 for all i ∈ {1, . . . , n} ? If such a polynomial exists, it can be easily found by
interpolation. The problem is that a Goppa code has multiple descriptions as an alternant code, i.e.,
there are several x,y’s for which G = Ar(x,y). The solutions we are interested in are the ones for
which yi = Γ (xi)−1 for all i, and for some polynomial Γ of degree r.
This raises the fundamental issue of finding all possible descriptions of the form (4) of an alternant
code A , that is find all x,y’s such that A = Ar(x,y). When the extension field Fqm is the same as the
definition5 field Fq, i.e. if m = 1, the problem was solved in [16]. This was the key of the cryptanalysis
of McEliece’s variant based on generalized Reed-Solomon codes [30].
The general case is still unsolved. However, the results of [16] basically show that the we have at least
one degree of freedom for Yi and three degrees of freedom for the Xi’s in the system (6). First of all
it is straightforward to notice that if (Xi)1≤i≤n, (Yi)1≤i≤n is a solution of the algebraic Equation (6)
then (αXi)1≤i≤n, (βYi)1≤i≤n is also a solution for any α, β in Fqm . Therefore, we can specialize one
(Xi, Yi) arbitrarily. It turns out we can fix more variables thanks to the following proposition.
5 This means that the resulting code is a slight generalization of a generalized Reed-Solomon code known

under the name of a Cauchy code.
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Proposition 1. Let x = (xi)1≤i≤n ∈ (Fqm)n be an n-tuple formed by distinct elements and let y =
(yi)1≤i≤n ∈ (Fqm)n be an n-tuple of nonzero elements. Let a, b, c, d be elements of Fqm such that that
ad− bc 6= 0. Then

Ar

(
ax + b

cx + d
,y′
)

= Ar (x,y) , where

ax + b

cx + d

def
= (x′i)1≤i≤n with x′i =

axi + b

cxi + d
, y′ = (y′i)1≤i≤n with y′i = yi(cxi + d)r−1.

Remark 1. The proof is in Appendix A. Notice that either xi or x′i might be infinite. We used here
the usual rules to evaluate the homography z 7→ az+b

cz+d , namely α
0 = ∞, ∞α = ∞, α∞ = 0, β +∞ = ∞,

0×∞ = 0, a×∞+b
c×∞+d = a

c , where α 6= 0, β belong to Fqm .

This result explains that there is (at least) one degree of freedom for the Yi’s and three degrees of
freedom for the Xi’s. It is quite helpful to allow here xi which can be infinite since even all of them
are in Fqm , it might happen that cxi + d is equal to zero. Therefore the corresponding image by the
homography will be infinite. Finally, since the set of homographies acts 3-transitively over Fqm ∪{∞},
we have:

Corollary 1. We can specialize (almost) randomly one Yi and three Xi’s in (1). As long as the Xi’s
are distinct, we still have a non-empty set of solutions for such modified system (1).

At first glance, the degree of freedom should be less for Goppa codes. Indeed, there is an additional
crucial constraint for binary Goppa codes: a solution must verify Yi = Γ (Xi)−1 for a certain polynomial
of degree r. Surprisingly, we can keep the same degree of freedom by considering a slight change of
(6). Let G̃ (x, Γ ) be the subcode of the Goppa code G (x, Γ ) formed by all codewords of even Hamming
weight. Let G̃ = (g̃i,j)1≤i≤k̃

1≤j≤n
be a generator matrix of G̃ (x, Γ ), that is a matrix of full rank whose rows

generate G̃ (x, Γ ). The dimension k̃ of this subspace is either k or k − 1, where k is the dimension of
the Goppa code G (x, Γ ). This subcode is itself an alternant code.

Proposition 2. [2] It holds that:
G̃ (x, Γ ) = Ar+1(x,y)

for deg(Γ ) = r and where y = (yi)i with yi = Γ (xi)−1.

This implies that the xi’s and yi’s are a particular solution of:{
g̃i,1Y1X

j
1 + · · ·+ g̃i,nYnX

j
n = 0

∣∣∣∣ i ∈ {1, . . . , k̃}, j ∈ {0, . . . , r}
}

(7)

where the g̃i,j ’s are the entries of the known matrix G̃. Notice that this system is very similar to (6)
with the exception that the powers of the Xi’s can now be equal to r. The crucial result is now that

Proposition 3. [2] Let x = (xi)1≤i≤n be an n-tuple of distinct elements of Fqm and Γ be a polynomial
of degree r such that Γ (xi) 6= 0 for all i ∈ {1, . . . , n}. Let ψ(z) = az+b

cz+d be an homography with

ad−bc 6= 0 and a, b, c, d ∈ Fqm . Let xψ
def
= (xψi )1≤i≤n with xψi

def
= ψ−1(xi), Γψ(X)

def
= (cx+d)rΓ (ψ(x)) =∑r

i=0 γi(aX + b)i(cx+ d)r−i, for Γ (x) =
∑r
i=0 γiX

i. Then

G̃ (x, Γ ) = G̃ (xψ, Γψ).

Once again, we can use that homographies have a 3-transitive action on Fqm .

Corollary 2. We can specialize in (7) one of the Yi and three of the Xi’s almost arbitrarily (with
Yi 6= 0 and such that the three Xi’s are distinct) and still obtain a solution for which there exists a
polynomial Γ of degree r such that Yi = Γ (Xi)−1 for all i in {1, . . . , n}.
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To finish this discussion, it will be helpful to notice that in the case of binary Goppa codes, we have
even more algebraic equations than the ones given in System (6). The starting point is the following
result, which is essentially derived from a discussion in a paragraph about Goppa codes in [22, p.341].

