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Abstract. The purpose of this paper is to study the difficulty of the so-called Goppa Code
Distinguishing (GD) problem introduced by Courtois, Finiasz and Sendrier in Asiacrypt 2001. GD
is the problem of distinguishing the public matrix in the McEliece cryptosystem from a random
matrix. It is widely believed that this problem is computationally hard as proved by the increasing
number of papers using this hardness assumption. To our point of view, disproving/mitigating
this hardness assumption is a breakthrough in code-based cryptography and may open a new
direction to attack McEliece cryptosystems. In this paper, we present an efficient distinguisher
for alternant and Goppa codes of high rate over binary/non binary fields. Our distinguisher
is based on a recent algebraic attack against compact variants of McEliece which reduces the
key-recovery to the problem of solving an algebraic system of equations. We exploit a defect of
rank in the (linear) system obtained by linearizing this algebraic system. It turns out that our
distinguisher is highly discriminant. Indeed, we are able to precisely quantify the defect of rank
for “generic” binary and non-binary random, alternant and Goppa codes. We have verified these
formulas with practical experiments, and a theoretical explanation for such defect of rank is also
provided. We believe that this work permits to shed some light on the choice of secure parameters
for McEliece cryptosystems; a topic thoroughly investigated recently. Our technique permits to
indeed distinguish a public key of the CFS signature scheme for all parameters proposed by
Finiasz and Sendrier at Asiacrypt 2009. Moreover, some realistic parameters of McEliece scheme
also fit in the range of validity of our distinguisher.

Keywords: public-key cryptography, McEliece cryptosystem, CFS signature, algebraic cryptanal-
ysis, distinguisher.

1 Introduction

Code-based public key cryptography appeared with McEliece’s pioneering work [23] where the author
proposed to use one-way trapdoor functions based on irreducible binary Goppa codes. The class of
Goppa codes represents one of the most important example of linear codes having an efficient decoding
algorithm [4,28]. A binary Goppa code is defined by a polynomial I" of degree r > 1 with coefficients
in some extension field Fom of degree m > 1 over Fo, and a n-tuple £ = (z1,...,z,) of distinct
elements in Fom with n < 2™. The trapdoor of the McEliece public-key scheme consists of a randomly
picked I" which together with £ provide all the information to decode efficiently. The public key is a
generator matrix of a randomly chosen Goppa code. A ciphertext is obtained by multiplying a plaintext
with the public generator matrix and adding a random error vector of prescribed Hamming weight.
The receiver decrypts the message thanks to the decoding algorithm that can be derived from the
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secrets. Niederreiter [26] brings a significant modification of the McEliece cryptosystem by proposing
to describe public linear codes through parity-check matrices. The resulting public key cryptosystem
is as secure as McEliece’s one. The first code-based signature scheme came out in [12] almost twenty
years McEliece’s proposal. The only difference between the encryption and the signature scheme lies in
the choice of the parameters of the binary Goppa codes. For signature, Goppa codes have to be chosen
such that they correct very few errors. This leads to a very high rate R = k/n with n is its length and
k being the dimension of the code. It holds that & = n — rm where by definition r is the number of
errors and generally n is chosen to be equal to 2™. For instance according to [18], an 80-bit security
signature scheme imposes 7 = 10 and m = 21 which leads to R = 0.9999.

All these cryptographic primitives base their security under two assumptions: the intractability of
decoding random linear codes [3], and the difficulty of recovering the private key or an equivalent
one. The problem of decoding an unstructured code is a long-standing problem whose most effective
algorithms [19, 20, 31, 10, 5] have an exponential time complexity. Thus, one may reasonably not expect
much progress in this direction. On the other hand, no significant breakthrough has been observed
during the last thirty years regarding the problem of recovering the private key. Indeed, although
some weak keys have been identified in [21], the only known key-recovery attack is the exhaustive
search of the secret polynomial I" of the Goppa code, and applying the Support Splitting Algorithm
(SSA) [29] to check whether the Goppa code candidate is permutation-equivalent to the code defined
by the public generator matrix. Despite the fact that there still does not exist a practical attack
against McEliece’s proposal of using binary Goppa codes, one should not exclude the possibility of
breakthrough in that field. The authors of [12] alleviated the McEliece assumptions by introducing
the Goppa Code Distinguishing (GD) problem. They assume that no polynomial time algorithm exists
that distinguishes a generator matrix of a Goppa code from a random generator matrix. This is a
classical belief in code-based cryptography. For instance, according to [12], proving or disproving the
hardness of the GD problem will have a significant impact : “Classification issues are in the core of
coding theory since its emergence in the 50’s. So far nothing significant is known about Goppa codes,
more precisely there is mo known property invariant by permutation and computable in polynomial
time which characterizes Goppa codes. Finding such a property or proving that none exists would be
an important breakthrough in coding theory and would also probably seal the fate, for good or ill, of
Goppa code-based cryptosystems”. Currently, the only known algorithm that solves GD problem is
based on the enumeration of Goppa codes and the SSA algorithm [29], as explained below. The time
complexity of this method is O (2™") assuming that the cost of the SSA algorithm is negligible (which
is a reasonable assumption for Goppa codes, but not for all linear codes).

As a consequence, it is widely believed that distinguishing the public matrix in McEliece from a
random matrix is computationally hard. Furthermore, the hardness of the Goppa Code Distinguishing
(GD) problem is mandatory to prove the semantic and CCA2 security of McEliece in the random
oracle model and in the standard model [27,15, 8], the security in the random oracle model against
existential forgery [12,13] of the CFS signature [12] scheme, the provable security of several primitives
such as a threshold ring signatures scheme [14], an identity-based identification scheme [11], which
are build upon CFS. Therefore, showing that the Goppa Code Distinguishing problem is easier than
expected will “unprove” most of the provable primitives based on McEliece, and more importantly will
be the first serious cryptographic weakness observed on this scheme since thirty years. The purpose of
this paper is to study the difficulty of the Goppa Code Distinguishing (GD) problem:

Definition 1 (Goppa Code Distinguishing (GD) Problem). Let n and k be two integers such
that k < n. We denote by Goppa(n, k) the set of k x n generator matrices of Goppa codes. Similarly,
Random(n, k) is the set of k x n random generator matrices. A distinguisher D is an algorithm that
takes as input a matric G and returns a bit. We say that D solves the GD problem if it wins the
following game:

— b & 40,1} If b= 0 then G & Goppa(n, k) otherwise G £ Random(n, k)
— If D(G) = b then D wins the games else D loses.
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The probability that D outputs 1 when G is chosen as a random binary generator matriz of a Goppa
code is denoted by Pr[G & Random(n, k) : D(G) = 1] and the probability that it outputs 1 when G

is chosen randomly in Random(n, k) is denoted by Pr|G & Random(n, k) : D(G) = 1]. We define the
advantage of a distinguisher D as:

AdvCP (D) = |Pr[G & Goppa(n, k) : D(G) = 1] — Pr[G & Random(n, k) : D(G) = 1]| .

In this paper, we present a deterministic polynomial-time distinguisher for solving the GD problem
defined below with advantage close to 1 for codes of high rate. Along the way, we also solve the code
distinguishing problem for alternant codes. The key ingredient is a new algebraic technique introduced
in [17] to attack two variants [1,24] of McEliece. It has been observed [17] that a key recovery attack
against these cryptosystems, as well as the genuine McEliece’s system, can be reduced to solving the
following algebraic set of equations:

{gzlle{++gz,nYnX7jl =0|z¢€ {17,k},] S {O,...,T—l}} (1)

where the unknowns are the X;’s and the Y;’s and the g; ;’s are known coefficients (with 1 <¢ <k,1 <
j < n) which are nothing but the coefficients of the public generator matrix of the scheme. Finally,
k is equal to n — mr here, where m is some divisor of s. In other words we have 2n unknowns and
rk = r(n—mr) polynomial equations. In the cases of [1, 24], additional structures permit to drastically
reduce the number of variables and solve (1) efficiently using dedicated Grébner bases techniques [17].
For McEliece’s cryptosystem, solving (1) seems to be out of the scope of such dedicated techniques.

