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Abstract. Constructing pairing-friendly hyperelliptic curves with small
ρ-values is one of challenges for practicability of pairing-friendly hyper-
elliptic curves. In this paper, we describe a method that extends the
Kawazoe-Takahashi method of generating families of genus 2 ordinary
pairing-friendly hyperelliptic curves by parameterizing the parameters as
polynomials. With this approach we construct genus 2 ordinary pairing-
friendly hyperelliptic curves with 2 < ρ ≤ 3.
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1 Introduction

Efficient implementation of pairing-based protocols such as one round
three way key exchange [20], identity based encryption [5] and digital
signatures [6], depends on what are called pairing-friendly curves. These
are special curves with a large prime order subgroup, so that protocols
can resist the known attacks, and small embedding degree for efficient
finite field computations.

Even though there are many methods for constructing pairing-friendly
elliptic curves [15], there are very few methods that address the problem
of constructing ordinary pairing-friendly hyperelliptic curves of higher
genus. The first explicit construction of ordinary hyperelliptic curve was
shown by David Freeman [12]. Freeman modeled the Cocks-Pinch method
[9] to construct ordinary hyperelliptic curves of genus 2. His algorithm
produced curves over prime fields with prescribed embedding degree k
with ρ-value≈ 8. Kawazoe and Takahashi [22] constructed pairing-friendly
hyperelliptic curves of the form y2 = x5 + ax which produced Jacobian
varieties with ρ-values between 3 and 4. Recently, Freeman and Satoh [16]
proposed algorithms for generating pairing friendly hyperelliptic curves.
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In their construction it was shown that if E is defined over Fp, and A
is abelian variety isogenous over Fpd to a product of two isomorphic el-
liptic curves then the abelian variety A is isogenous over Fp to a prim-
itive subvariety of the Weil restriction of E from Fpd to Fp. Notably,
the Freeman-Satoh algorithm produces hyperelliptic curves with better ρ
value than previously reported. The best for example, achieves a ρ-value
of 20/9 for embedding degree k = 27. However, the ρ-values for ordinary
hyperelliptic curves remain too high for an efficient implementation.

For a curve to be suitable for implementation it should possess de-
sirable properties which include efficient implementation of finite field
arithmetic and the order of the Jacobian having a large prime factor.

In this paper we generate more Kawazoe-Takahashi genus 2 ordinary
pairing-friendly hyperelliptic curves. In particular, we construct curves
of embedding degrees 7, 8, 10, 11, 13, 22, 26, 28, 44 and 52 with ρ-value be-
tween 2 and 3.

We proceed as follows: In Section 2 we present mathematical back-
ground and facts on constructing pairing-friendly hyperelliptic curves
while in Section 3 we discuss the construction of pairing-friendly hyper-
elliptic curves based on the Kawazoe-Takahashi algorithms and in Sec-
tion 4 we present the generalization of Kawazoe-Takahashi algorithms
for constructing pairing-friendly hyperelliptic curves and we give explicit
examples. The paper is concluded in Section 5.

2 Pairing-friendly hyperelliptic curves

2.1 Mathematical background

Let p and r be prime integers. We denote a hyperelliptic curve of genus
g by C and JC denotes the Jacobian variety of dimension g. This is a
quotient group, thus the elements of the Jacobian are not points, they
are equivalence classes of divisors of degree zero under relation of linear
equivalence. The Fp-rational points are denoted by JC(Fp),while JC [r]
represents a prime subgroup of order r. Let χ(t) denote the characteristic
polynomial of the pth power Frobenius Endomorphism of C.

We start by discussing hyperelliptic curves in relation to the construc-
tion of pairing-friendly curves. The following is the definition of hyperel-
liptic curves of genus g [10]:

Definition 1. Let Fp be a finite field and C be a curve of genus g given
by the equation:
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C : y2 + yh(x) = f(x), (1)

where h(x), f(x) ∈ Fp[x] such that deg(f) = 2g + 1 and deg(h) < g. If
f is monic then C is called a hyperelliptic curve of genus g defined over
Fp if no point over the algebraic closure F̄p of Fp satisfies both partial
derivatives 2y + h = 0 and f ′ − h′y = 0.

The condition that no point over the algebraic closure F̄p of Fp satisfies
both partial derivatives 2y + h = 0 and f ′ − h′y = 0 ensures that the
curve is nonsingular.

Points on C, with g ≥ 2, do not form a group. They form what is
known as an involution. The involution of a point P = (x, y) denoted by
ı is defined by ı(P ) = (x,−y − h(x)) such that ı(O) = O. As such we
work with the divisor class group of the curve. The divisor is defined as
follows:

Definition 2. A divisor D is a formal sum of points on C

D = {
∑

P∈C(F̄p)

nPP : nP ∈ Z} (2)

where only a finite number of np are non-zero.