Theorem 3. A binary Goppa code G (x, Γ ) associated to a Goppa polynomial Γ (X) of degree r without
multiple roots is equal to the alternant code A2r(x,y), with yi = Γ (xi)−2.

In other words, x and y are solutions of the following algebraic system{
gi,1Y1X

j
1 + · · ·+ gi,nYnX

j
n = 0

∣∣∣∣ i ∈ {1, . . . , k}, j ∈ {0, . . . , 2r − 1}

}
, (8)

where (gil) is a generator matrix of the Goppa code. Notice that the powers j are now in the range
{0, 1, . . . , 2r − 1} and not in {0, 1, . . . , r − 1}, as was the case before.

5 A Distinguisher of Alternant and Goppa Codes

We present in this part the algebraic distinguisher. Let G = (gij)1≤i≤k
1≤j≤n

be a generator matrix of the

public code. We can assume without loss of generality that G is systematic in its k first positions. Such

1

1

0

0

G = P k

k n−k=mr

Fig. 1. Systematic form of G

a form can be easily obtained by Gaussian elimination and by a suitable permutation of the columns.
We describe now a simple way of using this particular form for solving (6). We assume that the rate
of the public code is close to 1, i.e. n−mr

n ≈ 1, which implies mr � n. From a cryptographic point
of view, this means that the expansion ratio between the size of the ciphertext and the size of the
message is close to 1. This kind of rate has been proposed in [18]. The strategy is as follows.

5.1 First step – expressing the YiX
d
i ’s in terms of the YjX

d
j ’s for j ∈ {k + 1, . . . , n}.

Let P = (pij) 1≤i≤k
k+1≤j≤n

be the submatrix of G formed by its last mr columns (as in Figure 1). We can

rewrite (6) as 
Yi =

∑n
j=k+1 pi,jYj

YiXi =
∑n
j=k+1 pi,jYjXj

. . .
YiX

r−1
i =

∑n
j=k+1 pi,jYjX

r−1
j

(9)

for all i ∈ {1, . . . , k}.
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5.2 Second step – using the trivial identityYiYiX
2
i = (YiXi)2 and linearization.

Thanks to the trivial identity YiYiX2
i = (YiXi)2 for all i in {1, . . . , k}, we get:

n∑
j=k+1

pi,jYj

n∑
j=k+1

pi,jYjX
2
j =

 n∑
j=k+1

pi,jYjXj

2

, for all i ∈ {1, . . . , k}.

It is possible to reorder this a little bit to obtain the following equations:

n∑
j=k+1

∑
j′>j

pi,jpi,j′
(
YjYj′X

2
j′ + Yj′YjX

2
j

)
= 0 (10)

We can now linearize this system by letting Zjj′
def= YjYj′X

2
j′ + Yj′YjX

2
j . We obtain k linear equations

involving the Zjj′ ’s: 
n∑

j=k+1

∑
j′>j

pi,jpi,j′Zjj′ = 0, i = 1 . . . k

 . (11)

To solve this system it is necessary that the number of equations is greater than the number of
unknowns, i.e.:

k ≥
(
mr

2

)
This approach works for alternant codes in general. However, for Goppa codes, it will be interesting to
consider also a related system. It is obtained by applying the same approach described before but to
the generator matrix G̃ of the subcode of the public code consisting in codewords of even Hamming
weight. The reason which makes this new system interesting will be explained in Subsection 7.2, it is
related to Proposition 2. We denote by k̃ the dimension of this code. We have either k̃ = k or k̃ = k−1.

As previously, we can suppose that G̃ is in systematic form: G̃ =
(
Ĩ|P̃
)

where I is the identity matrix
of size k or k− 1 (depending on the dimension of the subcode). Finally, let p̃ij be the coefficient in the
i-th row and j-th column of P̃ . We can proceed similarly and obtain a new linear system of equations:

n∑
j=k̃+1

∑
j′>j

p̃i,j p̃i,j′Zjj′ = 0, i = 1 . . . k̃

 . (12)

When k̃ = k − 1, the number of equations is smaller. It might be k − 1 instead of k and the number
of variables is also larger. It is equal to

(
n−k̃

2

)
=
(
mr+1

2

)
. However, we will see that due to Proposition

2, this system has also nice properties in the Goppa case.

5.3 Experimental behavior

Observe that the linear systems (11) and (12) have coefficients in Fq whereas solutions are sought in the
extension field Fqm . In addition, the freedom of choosing three Xi’s and one Yi in order to reduce the
number of unknowns in the linearized systems is not used. However, even if this additional knowledge
is taken into account, the rank of the linear systems remains insufficient to solve the system. More
precisely, the problem is that the dimension of the vector space solution of (11) is amazingly large. It
even depends on whether or not the code with generator matrix G is chosen as a (generic) alternant
code or as a Goppa code. Interestingly enough, when G is chosen at random, the dimension of the
solution space is typically 0 when k is larger than the number of variables. Although these facts are an
obstacle to break the McEliece cryptosystem, it can be used to distinguish the public generator from
a random code. Let us denote by:
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– N
def=
(
mr
2

)
the number of variables in (11), Ñ the number of variables of (12),

– Drandom, respectively D̃random, the dimension of the vector space solution of (11), respectively (12)
when the pij ’s are chosen uniformly at random in Fq,

– Dalternant, respectively D̃alternant, the dimension of the vector space solution of (11), respectively
(12) when G is chosen as a generator matrix of a random alternant code of degree r,

– DGoppa, respectively D̃Goppa the dimension of the vector space solution of (11), respectively (12)
when G is chosen as a generator matrix of a random Goppa code of degree r.