However, this algebraic approach can be used to construct an efficient distinguisher. To do so, we
consider the dimension of the solution space of a linear system deduced from (1). This linear system
is obtained by linearization of the algebraic system (1). Linearization introduces many new unknowns.
Consequently, this strategy makes sense if the number of equations k is greater than the number of
newly introduced unknowns. This is for instance the case for the parameters proposed in CFS [12] but it
turns out that the linearized system is not of full rank. Although this is an obstacle to break the system,
this particular feature permits to construct an efficient distinguisher for alternant codes and Goppa
codes over any field. Note that the distinguisher is efficient since we only have to compute the rank of
a linear system. Additionally, the distinguisher is highly discriminant. We provide in Section 5 explicit
formulas for “generic” random, alternant, and Goppa code over any alphabet. We performed extensive
experiments to compare our theoretical results on valid McEliece public keys. They confirm that the
generic formula are accurate. We emphasize that the Goppa Code Distinguishing problem has been
widely considered as a hard problem in code-based cryptography as proved by the increasing number
of papers using this assumption [27,15,8,12-14, 11]. To our point of view, disproving/mitigating this
hardness assumption is a breakthrough in code-based cryptography and may open a new direction to
attack the McEliece cryptosystem. Although our attack remains theoretical, we believe that this work
also permits to shed some light on the choice of secure parameters for McEliece cryptosystems; a topic
thoroughly investigated recently [6,7,25,18]. Our technique permits to indeed distinguish a public
key of the CFS signature scheme for all parameters proposed by Finiasz and Sendrier [18]. Moreover,
some realistic parameters of McEliece scheme also fit in the range of validity of our distinguisher like
a binary Goppa code of length n = 2!3 that corrects r = 19 errors. Fot these parameters, the scheme
has a 90-bit security.

Organisation of Paper. In Section 2, we briefly recall the McEliece public-key cryptosystem as
well as the Courtois-Finiasz-Sendrier CFS signature [12]. In Section 3, we recall several key features
of Goppa and alternant codes. In Section 4, we precisely explain how we can mount an algebraic
cryptanalysis against McEliece-like schemes i.e. namely how the algebraic system (1) is constructed.
The distinguisher is presented in Section 5. Section 6 deals with the consequences of the existence of
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a distinguisher in code-based cryptography. Finally, in Section 7 we explain how the formulas used
in Section 5 have been obtained. To do so, we use together combinatorial properties of the linearized
system and distinguishing features of Alternant/Goppa codes.

2 Code-Based Public-Key Cryptography

The main cryptographic primitives in code-based public-key cryptography are the McEliece encryption
and the CFS signature [12]. We recall that a linear code over a finite field F, of ¢ elements defined by a

kxn matrix G (with k < n) over Fy is the vector space ¢ spanned by its rows i.e. € def {uG | u eF}.
G is chosen as a full-rank matrix, so that the code is of dimension k. The rate of the code is given
by the ratio % Code-based public-key cryptography focuses on linear codes that have a polynomial
time decoding algorithm. The role of decoding algorithms is to correct errors of prescribed weight. We
say that a decoding algorithm corrects t errors if it recovers u from the knowledge of uG + e for all
possible e € Fy of weight at most ¢.

Secret key: the triplet (S, G5, P) of matrices defined over a finite field F, over ¢ elements, with ¢ being
a power of two, that is ¢ = 2°. G is a full rank matrix of size k x n, with k < n, S is of size k x k and
is invertible. P is a permutation matrix of size n X n. G5 is chosen in such a way that its associated
linear code (that is the set of all possible uG s with u ranging over ]F’; ) has a decoding algorithm which
corrects in polynomial time ¢ errors.

Public key: the matrix G = SG4P.

Encryption: A plaintext u € IE"; is encrypted by choosing a random vector e in Fy of weight at most
t. The corresponding ciphertext is ¢ = uG + e.

Decryption: ¢! = cP~! is computed from the ciphertext c. Notice that ¢/ = (uSG,P + e)P~! =
uSGs+eP~! and that eP~! is of Hamming weight at most t. Therefore the aforementioned decoding
algorithm can recover in polynomial time wS and therefore the plaintext w by multiplication by S™*.

What is generally referred to as the McEliece cryptosystem is this scheme together with a particular
choice of the code, which consists in taking a binary Goppa code. This class of codes belongs to a more
general class of codes (see Section 3, namely the alternant code family ([22, Chap. 12, p. 365]). The
main feature of this last class of codes is that they can be decoded in polynomial time.

Another important code-based cryptographic primitive is the CFS scheme [12], which is the first
signature scheme based on the security of the McEliece cryptosystem. In this kind of scheme, a user
whose public key is G' and who wishes to sign a message x € F% has to compute a string u such that
the Hamming weight of x — uG is at most ¢. Anyone (a werifier) can publicly check the validity of
a signature. Unfortunately, this approach can only provide signatures for messages x that are within
distance t from a codeword uG. The CFS scheme suggests to modify the message by appending a
counter incremented until the decoding algorithm can find such a signature. The efficiency of this
scheme heavily depends on the number of trials. It is suggested in [12] to choose as in the McEliece
cryptosystem, binary Goppa codes for this purpose with the following parameters n = 2™ and k =
n—mt. The number of trials is of order ¢! in this case, which leads to choose a very small ¢ and therefore
to take a very large n in order to be secure. Notice that the code rate is then equal to 2m2;fm =1- 2@5
which is for large n (that is for large values of 2™) and moderate values of ¢ quite close to 1. Thus,
the major difference between the McEliece cryptosystem and the CFS scheme lies in the choice of
the parameters. An 80-bit security CFS scheme requires n = 22! and ¢ = 10 whereas the McEliece
cryptosystem for the same security needs n = 2! and ¢t = 32 ([18]). The code of the CFS scheme is of
rate 1 — 102%21 ~ 0.9999. We see here that the CFS scheme depends on very high rate binary Goppa
codes.
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3 Basic Facts about Alternant and Goppa Codes

As explained in the previous section, the McEliece cryptosystem relies on Goppa codes which belong
to the class of alternant codes and inherit an efficient decoding algorithm from this. It is convenient to
describe this class through a parity-check matriz over an extension field Fym of F, over which the code
is defined. In other words, the parity check matrix is an r x n matrix H with coefficients in F,m and
the associated alternant code &/ is the set of vectors of Fy which belong to the right kernel of H, i.e.

T
M:{CGIFZHHC = 0}. (2)
r satisfies in this case the condition r» > ”7*’“ where k is the dimension of &«. For alternant codes,
there exists a parity-check matrix with a very special form related to Vandermonde matrices. For

reasons which will be made clear in Section 4, it will be convenient to work with the projective plane

Fym def Fym U {oo} and to consider the class of projective alternant codes (which are slightly more

general than classical alternant codes). More precisely, any projective alternant code has a parity
check matrix which is of the form

Y1 “Yn
V.(x,y) def ?1%1 cee ynl"n . 3)
?11771"—1 T
where x = (z1,...,2,) € (Fgm)" and y = (y1,...,¥n) in (Fym)™ . When z; = oo we use the convention
0
that the i-th column of V. (x,y) is equal to
Yi

Definition 2 (Projective and classical alternant code). The projective alternant code of order

r over F, associated to x = (x1,...,x,) € (Fgm)™ (where all x;’s are distinct) and 'y = (y1,...,Yn) €
(Fzm)n, denoted by o, (x,y), is defined by

p(x,y) = {c e Fy|V,(x,y)c" = 0}. (4)
A classical alternant code corresponds to the case where all x;’s are different from oco.