A thorough experimental study revealed that the dimension of the vector space over Fq of the solutions
of (11) follows typically the following formulas:

Experimental fact 1 Let D be in {Dalternant, D̃alternant, DGoppa, D̃Goppa}. With very high probability
and as long as N −D < k, the dimension D has the following value:

Dalternant =
m(r − 1)

2

(
(2`+ 1)r − 2

q`+1 − 1
q − 1

)
for `

def
=
⌊
logq(r − 1)

⌋
(13)

D̃alternant = Dalternant for q > 2 (14)

For r < q − 1, it holds that

DGoppa =
m(r − 1)(r − 2)

2
= Dalternant (15)

D̃Goppa =
mr(r − 1)

2
(16)

wheras for r ≥ q − 1, by denoting by ` the unique integer such that q` − 2q`−1 + q`−2 < r ≤ q`+1 −
2q` + q`−1, we obtain

DGoppa =
mr

2

(
(2`+ 1)r − 2q` + 2q`−1 − 1

)
(17)

D̃Goppa =
mr

2

(
(2`+ 1)r − 2q` + 2q`−1 + 1

)
(18)

We gathered samples of results we obtained through intensive computations with the Magma system
[9] in order to confirm the formulas. We randomly generated alternant and Goppa codes over the field
Fq with q ∈ {2, 4, 8, 16, 32} for values of r in the range {3, . . . , 50} and several m. The Goppa codes are
generated by means of an irreducible Γ of degree r and hence Γ has no multiple roots. In particular,
we can apply Theorem 3 in the binary case. We compare the dimensions of the solution space against
the dimension Drandom of the system derived from a random linear code. Table 1 and Table 2 give
figures for the binary case with m = 14. We define Talternant and TGoppa respectively as the expected
dimensions for an alternant and a Goppa code deduced from the formulas (13) and (15)-(17). We can
check that Drandom is equal to 0 for r ∈ {3, . . . , 12} and Drandom = N − k as expected. We remark
that Dalternant is different from Drandom whenever r ≤ 15, and DGoppa is different from Drandom as
long as r ≤ 25. Finally we observe that our formulas for Talternant fit as long as k ≥ N − Talternant which
correspond to r ≤ 15. This is also the case for binary Goppa codes since we have TGoppa = DGoppa as
long as k ≥ N −TGoppa i.e. r ≤ 25. We also give in Table 10 and Table 11 in Appendix B the examples
that we obtained for q = 4 and m = 6 to check that the arguments also apply. We also compare
binary Goppa codes and random linear codes for m = 15 in Table 4-6 and m = 16 in Table 7-9 (See
Appendix B). We see that Drandom and DGoppa are different for r ≤ 33 when m = 15 and for m = 16
they are different even beyond our range of experiment r ≤ 50.

6 Cryptographic Implications

The existence of a distinguisher for the specific case of binary Goppa codes has consequences for
code-based cryptographic primitives because it is represents, and by far, the favorite choice in such
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Table 1. q = 2 and m = 14

r 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N 861 1540 2415 3486 4753 6216 7875 9730 11781 14028 16471 19110 21945 24976

k 16342 16328 16314 16300 16286 16272 16258 16244 16230 16216 16202 16188 16174 16160

Drandom 0 0 0 0 0 0 0 0 0 0 269 2922 5771 8816

Dalternant 42 126 308 560 882 1274 1848 2520 3290 4158 5124 6188 7350 8816

Talternant 42 126 308 560 882 1274 1848 2520 3290 4158 5124 6188 7350 8610

DGoppa 252 532 980 1554 2254 3080 4158 5390 6776 8316 10010 11858 13860 16016

TGoppa 252 532 980 1554 2254 3080 4158 5390 6776 8316 10010 11858 13860 16016

Ñ 903 1596 2485 3570 4851 6328 8001 9870 11935 14196 16653 19306 22155 25200

k̃ 16341 16327 16313 16299 16285 16271 16257 16243 16229 16215 16201 16187 16173 16159

D̃random 42 56 70 84 98 112 126 140 154 168 453 3120 5983 9041

D̃alternant 84 182 378 644 980 1386 1974 2660 3444 4326 5306 6384 7560 9041

D̃Goppa 294 588 1050 1638 2352 3192 4284 5530 6930 8484 10192 12054 14070 16240

Table 2. q = 2 and m = 14

r 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N 28203 31626 35245 39060 43071 47278 51681 56280 61075 66066 71253 76636 82215 87990

k 16146 16132 16118 16104 16090 16076 16062 16048 16034 16020 16006 15992 15978 15964

Drandom 12057 15494 19127 22956 26981 31202 35619 40232 45041 50046 55247 60644 66237 72026

Dalternant 12057 15494 19127 22956 26981 31202 35619 40232 45041 50046 55247 60644 66237 72026

Talternant 10192 11900 13734 15694 17780 19992 22330 24794 27384 30100 32942 35910 39004 42224

DGoppa 18564 21294 24206 27300 30576 34034 37674 41496 45500 50046 55247 60644 66237 72026

TGoppa 18564 21294 24206 27300 30576 34034 37674 41496 45500 49686 54054 58604 63336 68250

Ñ 28441 31878 35511 39340 43365 47586 52003 56616 61425 66430 71631 77028 82621 88410

k̃ 16145 16131 16117 16103 16089 16075 16061 16047 16033 16019 16005 15991 15977 15963

D̃random 12296 15747 19394 23237 27277 31512 35942 40569 45393 50411 55626 61037 66644 72447

D̃alternant 12297 15747 19395 23238 27277 31511 35943 40570 45392 50412 55626 61038 66644 72447

D̃Goppa 18802 21546 24472 27580 30870 34342 37996 41832 45850 50412 55626 61037 66644 72447

primitives. One of the reasons for this, is the fact that this class has withstood many cryptographic
attacks for more than thirty years now. We focus in this part on secure parameters that are within the
range of validity of our distinguisher. In Section 5, we gave a general expression of the distinguisher
for a Goppa code over any finite field Fq. This expression can be easily simplified in the binary case
(q = 2).

Proposition 4. Let us define `
def
= dlog2 re + 1 and N

def
=
(
mr
2

)
. The formula for DGoppa given in

Equation (17) can be simplified to DGoppa = mr
2

(
(2`+ 1)r− 2`− 1

)
as long as N −DGoppa < n−mr.

This simple expression is therefore not true for any value of r and m but tends to be true for codes
that have a code rate n−mr

n that is close to one. This kind of codes are mainly encountered with the
public keys of the CFS signature scheme. We will show that there also exist public keys of the McEliece
cryptosystem that can be distinguished for parameters considered as secure. We assume that the length
n is equal to 2m and we denote by rmin the smallest integer r such that N −DGoppa ≥ 2m−mr. Recall
that given a degree extension m over F2, any binary Goppa code defined with a polynomial Γ (z) of
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degree r ≥ rmin cannot be distinguished from a random linear code by our technique. This value is
gathered in Table 3 for different values of m. It provides therefore a lower bound for r in the choice of
secure parameters if being unable to distinguish the public code from a random linear code is required.
One can notice for instance that the McEliece key obtained with m = 13 and r = 19 and which
corresponds to 90-bit of security, fits in the range of validity of our distinguisher. The values of rmin in
Table 3 are checked by experimentations for m ≤ 16 whereas those for m ≥ 17 are obtained by solving

the equation mr
2

(
(2`+ 1)r − 2` − 1

)
= 1

2mr(mr − 1)− 2m +mr. Additionally, all the keys proposed

in [18] (See therein Table 4) for the CFS scheme can be distinguished.

Table 3. Smallest order r of a binary Goppa code of length n = 2m for which our distinguisher does not work.

m 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

rmin 5 8 8 11 16 20 26 34 47 62 85 114 157 213 290 400

7 An Explanation for the Distinguisher

The goal of this section is to provide a theoretical explanation to the practical behavior observed in
the previous section. We first consider the case of alternant codes and will explain the defect of rank
observed in the linearized systems described previously.

7.1 The generic alternant case

As a general comment, we emphasize that it seems difficult to obtain a precise lower bound or upper
bound on the dimension D, respectively D̃ of the vector space solution of (11), respectively (12) holding
for all alternant codes. Indeed, it is always possible to have degenerate cases for particular x and y
defining the alternant code Ar(x,y). When x and y are chosen in a subfield Fqm′ with m′ being a
divisor of m, then the dimension D of the system is much smaller than predicted in experimental Fact
1. We have typically the same formula as in (13), but with m′ replacing m there. On the other hand,
when y is chosen accordingly to a Goppa code, then the dimension can be much larger.

However, there is a simple fact explaining what happens in the generic case for Formula (13), i.e. for
“random” choices of x and y. Indeed, to set up the linear system (11) or (12) we have used the trivial
identity YiYiX2

i = (YiXi)2. More generally, we can use any identity of the form YiX
a
i YiX

b
i = YiX

c
i YiX

d
i

with a, b, c, d ∈ {0, 1, . . . , r − 1} such that a+ b = c+ d. It is straightforward to check that we obtain
in the same way the algebraic system:

n∑
j=k+1

∑
j′>j

pi,jpi,j′
(
YjX

a
j Yj′X

b
j′ + Yj′X

a
j′YjX

b
j + YjX

c
jYj′X

d
j′ + Yj′X

c
j′YjX

d
j

)
= 0 (19)

and
n∑

j=k̃+1

∑
j′>j

p̃i,j p̃i,j′
(
YjX

a
j Yj′X

b
j′ + Yj′X

a
j′YjX

b
j + YjX

c
jYj′X

d
j′ + Yj′X

c
j′YjX

d
j

)
= 0. (20)

In other words:

Za,b,c,d
def=
(
YjX

a
j Yj′X

b
j′ + Yj′X

a
j′YjX

b
j + YjX

c
jYj′X

d
j′ + Yj′X

c
j′YjX

d
j

)
1≤j≤mr
j′>j
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is a solution of (11) whereas

Z̃a,b,c,d
def=
(
YjX

a
j Yj′X

b
j′ + Yj′X

a
j′YjX

b
j + YjX

c
jYj′X

d
j′ + Yj′X

c
j′YjX

d
j

)
1≤j≤n−k̃
j′>j

is a solution of (12). This yields many (presumably) independent vectors which are solution of (11)
or (12). In other words, large dimension of the vector space solution of (11) or (12) is explained by
the fact that there are many different ways of combining the equations of the algebraic system (10)
together yielding the same linearized systems (11) or (12).