The class of Goppa codes is a subfamily of alternant codes which are given by:

Definition 3 (Projective and classical Goppa codes). The projective Goppa code 4 (x,I") over
F, associated to a polynomial I'(x) of degree r over Fym and a certain n-tuple x = (z1,...,2,) of
distinct elements of Fym satisfying I'(x;) # 0 for* all i,1 < i < n, is the alternant code <, (x,y) of
order r with y; being defined by y; = I'(x;)~1. A classical Goppa code corresponds to the case x; € Fgm
foralli in {1,...,n}.

It should be noted that the public code in the McEliece cryptosystem is also an alternant code. This is a
simple consequence of the fact that {uSG,P | u € F¥} is obtained from the secret code {uGs | u € FF}
by permuting the coordinates in it with the help of P, since multiplying by an invertible matrix S of
size k X k leaves the code globally invariant.

4 We define I"(c0) 4l o, for NX)=3_,vX"



6 Jean-Charles Faugere, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich

4 Algebraic Cryptanalysis of McEliece-like Cryptosystems

In this part, we explain more precisely how we construct the algebraic system described in (1). This
algebraic system is the main ingredient of the distinguisher. We recall a key feature of alternant codes.

Fact 1. There exists a polynomial time algorithm decoding all errors of Hamming weight at most 5
for an alternant code of order r once a parity-check matric H of the form H = V .(x,y) is given for
it.

The variants of McEliece’s cryptosystem based on general alternant codes or on non binary Goppa
codes, such as [1,24] for instance, add errors which are of weight smaller than or equal to r/2. In this
case, it is possible to break these variants by finding x* and y* in Fy.. such that:

{xG |xeF} ={yeF, | V.(x",y" )y =0} (5)

According to Fact 1, the knowledge of V,.(x*, y*) permits to efficiently decode the public code, i.e. to
recover u from uG + e. By the very definition of the public code G, we have:

V. (z*, y*)G' = 0.

This is the key observation of the algebraic approach used in [17] to cryptanalyze dyadic and quasi-
cyclic variants of McEliece. Let X1,...,X,, and Y7,...,Y,, be 2n variables corresponding to the z}’s
and the y;’s. Observe that such z}’s and y;’s are a particular solution of the following system:

{ngYlX{#..-ngi,nYnX,{ =0|ie{l,....,k},je {07...,7"—1}} (6)

where the g; ;’s are the entries of the known matrix G. In the cases of [1,24], additional structures
permit to drastically reduce the number of variables allowing to solve (1) efficiently using dedicated
Grébner bases techniques [17].

For binary Goppa codes, it is essential to recover its description as a Goppa code and not only the z;’s
and the y;’s giving its description as an alternant code. This is a consequence of the following result.

Fact 2. [28] There exists a polynomial time algorithm decoding all errors of Hamming weight at most
r in a Goppa code 4 (x,I") when I has degree r and has no multiple roots, if x and I" are known.

If we recover only the x;’s and the y;’s we can decode only r/2 errors. The issue is now, once a possible
description of a Goppa code has been found as an alternant code, that is once a solution x = (z;)1<i<n
and y = (y;)1<i<n of the system (6) has been found, does there exist a polynomial I'(X) of degree r
such that y; = I'(z;)~! for all i € {1,...,n} ? If such a polynomial exists, it can be easily found by
interpolation. The problem is that a Goppa code has multiple descriptions as an alternant code, i.e.,
there are several x,y’s for which 4 = 7,.(x,y). The solutions we are interested in are the ones for
which y; = I'(x;)~! for all i, and for some polynomial I" of degree 7.

This raises the fundamental issue of finding all possible descriptions of the form (4) of an alternant
code 7, that is find all x, y’s such that &/ = <7.(x,y). When the extension field Fym is the same as the
definition® field F,, i.e. if m = 1, the problem was solved in [16]. This was the key of the cryptanalysis
of McEliece’s variant based on generalized Reed-Solomon codes [30].

The general case is still unsolved. However, the results of [16] basically show that the we have at least
one degree of freedom for Y; and three degrees of freedom for the X;’s in the system (6). First of all
it is straightforward to notice that if (X;)1<i<n, (Yi)1<i<n is a solution of the algebraic Equation (6)
then (aX;)1<i<n, (BYi)1<i<n is also a solution for any «, 3 in F,m. Therefore, we can specialize one
(X;,Y;) arbitrarily. It turns out we can fix more variables thanks to the following proposition.

® This means that the resulting code is a slight generalization of a generalized Reed-Solomon code known
under the name of a Cauchy code.
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Proposition 1. Let x = (2;)i<i<n € (qu)” be an n-tuple formed by distinct elements and let y =
(Yi)i<i<n € (Fgm)™ be an n-tuple of nonzero elements. Let a,b,c,d be elements of Fgm such that that

ad —bc # 0. Then
b
JZ/T <ax+ y,) = ~Q{T (Xa Y)a where

ex+d’
ax + b def . ax; +b . _
ot~ @hsize with of = 220 ' = (Wisisn with yi = yiexi +d)"
K3
Remark 1. The proof is in Appendix A. Notice that either x; or z} might be infinite. We used here
the usual rules to evaluate the homography z — ‘;ZZIZ, namely § = oo, % = 00,5 = 0,8+ 00 = o0,
0 X oo=0, f;g’;’j_‘g 2, where o # 0, 3 belong to Fym.

This result explains that there is (at least) one degree of freedom for the Y;’s and three degrees of
freedom for the X;’s. It is quite helpful to allow here x; which can be infinite since even all of them
are in Fym, it might happen that cx; 4 d is equal to zero. Therefore the corresponding image by the
homography will be infinite. Finally, since the set of homographies acts 3-transitively over Fym U {00},
we have:

Corollary 1. We can specialize (almost) randomly one Y; and three X;’s in (1). As long as the X;’s
are distinct, we still have a non-empty set of solutions for such modified system (1).

At first glance, the degree of freedom should be less for Goppa codes. Indeed, there is an additional

crucial constraint for binary Goppa codes: a solution must verify ¥; = I'(X;) ! for a certain polynomial

of degree r. Surprisingly, we can keep the same degree of freedom by considering a slight change of

(6). Let ¢ (x,I") be the subcode of the Goppa code ¥(x, I") formed by all codewords of even Hamming
weight. Let G = (i ), <i<i be a generator matrix of ¢(x, I'), that is a matrix of full rank whose rows

1<j<n
generate g (x,I'). The dimension k of this subspace is either k or k — 1, where k is the dimension of
the Goppa code ¥ (x, I'). This subcode is itself an alternant code.

Proposition 2. [2] It holds that: 3
G(x,I') = dpi1(x,y)
for deg(I') = r and where y = (y;); with y; = I'(z;)~".