Observe that there are some relations among solutions, such as Za,b,c,d + Zc,d,e,f = Za,b,e,f . However,
if we define

St
def= {{a, b}|a+ b = t} ,

then we expect to obtain
∑
t(|St| − 1) linearly independent solutions to (11) or (12) from this process.

The term |St| − 1 in the sum is a simple consequence of the following fact.

Fact 4. Assume that we have ` independent (over F2) vectors e1, . . . , e`. Then the set
{
ei + ej : i, j ∈

{1, . . . , `}
}

generates a vector space of dimension `− 1 over F2.

Finally, the solutions have coefficients over Fqm . By decomposing each coefficient over Fq we may finally
have m

∑
t(|St| − 1) (potentially) independent vectors over Fq. This accounts for a generating set of

size:
m(r − 1)(r − 2)

2

which agrees with Formula (13) when r ≤ q.
For larger values of r, the automorphisms of Fqm leaving Fq invariant have to be used. They are of the
form x 7→ xq

l

for some ` ∈ {0, . . . ,m − 1}. Notice that if we raise the equation YiXi =
∑
pijYjXj to

the q-th power we get:

Y qi X
q
i =

∑
pijY

q
j X

q
j .

We can use the same trick for Yi =
∑
pijYj . From the trivial identity Yi(YiXi)q = Y qi YiX

q
i , we obtain

a new algebraic equation which is

n∑
j=k+1

∑
j′>j

pi,jpi,j′
(
YjY

q
j′X

q
j′ + Yj′Y

q
j X

q
j + Y qj Yj′X

q
j′ + Y qj′YjX

q
j

)
= 0. (21)

To use YiX
q
i =

∑
pijYjX

q
j , we need to have r ≥ q+1. However it should be noticed that if a+b = c+d

then Za,b,c,d and Zqa,qb,qc,qd only give m (potentially) independent vectors over Fq (and not 2m) after
decomposing their coefficients over Fq. This comes from the fact that the Frobenius map x 7→ xq is a
Fq-linear transform. Therefore, the only new vectors obtained in this way are of the form Za,qjb,c,qjd

with 0 ≤ a, b, c, d < r, 0 ≤ j < m and a+ qjb = c+ qjd. This whole discussion leads to

Heuristic 1 Let S0
t

def
= {{a, b}|0 ≤ a < r, 0 ≤ b < r, a+ b = t} 6. For j in {1, . . . ,m−1}, we set Sjt

def
={

(a, qjb)|0 ≤ a < r, 0 ≤ b < r, a+ qjb = t
}

. Then, for most choices of x and y, we have:

Dalternant = m
∑

{t,j:Sj
t }6=∅

(|Sjt | − 1).

The sum appearing in the right-hand side has a very simple expression which is given by

6 The notation {a, b} refers to a multiset here. We may have a = b.
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Proposition 5. ∑
{t,j:Sj

t }6=∅

(|Sjt | − 1) =
r − 1

2

{
(2`+ 1)r − 2

q`+1 − 1
q − 1

}
(22)

with `
def
=
⌊
logq(r − 1)

⌋
.

This finishes to explain the first part of Experimental Fact 1. In order to prove Proposition 5, we first
prove the following lemma.

Lemma 1.

|S0
t | =

⌈
t+ 1

2

⌉
, for 0 ≤ t ≤ r − 1, (23)

|S0
t | =

⌈
2r − t− 1

2

⌉
, for r ≤ t ≤ 2r − 2, (24)

|S0
t | = 0 otherwise. (25)
|Sjt | ≤ 1, if qj ≥ r, (26)

|Sjt | = min
(
r,

⌊
t

qj

⌋
+ 1
)
−max

(⌈
t− r + 1

qj

⌉
, 0
)

otherwise. (27)

Proof. The first three equations follow directly from the definition of S0
t . Equation (26) is an easy

consequence of the definition of Sjt . Let us assume now that r > qj . We now prove Equation (27). Let
(a, b) be a couple of integers such that:

0 ≤ a ≤ r − 1 (28)
0 ≤ b ≤ r − 1 (29)

a+ qjb = t. (30)

From (28), (29) and (30), we obtain t− qjb ≤ r − 1, which implies b ≥
⌈
t−r+1
qj

⌉
. Together with (29)

b ≥ max
(⌈

t− r + 1
qj

⌉
, 0
)
. (31)

On the other hand, we also have b ≤ r − 1 and b ≤
⌊
t
qj

⌋
since a ≥ 0. This implies

b ≤ min
(
r − 1,

⌊
t

qj

⌋)
. (32)

All the b’s between these upper and lower bounds are possible. Then, there is only one corresponding
a each time. This yields Equation (27). ut

From this, we deduce:

Lemma 2. It holds that: ∑
t:S0

t 6=∅

(|S0
t | − 1) =

(r − 1)(r − 2)
2

, (33)

∑
t:Sj

t 6=∅

(|Sjt | − 1) = (r − 1)(r − qj) for r ≥ qj, (34)

∑
t:Sj

t 6=∅

(|Sjt | − 1) = 0 otherwise. (35)
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Proof. Let us first prove (33). By using Lemma 1, we obtain∑
t:S0

t 6=∅

(|S0
t | − 1) =

r−1∑
t=0

(⌈
t+ 1

2

⌉
− 1
)

+
2r−2∑
t=r

(⌈
2r − t− 1

2

⌉
− 1
)

For r odd (say r = 2r′ + 1), we notice that
∑r−1
t=0

(⌈
t+1
2

⌉
− 1
)

= r′(r − 1) + r′ = r′2 and that∑2r−2
t=r

(⌈
2r−t−1

2

⌉
− 1
)

= r′(r−1). This implies that
∑
t:S0

t 6=∅
(|S0

t |−1) = r′(2r′−1) = (r−1)(r−2)
2 . On the

other hand, for r even, say r = 2r′, we obtain
∑r−1
t=0

(⌈
t+1
2

⌉
− 1
)

= r′(r′−1) and
∑2r−2
t=r

(⌈
2r−t−1

2

⌉
− 1
)

=
r′ − 1 + (r′ − 1)(r′ − 2) = (r′ − 1)2. From this, we deduce that

∑
t:S0

t 6=∅
(|S0

t | − 1) = (r′ − 1)(2r′ − 1) =
(r−1)(r−2)

2 . This proves (33).

To prove (34), we first notice that |Sjt | is positive if and only if t belongs to {0, 1, . . . , (qj + 1)(r− 1)}.
Then, we use Lemma 1 again and we obtain

∑
t:Sj

t 6=∅

(|Sjt | − 1) =
(qj+1)(r−1)∑

t=0

(|Sjt | − 1) (36)

=
(qj+1)(r−1)∑

t=0

min
(
r,

⌊
t

qj

⌋
+ 1
)
−max

(⌈
t− r + 1

qj

⌉
, 0
)
− 1

=
(qj+1)(r−1)∑

t=0

min
(
r − 1,

⌊
t

qj

⌋)
−max

(⌈
t− r + 1

qj

⌉
, 0
)

=
(qj+1)(r−1)∑

t=0

min
(
r − 1,

⌊
t

qj

⌋)
−

(qj+1)(r−1)∑
t=0

max
(⌈

t− r + 1
qj

⌉
, 0
)
. (37)

Observe now that
(qj+1)(r−1)∑

t=0

min
(
r − 1,

⌊
t

qj

⌋)
=
qj(r−1)−1∑

t=0

⌊
t

qj

⌋
+
qj(r−1)−1∑
t=qj(r−1)

(r − 1)

= qj(0 + 1 + · · ·+ r − 2) + (r − 1)r.

The other term appearing in the right-hand side of (37) is handled as follows

(qj+1)(r−1)∑
t=0

max
(⌈

t− r + 1
qj

⌉
, 0
)

=
(qj+1)(r−1)∑

t=r

⌈
t− r + 1

qj

⌉
= qj(1 + 2 + · · ·+ r − 1).

By plugging these two expressions in (37) we obtain∑
t:Sj

t 6=∅

(|Sjt |−1) = qj(0+1+· · ·+r−2)+(r−1)r−qj(1+2+· · ·+r−1) = (r−1)r−qj(r−1) = (r−1)(r−qj).

ut
Finally, we can now finish with the proof of Proposition 5.

Proof. ∑
t,j:Sj

t 6=∅

(|Sjt | − 1) =
∑
t:S0

t 6=∅

(|S0
t | − 1) +

m−1∑
j=1

∑
t,:Sj

t 6=∅

(|Sjt | − 1)

=
(r − 1)(r − 2)

2
+
∑
j:qj<r

(r − 1)(r − qj)
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Let ` be the largest integer such that r > q`. We obtain

∑
t,j:Sj

t 6=∅

(|Sjt | − 1) =
r − 1

2

2`r + (r − 2)− 2
∑̀
j=1

qj


=
r − 1

2

2(`+ 1)r − 2
∑̀
j=0

qj


=
r − 1

2

{
2(`+ 1)r − 2

q`+1 − 1
q − 1

}
.

This concludes the proof. ut

7.2 The Goppa case

The simplest way to understand why there is a difference between the generic alternant case and the
Goppa case is to compare D̃Goppa with D̃alternant. First of all, the same reasoning as in the previous
subsection can be done for the subcode Ãr(x,y) of even weights of an alternant code Ar(x,y). This
leads in the same way to the conclusion that in general:

D̃alternant =
m(r − 1)

2

{
(2`+ 1)r − 2

q`+1 − 1
q − 1

}
,

with ` def= blogq(r− 1)c. Notice, that from Proposition 2, we know that G̃ (x, Γ ) is an alternant code of
degree r + 1, when Γ is of degree r. Therefore, we have

D̃Goppa ≥
mr

2

{
(2`+ 1)(r + 1)− 2

q`+1 − 1
q − 1

}
.

with `
def= blogq(r)c. This explains why D̃Goppa is significantly greater than D̃alternant. If we we denote

by D̃Goppa(r) the dimension of the solution space of (12) for a Goppa code associated to a polynomial
of degree r (we fix the order m of the extension) and if we denote by D̃alternant(r) the dimension of
the solution space of (11) for a generic alternant code Ar of degree r, then this explains why we have

D̃Goppa(r) ≥ D̃alternant(r + 1).