This implies that the x;’s and y;’s are a particular solution of:
{nglX{ +o G YnXi =0]i€ {1,...,15},]' € {0,...,r}} (7)

where the g; ;’s are the entries of the known matrix G. Notice that this system is very similar to (6)
with the exception that the powers of the X;’s can now be equal to . The crucial result is now that

Proposition 3. [2] Let x = (x;)1<i<n be an n-tuple of distinct elements of Fym and I" be a polynomial
of degree v such that I'(x;) # 0 for all i € {1,...,n}. Let ¥(z) = %% be an homography with

cz+d
ad—bc # 0 and a,b, c,d € Fym. Let x¥ aef (xg))lgign with xzp = “ay), I'Y(X) = (cx+d)"T'(YP(x)) =

Soi_ovi(aX +b) (cx+d)"", for I'(x) =>._ovX". Then

G(x,T) =9 (x¥,I'?).
Once again, we can use that homographies have a 3-transitive action on ?qm.

Corollary 2. We can specialize in (7) one of the Y; and three of the X;’s almost arbitrarily (with
Y; # 0 and such that the three X;’s are distz’nct) and still obtain a solution for which there exists a
polynomial I' of degree v such that Y; = I'(X;)~! for all i in {1,...,n}.
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To finish this discussion, it will be helpful to notice that in the case of binary Goppa codes, we have
even more algebraic equations than the ones given in System (6). The starting point is the following
result, which is essentially derived from a discussion in a paragraph about Goppa codes in [22, p.341].

Theorem 3. A binary Goppa code 4(x,I") associated to a Goppa polynomial I'(X) of degree r without
multiple roots is equal to the alternant code <o, (x,y), with y; = I'(z;)~2.

In other words, x and y are solutions of the following algebraic system
{gi’ﬂﬁXij to g YuXi =0]i€{l,...,k},j€{0,...,2r — 1}}7 (8)

where (g;;) is a generator matrix of the Goppa code. Notice that the powers j are now in the range
{0,1,...,2r — 1} and not in {0, 1,...,r — 1}, as was the case before.

5 A Distinguisher of Alternant and Goppa Codes

We present in this part the algebraic distinguisher. Let G = (g;;)1<i<k be a generator matrix of the
1<j<n
public code. We can assume without loss of generality that G is systematic in its k first positions. Such

k n—k=mr

Fig. 1. Systematic form of G

a form can be easily obtained by Gaussian elimination and by a suitable permutation of the columns.
We describe now a simple way of using this particular form for solving (6). We assume that the rate
of the public code is close to 1, i.e. *=™ =~ 1, which implies mr < n. From a cryptographic point
of view, this means that the expansion ratio between the size of the ciphertext and the size of the
message is close to 1. This kind of rate has been proposed in [18]. The strategy is as follows.

5.1 First step — expressing the Y;Xid’s in terms of the YjX;i’s forje{k+1,...,n}.

Let P = (p;j) 1<i<k be the submatrix of G formed by its last mr columns (as in Figure 1). We can
k+1<j<n
rewrite (6) as

Y = HZ:;‘L:ICH piiY;
ViXo = Yok PigViX;

VX[ = Z?:k+1pivj}/}X;71
foralli e {1,...,k}.
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5.2 Second step — using the trivial identitinYiXi2 = (YiXi)2 and linearization.
Thanks to the trivial identity Y;V; X? = (Y;X;)? for all i in {1,...,k}, we get:

2

Z pi,j}/j Z pi,j}/jXJZ e Z pi,jY:ij ,fOI‘ all i € {17 .. ,k}
j=k+1 j=k+1 j=k+1

It is possible to reorder this a little bit to obtain the following equations:

n

Yo D vy (Y XG +YpYXF) =0 (10)
j=k+135'>j

We can now linearize this system by letting Z, Lef Yij/XJ% + YJ/YJX]2 We obtain k linear equations
involving the Z;;/’s:
n

Z Zpi,jpi,j/ij/ =0,i=1...k}. (11)

J=kA157>]

To solve this system it is necessary that the number of equations is greater than the number of

unknowns, i.e.:
mr
k>
=(%)

This approach works for alternant codes in general. However, for Goppa codes, it will be interesting to
consider also a related system. It is obtained by applying the same approach described before but to
the generator matrix G of the subcode of the public code consisting in codewords of even Hamming
weight. The reason which makes this new system interesting will be explained in Subsection 7.2, it is
related to Proposition 2. We denote by k the dimension of this code. We have either k = k or k = k—1.

As previously, we can suppose that G is in systematic form: G= (i\]s) where I is the identity matrix

of size k or k—1 (depending on the dimension of the subcode). Finally, let p;; be the coefficient in the
i-th row and j-th column of P . We can proceed similarly and obtain a new linear system of equations:

Z Zﬁi,jﬁi,j/ij/ =0,i=1...ky. (12)

j=k4+13">J

When k = k — 1, the number of equations is smaller. It might be k£ — 1 instead of k£ and the number
of variables is also larger. It is equal to (”gk) = (mr;l). However, we will see that due to Proposition

2, this system has also nice properties in the Goppa case.

5.3 Experimental behavior

Observe that the linear systems (11) and (12) have coefficients in F, whereas solutions are sought in the
extension field Fym. In addition, the freedom of choosing three X;’s and one Y; in order to reduce the
number of unknowns in the linearized systems is not used. However, even if this additional knowledge
is taken into account, the rank of the linear systems remains insufficient to solve the system. More
precisely, the problem is that the dimension of the vector space solution of (11) is amazingly large. It
even depends on whether or not the code with generator matrix G is chosen as a (generic) alternant
code or as a Goppa code. Interestingly enough, when G is chosen at random, the dimension of the
solution space is typically 0 when k is larger than the number of variables. Although these facts are an
obstacle to break the McEliece cryptosystem, it can be used to distinguish the public generator from
a random code. Let us denote by:
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- N (")) the number of variables in (11), N the number of variables of (12),

— Diandom, respectively Dyandom, the dimension of the vector space solution of (11), respectively (12)
when the p;;’s are chosen uniformly at random in Fy,

— Dalternant, respectively Daltemant, the dimension of the vector space solution of (11), respectively
(12) when G is chosen as a generator matrix of a random alternant code of degree r,

— Dgoppa, respectively Egoppa the dimension of the vector space solution of (11), respectively (12)

when G is chosen as a generator matrix of a random Goppa code of degree r.

A thorough experimental study revealed that the dimension of the vector space over F, of the solutions
of (11) follows typically the following formulas:

Experimental fact 1 Let D be in {D aternants D atternants D Goppa, Dgop,m}. With very high probability
and as long as N — D < k, the dimension D has the following value:

D uiternant = w ((2( +1)r— 2q€q+1__11> for ¢ def Llogq(r — l)J (13)
Datternant = Datternant for q > 2 (14)
Forr < q—1, it holds that
D Goppa = W = Daiternant (15)
DGoppa = mr(r = 1) (16)

2

wheras for r > q — 1, by denoting by £ the unique integer such that q¢* — 2¢*™' + ¢*=2 < r < ¢! —
2¢° + ¢*~ 1, we obtain

Doppa = 5~ ((20+1)r = 24" + 24"~ 1) (17)
DGoppa = % ((26 F1)r—2¢° + 247 + 1) (18)

We gathered samples of results we obtained through intensive computations with the Magma system
[9] in order to confirm the formulas. We randomly generated alternant and Goppa codes over the field
F, with ¢ € {2,4, 8,16, 32} for values of r in the range {3,...,50} and several m. The Goppa codes are
generated by means of an irreducible I" of degree r and hence I' has no multiple roots. In particular,
we can apply Theorem 3 in the binary case. We compare the dimensions of the solution space against
the dimension D,.ndom Of the system derived from a random linear code. Table 1 and Table 2 give
figures for the binary case with m = 14. We define Thiternant and Tgoppa respectively as the expected
dimensions for an alternant and a Goppa code deduced from the formulas (13) and (15)-(17). We can
check that Diandom is equal to 0 for r € {3,...,12} and Diandom = N — k as expected. We remark
that Daiternant is different from Diandom whenever r < 15, and Dgoppa is different from Diandom as
long as r < 25. Finally we observe that our formulas for Tjjemant fit as long as k > N — Tyternant which
correspond to r < 15. This is also the case for binary Goppa codes since we have Tgoppa = Dgoppa 88
long as k > N — TGoppa %.€. 7 < 25. We also give in Table 10 and Table 11 in Appendix B the examples
that we obtained for ¢ = 4 and m = 6 to check that the arguments also apply. We also compare
binary Goppa codes and random linear codes for m = 15 in Table 4-6 and m = 16 in Table 7-9 (See
Appendix B). We see that Diandom and Dgoppa are different for » < 33 when m = 15 and for m = 16
they are different even beyond our range of experiment r < 50.

6 Cryptographic Implications

The existence of a distinguisher for the specific case of binary Goppa codes has consequences for
code-based cryptographic primitives because it is represents, and by far, the favorite choice in such
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Table 1. ¢ =2 and m = 14

I [ 3[4]5[6 ] 7[8 ]9 [1wo]1[12]13]14]15]16]
N 861 [ 15402415 [ 3486 | 4753 [ 6216 | 7875 | 9730 [11781]14028]16471[19110[21945[24976
k |16342[16328]16314]16300]16286]16272]16258[16244[16230|16216]16202|16188|16174[16160
Diandom | 0 [ 0 [0 [ 0 [ 0 [0 0 0 [ 0 | 0 [269]2922]5771]8816
Datternant| 42 | 126 | 308 | 560 | 882 [ 1274 | 1848|2520 [ 3290 | 4158 | 5124 | 6188 | 7350 | 8816
Taemant | 42 [ 126 | 308 | 560 [ 882 | 1274 | 18482520 | 3290 | 4158 [ 5124 | 6188 | 7350 [ 8610
Dgoppa | 252 | 532 | 980 [ 1554 | 2254 | 3080 | 4158 | 5390 | 6776 | 8316 [10010[11858|13860|16016
Teoppa | 252 | 532 | 980 | 1554 [ 2254 [ 3080 | 4158 [ 5390 | 6776 | 8316 [10010|11858[13860[16016
N [ 903 | 1596 | 2485 | 3570 | 4851 | 6328 | 8001 | 9870 |11935[14196|1665319306]22155|25200
k  |16341][16327]16313|16299]16285|16271|16257|16243|16229|16215/16201|16187|16173[16159
Diandom | 42 | 56 | 70 | 84 | 98 | 112 | 126 | 140 | 154 | 168 | 453 | 3120 | 5983 | 9041
Datternant| 84 | 182 | 378 | 644 | 980 | 1386 | 1974 | 2660 | 3444 | 4326 | 5306 | 6384 | 7560 | 9041
Dgoppa | 294 | 588 | 1050 | 1638 | 2352 | 3192 | 4284 | 5530 | 6930 | 8484 |10192]12054]14070|16240

Table 2. ¢ =2 and m = 14

I r J17[ 18] 1920 [ 21 [22]23[24 ]2 [26 ] 27 [ 28] 29 [30]
N [28203]3162635245[39060]43071[47278[51681]56280[61075[66066]71253[76636[82215]87990

k_ |16146[16132[16118]16104[16090[16076]16062[16048[16034|16020[16006|15992| 1597815964
Drandom |12057]15494]19127|22956]26981[31202[35619[40232[45041|50046]55247|60644|66237] 72026
Datternant | 12057[15494[19127|22956]2698131202[35619]40232[45041[50046]55247|60644|66237| 72026
Tatermant |10192[11900]13734[15694[17780[1999222330[24794|2738430100[32942|35910[39004 42224
Dgoppa |18564|21294/24206[27300|3057634034]37674|41496[45500|50046|5524760644|66237| 72026
Tooppa | 18564]21294]24206|27300[30576[34034|37674[41496[45500]49686]54054|58604]63336]68250
N [28441|31878(35511[39340(43365/47586|52003|566166142566430|71631|77028|82621(88410

k. |16145[16131]16117|16103[16089|16075|16061]|16047|16033|16019/16005|15991|15977|15963
Diandom |12296]15747]19394|23237(27277|31512|35942(40569|45393|50411|55626|61037|66644 72447
Daternant |12297]15747]19395|23238|27277|31511|35943|40570[45392|50412[55626|61038|66644| 72447
Dgoppa |18802|21546|24472|27580|30870|34342|37996|4183245850|50412|55626|61037|66644| 72447

primitives. One of the reasons for this, is the fact that this class has withstood many cryptographic
attacks for more than thirty years now. We focus in this part on secure parameters that are within the
range of validity of our distinguisher. In Section 5, we gave a general expression of the distinguisher
for a Goppa code over any finite field F,. This expression can be easily simplified in the binary case

(q=2).

Proposition 4. Let us define ¢ % ﬂogQ r] +1 and N % (";) The formula for D goppa given in

Equation (17) can be simplified to D Goppa = "5~ ((2€+ )r—2f—1) as long as N — D Goppa < n—mr.

This simple expression is therefore not true for any value of r and m but tends to be true for codes
that have a code rate 2= that is close to one. This kind of codes are mainly encountered with the
public keys of the CFS 51gnature scheme. We will show that there also exist public keys of the McEliece
cryptosystem that can be distinguished for parameters considered as secure. We assume that the length
n is equal to 2™ and we denote by 7mi, the smallest integer r such that N — Dgoppa > 2™ —mr. Recall
that given a degree extension m over Fy, any binary Goppa code defined with a polynomial I'(z) of
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degree r > rpin cannot be distinguished from a random linear code by our technique. This value is
gathered in Table 3 for different values of m. It provides therefore a lower bound for r in the choice of
secure parameters if being unable to distinguish the public code from a random linear code is required.
One can notice for instance that the McEliece key obtained with m = 13 and » = 19 and which
corresponds to 90-bit of security, fits in the range of validity of our distinguisher. The values of ry;, in
Table 3 are checked by experimentations for m < 16 whereas those for m > 17 are obtained by solving

2
n [18] (See therein Table 4) for the CFS scheme can be distinguished.

the equation &¢ ((% +1)r —2¢— 1) = imr(mr — 1) — 2™ + mr. Additionally, all the keys proposed

Table 3. Smallest order r of a binary Goppa code of length n = 2™ for which our distinguisher does not work.

[ m [[8]9[10[11[12[13[14]15]16]17]18] 19 [ 20 [ 21 [22 [ 23 ||
[remin[[5]8] 8 [11[16][20[26]34]47]62[85]114]157]213][290[400]]

7 An Explanation for the Distinguisher

The goal of this section is to provide a theoretical explanation to the practical behavior observed in
the previous section. We first consider the case of alternant codes and will explain the defect of rank
observed in the linearized systems described previously.

7.1 The generic alternant case

As a general comment, we emphasize that it seems difficult to obtain a precise lower bound or upper
bound on the dimension D, respectively D of the vector space solution of (11), respectively (12) holding
for all alternant codes. Indeed, it is always possible to have degenerate cases for particular x and y
defining the alternant code 47.(x,y). When x and y are chosen in a subfield F .., with m’ being a
divisor of m, then the dimension D of the system is much smaller than predicted in experimental Fact
1. We have typically the same formula as in (13), but with m’ replacing m there. On the other hand,
when y is chosen accordingly to a Goppa code, then the dimension can be much larger.