It should be added that for r ≤ q − 2, we actually have D̃Goppa(r) = D̃alternant(r + 1).
We do not have a general explanation for the formula observed for DGoppa of non-binary Goppa codes.
However, in the case of binary Goppa codes we can use Theorem 3. In this case, when the Goppa
polynomial Γ has only simple roots, we know that G (x, Γ ) = A2r(x,y′), where r

def= deg(Γ ) and
y′i = Γ (xi)−2 where the xi’s are the coordinates of x and the y′i’s are the coordinates of y′. This
basically explains why the vector space solution of (11) is much greater for a binary Goppa code than
for a binary alternant code of the same degree. This would suggest that DGoppa(r) ≥ Dalternant(2r).
However, this is not true. Now, there are linear relations among the vectors Za,b,c,d which are solutions
of (11). Providing a cleaner explanation of the formula obtained for binary Goppa codes is much more
involved and is beyond the scope of this article.
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A Proof of Proposition 1

Proof. Let c = (ci)1≤i≤n be a codeword in Ar(x,y). Consider a polynomial P (X) =
∑r−1
j=0 ajX

j ∈
Fqm [X] of degree at most r − 1 and notice that

y′iP

(
axi + b

cxi + d

)
= yi(cxi + d)r−1

∑
0≤j≤r−1

aj

(
axi + b

cxi + d

)j
= yi

∑
0≤j≤r−1

aj(axi + b)j(cxi + d)r−1−j

= yiQ(xi)

where Q is a polynomial of degree at most r − 1 which depends on a, b, c, d but not on i. By the very
definition of Ar(x,y), we know that

0 =
n∑
i=1

ciyiQ(xi) =
n∑
i=1

ciy
′
iP

(
axi + b

cxi + d

)
.

In other words, we have just proved that c ∈ Ar

(
ax+b
cx+d ,y

′
)

. This proves that

Ar(x,y) ⊂ Ar

(
ax + b

cx + d
,y′
)
.

The inclusion in the other direction is proved similarly.
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B Experimental Results

Table 4. q = 2 and m = 15

r 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N 990 1770 2775 4005 5460 7140 9045 11175 13530 16110 18915 21945 25200 28680

k 32723 32708 32693 32678 32663 32648 32633 32618 32603 32588 32573 32558 32543 32528

Drandom 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DGoppa 270 570 1050 1665 2415 3300 4455 5775 7260 8910 10725 12705 14850 17160

TGoppa 270 570 1050 1665 2415 3300 4455 5775 7260 8910 10725 12705 14850 17160

Ñ 1035 1830 2850 4095 5565 7260 9180 11325 13695 16290 19110 22155 25425 28920

k̃ 32722 32707 32692 32677 32662 32647 32632 32617 32602 32587 32572 32557 32542 32527

D̃random 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D̃Goppa 315 630 1125 1755 2520 3420 4590 5925 7425 9090 10920 12915 15075 17400

Table 5. q = 2 and m = 15

r 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N 32385 36315 40470 44850 49455 54285 59340 64620 70125 75855 81810 87990 94395 101025

k 32513 32498 32483 32468 32453 32438 32423 32408 32393 32378 32363 32348 32333 32318

Drandom 0 3817 7987 12382 17002 21847 26917 32212 37732 43477 49447 55642 62062 68707

DGoppa 19890 22815 25935 29250 32760 36465 40365 44460 48750 53235 57915 62790 67860 73125

TGoppa 19890 22815 25935 29250 32760 36465 40365 44460 48750 53235 57915 62790 67860 73125

Ñ 32640 36585 40755 45150 49770 54615 59685 64980 70500 76245 82215 88410 94830 101475

k̃ 32512 32497 32482 32467 32452 32437 32422 32407 32392 32377 32362 32347 32332 32317

D̃random 128 4088 8273 12683 17318 22178 27263 32573 38108 43868 49853 56063 62498 69158

D̃Goppa 20145 23085 26220 29550 33075 36795 40710 44820 49125 53625 58320 63210 68295 73575
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Table 6. q = 2 and m = 15

r 31 32 33 34 35 36 37 38 39 40 41 42 43 44

N 107880 114960 122265 129795 137550 145530 153735 162165 170820 179700 188805 198135 207690 217470

k 32303 32288 32273 32258 32243 32228 32213 32198 32183 32168 32153 32138 32123 32108

Drandom 75577 82672 89992 97537 105307 113302 121522 129967 138637 147532 156652 165997 175567 185362

DGoppa 78585 84240 90585 97537 105307 113302 121522 129967 138637 147532 156652 165997 175567 185362

TGoppa 78585 84240 90585 97155 103950 110970 118215 125685 133380 141300 149445 157815 166410 175230

Ñ 108345 115440 122760 130305 138075 146070 154290 162735 171405 180300 189420 198765 208335 218130

k̃ 32302 32287 32272 32257 32242 32227 32212 32197 32182 32167 32152 32137 32122 32107

D̃random 76043 83153 90488 98048 105833 113843 122078 130538 139223 148133 157268 166628 176213 186023

D̃Goppa 79050 84720 91080 98048 105833 113843 122079 130539 139224 148134 157269 166628 176214 186024

Table 7. q = 2 and m = 16

r 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N 1128 2016 3160 4560 6216 8128 10296 12720 15400 18336 21528 24976 28680 32640

k 65488 65472 65456 65440 65424 65408 65392 65376 65360 65344 65328 65312 65296 65280

Drandom 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DGoppa 288 608 1120 1776 2576 3520 4752 6160 7744 9504 11440 13552 15840 18304