However, there is a simple fact explaining what happens in the generic case for Formula (13), i.e. for
“random” choices of x and y. Indeed, to set up the linear system (11) or (12) we have used the trivial
identity Y;¥; X2 = (Y;X;)?. More generally, we can use any identity of the form Y; X2V; X} = Y; X¢Y; X¢
with a,b,c,d € {0,1,...,r — 1} such that a + b = ¢ + d. It is straightforward to check that we obtain
in the same way the algebraic system:

SN pigpig (VXY XL + Y XY X+ Y XY XS + Y XY X =0 (19)
j=k+1j5'>j
and
n
SN bigpig (XY XY + Ve X§Y; XD+ Y, X5V X+ Y X5Y;X4) = 0. (20)
j=k+13">7

In other words:

ef a a c c
Zapea ™ (ViX§Yy XY + Yy X5V X0+ Vi XEY3 X0 + Yy X5V X ) 1< j<mr

3>
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is a solution of (11) whereas

7 def a b a b c d c d
Zapea & (VXY X0 + Y XOY, X2+ VX0V, X5 + Yy X5V, XE) i
i'>j
is a solution of (12). This yields many (presumably) independent vectors which are solution of (11)
r (12). In other words, large dimension of the vector space solution of (11) or (12) is explained by

the fact that there are many different ways of combining the equations of the algebraic system (10)
together yielding the same linearized systems (11) or (12).

Observe that there are some relations among solutions, such as Z, p.c.a + Zc d,e.f = Zab,e,f- However,

if we define

S, L {{a,b}a+ b=t}

then we expect to obtain ) _,(|.S¢| — 1) linearly independent solutions to (11) or (12) from this process.
The term |S¢| — 1 in the sum is a simple consequence of the following fact.

Fact 4. Assume that we have £ independent (over Fy) vectors eq,...,ep. Then the set {ei +ejii,] €
{1,... ,E}} generates a vector space of dimension £ — 1 over Fs.

Finally, the solutions have coefficients over = . By decomposing each coefficient over IF, we may finally
have mY_,(]S¢] — 1) (potentially) independent vectors over F,. This accounts for a generating set of

size:
m(r—1)(r—2)
2
which agrees with Formula (13) when r < q.

For larger values of r, the automorphisms of Fy» leaving F, invariant have to be used. They are of the
form x — x? for some £ € {0,...,m — 1}. Notice that if we raise the equation ¥;X; = > p;;¥; X, to
the g-th power we get:

YIX! =D puYX].

We can use the same trick for Y; = " p;;Y;. From the trivial identity Y;(Y;X;)? = Y,?Y; X, we obtain
a new algebraic equation which is

S5 pipis (y;}/j‘zx;?, FYYIX YV XY + Yj‘%Yij) —0. (21)
j=k+135'>j

To use V; X! = ZpinjX]q, we need to have r > g+ 1. However it should be noticed that if a+b = c+d
then Z, p.c,q and Z g4 gb,qc,qd Only give m (potentially) independent vectors over F, (and not 2m) after
decomposing their coefficients over IFy. This comes from the fact that the Frobenius map z — 27 is a
F,-linear transform. Therefore, the only new vectors obtained in this way are of the form Z, ;i c id
with 0 < a,b,c,d<r,0<j<mand a+ ¢’b=c—+ ¢’d. This whole discussion leads to

Heuristic 1 LetStO {{a bIo0<a<r0<b<ra+b=t}S Forjin{l,...,m—1}, we set S} = o

{(a, Po0<a<r,0<b<ra+q¢gb= t}. Then, for most choices of x and 'y, we have:

Dalternant m Z |S]| - ]-
{t,j:S]}#0

The sum appearing in the right-hand side has a very simple expression which is given by

5 The notation {a, b} refers to a multiset here. We may have a = b.



14 Jean-Charles Faugere, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich

Proposition 5.

3 (|S’g|—1):r;1{(2€+1)r—2qi:1_11} (22)

{t.:S11#0
with ¢ % |log,(r —1)].

This finishes to explain the first part of Experimental Fact 1. In order to prove Proposition 5, we first
prove the following lemma.

Lemma 1.
|S?|=Ff+2ﬂ,for03t§r—1, (23)
|57] = {%Fw,forrgsw—z (24)
|S?| = 0 otherwise. (25)
ST <1, if ¢ >, (26)
|S§| = min (7“, L;J + 1) — max (F_;—Fl—‘ ,0) otherwise. (27)

Proof. The first three equations follow directly from the definition of SY. Equation (26) is an easy
consequence of the definition of S7. Let us assume now that r > ¢. We now prove Equation (27). Let
(a,b) be a couple of integers such that:

0< a <r-1 (28)
0< b <r-—1 (29)
a+¢b=t. (30)

From (28), (29) and (30), we obtain ¢t — ¢’b < r — 1, which implies b > P_qr%l—‘ Together with (29)

v e ([0 o). -

On the other hand, we also have b <r —1 and b < LI%J since a > 0. This implies

b <min (7= 1.] ] ). (32)

All the b’s between these upper and lower bounds are possible. Then, there is only one corresponding
a each time. This yields Equation (27). O

From this, we deduce:

Lemma 2. It holds that:

(s -1) = (7‘_1)2& (33)
t:S9£0
YoUSI -1 =@ =1 —¢) forr=d, (34)
t:S’f;ﬁ@
(1S7] = 1) = 0 otherwise. (35)
>

t:S'z;ﬁ@
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Proof. Let us first prove (33). By using Lemma 1, we obtain

r—1 2r—2
t+1 2r—t—1
> =2 ([ 2 (=)
t:S9A£0 t=0 t=r
For r odd (say r = 21/ + 1), we notice that 37—} ([HL]=1) = #'(r = 1)+ = 1'% and that
2 ([#574] = 1) = #/(r—1). This implies that 3, g0 (ISP 1) = /(2" —1) = =1=2)  On the

other hand, for 7 even, say r = 21, we obtain 31—y ([£52] — 1) = #/('—1) and 327 % ([2541] — 1) =

=1+ (r'=1)(r' —2) = (' — 1)2. From this, we deduce that Zt:Sf;ﬁ@('StO| -H=0r" -2 -1) =
%. This proves (33).

To prove (34), we first notice that |S7| is positive if and only if ¢ belongs to {0,1,..., (¢ +1)(r —1)}.
Then, we use Lemma 1 again and we obtain

(¢ +1)(r—1)

Y (sil-1)= (157 = 1) (36)
t:S‘Z;ﬁ@ t=0
(@’ +1)(r—1)
= Z min(r,{t +1>—max(’rt_z+1 70)—1
t=0 - 4

(@ +1)(r—1)

(@7 +1)(r—1) -
. t t—r+1
= E min (7" - ]., q]J) — E max < q]—‘ ,0) . (37)

t=0 L t=0
Observe now that
(¢ +1)(r—1) ' ¢ ¢’ (r—1)-1 ¢ ¢ (r=1)-1
 w(rlpl)- g o) 2 e

=@ (0+1++7r—2)+(r—1)r
The other term appearing in the right-hand side of (37) is handled as follows

(7 +1)(r=1) —re1] @Ry
S ma ([ 0) =y [en

t=0 ¢ t=r
=142+ +7r—1).
By plugging these two expressions in (37) we obtain
Z (187|=1) = ¢ (0414 - -+r=2)+(r—1)r—¢’ 142+ - -+r—1) = (r—1)r—¢’ (r—1) = (r—1)(r—¢’).
t:57 £0
O

Finally, we can now finish with the proof of Proposition 5.

Proof.
S s -n= S s -0+ Y (sl -1
t,5:57 20 :S940 J=1 49920
:w+ Z (r—1)(r—¢)
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Let £ be the largest integer such that r > ¢*. We obtain

4
s -1) = ;1 2r+(r—2)-2) ¢

t,5:93 #0 J=1

¢

r—1 .

= 2(€+1)r—2‘50q3
j=

r—1 q€+1_1
= 20+ 1)yr —2—— 5.
2 {(+)T q—1

This concludes the proof. a

7.2 The Goppa case

The simplest way to understand why there is a difference between the generic alternant case and the
Goppa case is to compare DGOPPa with Daltemant. First of all, the same reasoning as in the previous
subsection can be done for the subcode m{;r(x, y) of even weights of an alternant code 7.(x,y). This
leads in the same way to the conclusion that in general:

- m(r —1 1
Dalternant = % {(2£ + ].)’I’ — 2qq_1} R

with ¢ 4 |log,(r —1)]. Notice, that from Proposition 2, we know that 4 (x,T") is an alternant code of
degree r + 1, when I is of degree r. Therefore, we have

- mr A
DGoppa Z 7 {(2€+ 1)(7"+ 1) — 2qq]_} .

with ¢ % |log,(7)]. This explains why ﬁGOppa is significantly greater than Dajernant. 1If we we denote
by Egoppa(r) the dimension of the solution space of (12) for a Goppa code associated to a polynomial

of degree r (we fix the order m of the extension) and if we denote by Daltornant (r) the dimension of
the solution space of (11) for a generic alternant code 7. of degree r, then this explains why we have

DGOPpa(T) > Daltcrnant (7' + 1)

It should be added that for r < ¢ — 2, we actually have .D(;Oppa(T) = Daltemam(r +1).

We do not have a general explanation for the formula observed for Dgoppa of non-binary Goppa codes.
However, in the case of binary Goppa codes we can use Theorem 3. In this case, when the Goppa

polynomial I" has only simple roots, we know that ¥(x,I") = <, (x,y’), where r def deg(I") and
y, = I'(z;)~? where the x;’s are the coordinates of x and the y’s are the coordinates of y’. This
basically explains why the vector space solution of (11) is much greater for a binary Goppa code than
for a binary alternant code of the same degree. This would suggest that Dgoppa(7) > Dalternant (27)-
However, this is not true. Now, there are linear relations among the vectors Z, 3 . ¢ which are solutions
of (11). Providing a cleaner explanation of the formula obtained for binary Goppa codes is much more
involved and is beyond the scope of this article.
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A Proof of Proposition 1

Proof. Let ¢ = (¢;)1<i<n be a codeword in 27.(x,y). Consider a polynomial P(X) = Z;;é a; X7 €
F,m[X] of degree at most 7 — 1 and notice that

, ar; +b\ —1 ar; +b J
vil? <C$i+d> _yi(cxi+d) Z 4 <C$i+d

0<j<r—1
=y Z a;(az; +b) (cx; +d) 77
0<j<r—1
= y:iQ(x:)

where @ is a polynomial of degree at most r — 1 which depends on a, b, ¢, d but not on i. By the very
definition of .(x,y), we know that

- ~ ar; +b
0= ZczyzQ(xz) = Zciygp (czi T d) :
i=1 i=1

In other words, we have just proved that c € o7, (‘c’;‘is, y’ ) This proves that

A (x,y) C o, <ax+b7y’> .
CX

The inclusion in the other direction is proved similarly.
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B Experimental Results

Table 4. ¢ =2 and m =15

[ r [ 3] 4[5 6 [ 78 ]9 [J10]11[12][13[]14]15]16]
N[990 [1770]2775 | 4005 | 5460 | 7140 | 9045 [11175[13530[16110]18915[21945]25200[28680
k_|32723[32708]32693[32678[32663|32648|32633[32618|32603|32588[32573|32558|32543[32528

Diandom| 0 [ 0 [ O [ O] OJO]JO]JO]JO0O]O][O0]0T]0]O0
Doppa | 270 | 570 [ 1050 | 1665 | 2415 | 3300 | 4455 | 5775 | 7260 | 8910 |10725[12705]14850]17160
Teoppa | 270 | 570 [ 1050 | 1665 [ 2415 | 3300 | 4455 [ 5775 | 7260 | 8910 [10725]12705[14850[17160
N 11035 | 1830 | 2850 | 4095 | 5565 | 7260 | 9180 |1132513695|16290|19110|22155|2542528920
k_|32722[32707|32692|32677|32662|32647|32632|32617|32602|32587|32572|32557| 32542| 32527

Dyandom| 0 | 0 | 0 | 0 ] O] 0] 0] 0] 00 0] 0] 00
Dgoppa | 315 | 630 | 1125 | 1755 | 2520 | 3420 | 4590 | 5925 | 7425 | 9090 |10920(12915]1507517400

Table 5. ¢ =2 and m =15

[ r [iw ] 18 [ 1920 [21 [22]23 ] 242 [26 ] 27 [ 28]2 [ 30 |
N [32385[36315[40470[44850]49455[54285[59340]64620[70125[75855[81810[87990[94395[101025

k_ |32513]32498|32483[32468|32453|32438(32423|32408|32393[32378|32363|32348[32333| 32318
Drandom| 0 | 3817 | 7987 [12382[17002[21847(26917(32212(37732[43477|49447|55642|62062| 63707
Daoppa [19890]22815]25935(29250|32760[36465|40365|44460[48750|53235|57915[62790|67860| 73125
Tooppa |19890[22815]25935|29250[32760|36465[40365[44460|4875053235[57915|62790[67860| 73125
N [32640]36585[40755]45150{49770[54615|5968564980|70500|76245]82215(88410/94830[101475

k [32512|32497|32482|32467|32452|32437|32422(32407|32392(32377|3236232347|32332| 32317
Drandom| 128 | 4088 | 8273 [12683]17318|22178|27263|32573|38108[43868|49853|56063(62498| 69158

Dacoppa |20145|23085|26220(29550|33075(36795|40710{44820(49125(53625|58320(63210{68295| 73575
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Table 6. ¢ =2 and m =15

[~ [ 3 [ 3 [ 3 [ 34 ] 3 | 3 | 37 [ 38 [ 39 [ 40 | 41 | 42 | 43 [ 44 ]
N [107880[114960]122265[129795[137550[145530[153735[162165]170820[179700[188805[198135[207690]217470
k32303 | 32288 [ 32273 [ 32258 | 32243 | 32228 | 32213 | 32198 [ 32183 | 32168 | 32153 | 32138 | 32123 | 32108

Drandom | 75577 | 82672 [ 89992 [ 97537 [105307|113302|121522|129967|138637(147532|156652|165997|175567| 185362

Daoppa | 78585 | 84240 | 90585 | 97537 [105307|113302[121522[129967|138637]147532[156652/165997|175567| 185362

Tooppa | 78585 | 84240 [ 90585 | 97155 [103950|110970|118215[125685[133380]141300|149445|157815[166410[175230
N [108345115440[122760|130305[138075]146070[154290|162735|171405|180300[189420[198765/208335|218130
k |32302 | 32287 | 32272 | 32257 | 32242 | 32227 | 32212 | 32197 | 32182 | 32167 | 32152 | 32137 | 32122 | 32107

Diandom| 76043 [ 83153 | 90488 | 98048 |105833|113843|122078[130538|139223|148133|157268|166628| 176213186023

Dgoppa | 79050 | 84720 | 91080 | 98048 [105833|113843|122079|130539|139224(148134]157269]166628|176214|186024