TGoppa 288 608 1120 1776 2576 3520 4752 6160 7744 9504 11440 13552 15840 18304

Ñ 1176 2080 3240 4656 6328 8256 10440 12880 15576 18528 21736 25200 28920 32896

k̃ 65487 65471 65455 65439 65423 65407 65391 65375 65359 65343 65327 65311 65295 65279

D̃random 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D̃Goppa 336 672 1200 1872 2688 3648 4896 6320 7920 9696 11648 13776 16080 18560

Table 8. q = 2 and m = 16

r 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N 36856 41328 46056 51040 56280 61776 67528 73536 79800 86320 93096 100128 107416 114960

k 65264 65248 65232 65216 65200 65184 65168 65152 65136 65120 65104 65088 65072 65056

Drandom 0 0 0 0 0 0 2360 8384 14664 21200 27992 35040 42344 49904

DGoppa 21216 24336 27664 31200 34944 38896 43056 47424 52000 56784 61776 66976 72384 78000

TGoppa 21216 24336 27664 31200 34944 38896 43056 47424 52000 56784 61776 66976 72384 78000

Ñ 37128 41616 46360 51360 56616 62128 67896 73920 80200 86736 93528 100576 107880 115440

k̃ 65263 65247 65231 65215 65199 65183 65167 65151 65135 65119 65103 65087 65071 65055

D̃random 0 0 0 0 0 0 2729 8769 15065 21617 28425 35489 42809 50385

D̃Goppa 21488 24624 27968 31520 35280 39248 43424 47808 52400 57200 62208 67424 72848 78480
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Table 9. q = 2 and m = 16

r 31 32 33 34 35 36 37 38 39 40 41 42 43

N 122760 130816 139128 147696 156520 165600 174936 184528 194376 204480 214840 225456 236328

k 65040 65024 65008 64992 64976 64960 64944 64928 64912 64896 64880 64864 64848

Drandom 57720 65792 74120 82704 91544 100640 109992 119600 129464 139584 149960 160592 171480

DGoppa 83824 89856 96624 103632 110880 118368 126096 134064 142272 150720 159408 168336 177504

TGoppa 83824 89856 96624 103632 110880 118368 126096 134064 142272 150720 159408 168336 177504

Ñ 123256 131328 139656 148240 157080 166176 175528 185136 195000 205120 215496 226128 237016

k̃ 65039 65023 65007 64991 64975 64959 64943 64927 64911 64895 64879 64863 64847

D̃random 58217 66305 74649 83249 92105 101217 110585 120209 130089 140225 150617 161265 172169

D̃Goppa 84320 90368 97152 104176 111440 118944 126688 134672 142896 151360 160064 169008 178192

Table 10. q = 4 and m = 6

r 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N 153 276 435 630 861 1128 1431 1770 2145 2556 3003 3486 4005 4560

k 4078 4072 4066 4060 4054 4048 4042 4036 4030 4024 4018 4012 4006 4000

Drandom 0 0 0 0 0 0 0 0 0 0 0 0 0 560

Dalternant 6 18 60 120 198 294 408 540 690 858 1044 1248 1470 1710

Talternant 6 18 60 120 198 294 408 540 690 858 1044 1248 1470 1710

DGoppa 18 60 120 198 294 408 540 750 990 1260 1560 1890 2250 2640

TGoppa 18 60 120 198 294 408 540 750 990 1260 1560 1890 2250 2640

Ñ 171 300 465 666 903 1176 1485 1830 2211 2628 3081 3570 4095 4656

k̃ 4077 4071 4065 4059 4053 4047 4041 4035 4029 4023 4017 4011 4005 3999

D̃random 0 0 0 0 0 0 0 0 0 0 0 0 90 657

D̃alternant 6 18 60 120 198 294 408 540 690 858 1044 1248 1470 1710

D̃Goppa 36 84 150 234 336 456 594 810 1056 1332 1638 1974 2340 2736

Table 11. q = 4 and m = 6

r 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N 5151 5778 6441 7140 7875 8646 9453 10296 11175 12090 13041 14028 15051 16110

k 3994 3988 3982 3976 3970 3964 3958 3952 3946 3940 3934 3928 3922 3916

Drandom 1157 1790 2459 3164 3905 4682 5495 6344 7229 8150 9107 10100 11129 12194

Dalternant 2064 2448 2862 3306 3905 4682 5495 6344 7229 8150 9107 10100 11129 12194

Talternant 2064 2448 2862 3306 3780 4284 4818 5382 5976 6600 7254 7938 8652 9396

DGoppa 3060 3510 3990 4500 5040 5610 6210 6840 7500 8190 9107 10100 11129 12194

TGoppa 3060 3510 3990 4500 5040 5610 6210 6840 7500 8190 8910 9660 10440 11250

Ñ 5253 5886 6555 7260 8001 8778 9591 10440 11325 12246 13203 14196 15225 16290

k̃ 3993 3987 3981 3975 3969 3963 3957 3951 3945 3939 3933 3927 3921 3915

D̃random 1260 1899 2575 3285 4032 4816 5634 6489 7380 8307 9270 10269 11304 12375

D̃alternant 2064 2448 2862 3306 4032 4815 5634 6489 7380 8307 9270 10269 11304 12375

D̃Goppa 3162 3618 4104 4620 5166 5742 6348 6984 7650 8346 9270 10270 11305 12375