Table 7. ¢ = 2 and m = 16

[ r [ 3] 4[5 6 [ 7[8 ]9 J10]11[12][13]14]15]16 ]
N [1128]2016 [ 3160 | 4560 | 6216 [ 8128 [10296]12720[15400[18336]21528[24976]28680[32640
k_|65488[65472]65456/65440[65424|6540865392[65376|65360|65344]65328|65312]65296|65280

Diandom| 0 [ 0O [ O [ OJO[JoO[]JO]JO0o]Jo]Jo][o]o0o]o0]oO0
Dgoppa | 288 | 608 [ 1120 | 1776 | 2576 | 3520 | 4752 | 6160 | 7744 | 9504 |11440[13552|15840]18304
Teoppa | 288 | 608 | 1120 [ 1776 [ 2576 | 3520 [ 4752 [ 6160 | 7744 [ 9504 [11440]13552[15840|18304
N 1176 | 2080 | 3240 | 4656 | 6328 | 8256 |10440|12880[15576|18528|21736]25200|28920|32896
k  |65487]65471|65455|65439(65423|65407|65391|65375|65359|65343|65327|65311|65295|65279

Dyandom| 0 | 0 [ 0 | O] O] O] 0] 0] 0] 0] 0000
Dgoppa | 336 | 672 | 1200 | 1872 | 2688 | 3648 | 4896 | 6320 | 7920 | 9696 |11648|13776]16080]18560

Table 8. ¢ =2 and m = 16

| r [ 17 [ 18] 1920 [ 21 [22]23[24]25 [26 27 ] 28 [ 29 [ 30 |
N [36856]41328]46056]51040]56280[61776]67528]73536]79800[86320]93096[100128[107416]114960
k_|65264]65248]65232[65216]65200|65184[65168[65152|65136/65120[65104] 65088 | 65072 | 65056
Drandom| 0 [ 0 | 0 | 0 [ 0 | 0 |2360]8384 [14664|21200[27992| 35040 | 42344 | 49904
Daoppa |21216]24336]27664]31200|34944[38896|43056|47424[52000|56784|61776| 66976 | 72384 | 78000
Tooppa |21216]24336]27664[31200[34944|38896[43056[47424]52000]56784[61776| 66976 | 72384 | 78000
N [37128]41616]46360|51360|56616]62128|67896|73920/80200|86736 93528/ 100576]107880| 115440

k  |65263(65247|65231|65215(65199|65183|65167|65151|65135/65119|65103| 65087 | 65071 | 65055
Dyandom| 0 [ 0 | 0 | 0 [ 0 | 0 [2729]8769 |15065/21617|28425| 35489 | 42809 | 50385
Dgoppa |21488|24624]27968|31520|35280|39248|43424|47808|52400|57200|62208| 67424 | 72848 | 78480
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Table 9. ¢ =2 and m = 16

I~ [ 3 ] 3 [ 3 ] 3 [ 3 [ 3 [ 37 [ 3 [ 39 [ 40 [ 41 | 42 | 43 |
N [122760[130816]139128]147696[156520[165600[174936[184528]194376]204480[214840[225456[236328
k] 65040 | 65024 [ 65008 [ 64992 | 64976 | 64960 | 64944 | 64928 [ 64912 [ 64896 | 64880 | 64864 | 64848
Diandom| 57720 [ 65792 [ 74120 | 82704 | 91544 [100640|109992[119600]129464|139584|149960|160592|171480
Doppa | 83824 | 89856 | 96624 [103632[110880[118368|126096|134064|142272[150720(159408]168336|177504
Tooppa | 83824 | 89856 [ 96624 [103632]110880]118368]126096]134064]142272[150720|159408|168336]177504
N [123256]131328|139656|148240|157080|166176|175528|185136|195000|205120|215496|226128|237016
k| 65039 | 65023 | 65007 | 64991 | 64975 | 64959 | 64943 | 64927 | 64911 | 64895 | 64879 | 64863 | 64847
Diandom| 58217 [ 66305 | 74649 | 83249 | 92105 [101217|110585(120209]130089|140225|150617|161265|172169
Daoppa | 84320 | 90368 | 97152 [104176|111440]118944|126688|134672/142896|151360|160064/169008|178192

Table 10. ¢ =4 and m =6

[ r [3]4af[5]6]7[8]9J10][11[12]13[14[15]16 ]
N [153]276[435] 630 [ 861 [1128]1431[1770]2145[2556]3003]3486[4005[4560
k__ |4078]4072]4066]4060]4054|4048[4042|4036[4030[4024|4018[4012|4006|4000
Drandom | 0 [ 0 [0 [0 ][0 ]0]0]0]0]0]O0]O0]O0]560
Datternant| 6 | 18 [ 60 | 120|198 | 294 | 408 [ 540 | 690 | 858 [1044|1248[1470[1710
Tatternant | 6 | 18 | 60 [ 120 [ 198|294 [ 408 | 540 | 690 | 858 [1044]1248[1470[1710
Dgoppa | 18 | 60 | 120 [ 198 | 294 [ 408 | 540 | 750 [ 990 [1260[1560[1890|2250[2640
Tooppa | 18 | 60 [120 | 198294 | 408 | 540 [ 750 | 990 [1260]1560]1890[2250(2640
N 171300 | 465 | 666 | 903 |1176|1485]1830(2211|2628|3081|3570|4095|4656
k_ |4077]4071]4065/4059]4053|4047]4041|4035/4029|4023|4017]4011|4005|3999
Dyandom | 0 | 0 | 0 ] 0] 0] 0] 0000|009 |657
Datternant| 6 | 18 | 60 | 120 [ 198 | 294 | 408 [ 540 | 690 | 858 [1044|1248[1470[1710
Daoppa | 36 | 84 | 150 | 234 | 336 | 456 | 594 | 810 [1056|1332]1638]1974|2340[2736

Table 11. g=4 and m =6

[ r J17]18[19]20[21[22[23] 24 [ 25 [ 26 [ 27 [ 28 [ 29 | 30 |
N [5151]5778]6441[7140]7875[8646]9453[10296[11175]12090]13041[14028]15051[16110
k_|3994]3988[3982[3976[3970(3964[3958| 3952 | 3946 | 3940 | 3934 | 3928 | 3922 [ 3916

Drandom |1157[1790(2459[3164[3905[4682[5495| 6344 [ 7229 | 8150 | 9107 [10100[11129]12194

Datternant|2064]2448[2862[3306]3905|4682[5495| 6344 | 7229 [ 8150 | 9107 [10100[11129[12194

Tatternant_|2064]2448]2862(3306[3780[4284[4818] 5382 | 5976 | 6600 | 7254 | 7938 | 8652 | 9396

Dgoppa |3060]3510[3990[4500|5040[5610]6210] 6840 | 7500 | 8190 | 9107 [10100[11129[12194

Teoppa|3060[3510[3990]4500[5040]5610[6210] 6840 | 7500 | 8190 | 8910 | 9660 [10440[11250
N [5253|5886/6555]7260(8001|8778]9591|10440|11325|12246|13203|14196|15225|16290
k. |39933987]3981|3975]3969|3963]3957| 3951 | 3945 | 3939 | 3933 | 3927 | 3921 | 3915

Diandom |1260]1899]2575/3285]4032|4816]5634| 6489 | 7380 | 8307 | 9270 |10269|11304|12375

Datternant|2064]2448(2862|3306|4032|4815|5634| 6489 | 7380 | 8307 | 9270 [10269|11304]12375

Dgoppa [3162]3618|4104]4620|5166]5742|6348 6984 | 7650 | 8346 | 9270 [10270]11305|12375