The sum is a formal sum over symbols (P ) and addition is carried out

coefficient-wise. We define deg(D) =
∑

P∈C(F̄p)

nP ∈ Z and the order of D

at P , ordP (D) = nP ∈ Z and the subgroup of degree 0 divisors is denoted
by Div0

C . The support supp(D) of divisor D is the set of points P with
nP 6= 0. The set of all divisors forms additive group under an addition
rule: ∑

P∈C(F̄p)

nPP +
∑

P∈C(F̄p)

mPP =
∑

P∈C(F̄p)

(nP +mP )P (3)

As in the elliptic curve case the embedding degree is defined as follows for
hyperelliptic curves:

Definition 3 ([12]). Let C be an hyperelliptic curve defined over a prime
finite field Fp. Let r be a prime dividing #JC(Fp). The embedding degree of
JC [r] with respect to r is the smallest positive integer k such that r | pk−1
but r - pi − 1 for 0 < i < k.

The definition, as in the elliptic curve case, explains that k is the
smallest positive integer such that the extension field Fpk , contains a
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set of rth roots of unity. For practical purposes curves must have small
embedding degree so that arithmetic in Fpk is feasible.

For an efficient arithmetic implementation the size of the finite field,
Fp, should be as small as possible relative to the the size of the prime
order subgroup r. This is measured by a parameter known as the ρ-value.
In the ideal case the Jacobian varieties have a prime number of points
in which case ρ ≈ 1. If p and r are expressed as polynomials then this
parameter is defined as ρ = g deg (p(x))

deg (r(x)) .
Hence the interest has been to construct curves with these attributes:

Curves with low embedding degrees and small ρ-values and sufficiently
large prime order subgroup.

There are two main cryptographic pairings, the Weil and the Tate.
In both cases the basic idea is to embedded the cryptographic group of
order r into a multiplicative group µr. A non-degenerate, bilinear map
for the Weil pairing is defined as:

wr : JC [r]× JC [r] −→ µr

while a non degenerate, bilinear map for Tate pairing the map is defined
by:

tr : JC(Fpk)[r]× JC(Fpk)/JC(Fpk) −→ (F∗
pk

)/(F∗
pk

)r

When C has genus, g ≤ 1 and embedding degree k with respect to r,
the field Fpk is generated by coordinates of all r-torsion points. But for
higher genus cases Freeman has the following result [13]:

Proposition 1. Let A be abelian variety over a finite field Fp, χ(t) the
characteristic polynomial of the pth power Frobenius map of A. For a
prime number r not dividing p and a positive integer k, suppose the the
following hold:

χ(1) ≡ 0 (mod r) and
Φk(p) ≡ 0 (mod r)

where Φk is the kth cyclotomic polynomial. Then A has embedding degree
k with respect to r. Furthermore, if k > 1 then A(Fpk) contains two
linearly independent r-torsion points.

3 Kawazoe-Takahashi hyperelliptic curves

Kawazoe and Takahashi [22] presented an algorithm which constructed
hyperelliptic curves of the form y2 = x5 + ax with ordinary Jacobians.
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Their construction used two approaches, one was based on the Cocks-
Pinch method [9] of constructing ordinary pairing-friendly elliptic curves
and the other was based on cyclotomic polynomials. Both approaches
were based on the predefined sizes of the Jacobians presented in [11]. In
general the number of points on a hyperelliptic curve, C, is dependent
on the characteristic polynomial, χ(t). For genus 2 hyperelliptic curves a
χ(t) is given by the following equation:

χ(t) = t4 − a1t
3 + a2t

2 − a1pt+ p2 (4)

within a1, a2 ∈ Fp and furthermore | a1 |≤ 4p and | a2 |≤ 6p. It is a well
known fact from Equation 4, that the order of hyperelliptic curve of genus
g is given by:

#JC = χ(1) = 1− a1 + a2 − a1p+ p2. (5)

The Hess-Weil bound puts the order of the curve in a rather small interval
as follows: ⌈

(
√
p− 1)2g

⌉
≤ #JC ≤

⌊
(
√
p+ 1)2g

⌋
(6)

Simple ordinary Jacobian on hyperelliptic curves of the form y2 =
x5 + ax defined over Fp are given in Theorem 1 below:

Theorem 1 ([11],[22]). Let p be an odd prime, C a hyperelliptic curve
defined over Fp by equation y2 = x5 + ax, Jc the Jacobian variety of C
and χ(t) the characteristic polynomial of the pth power Frobenius map of
C. Then the following holds: (In the following c, d are integers such that
p = c2 + 2d2 and c ≡ 1 (mod 4),d ∈ Z (such c and d exists if and only if
p ≡ 1, 3 (mod 8)).

1) If p ≡ 1 mod 8 and a(p−1)/2 ≡ −1 mod p, then χ(t) = t4 − 4dt3 +
8d2t2 − 4dpt+ p2 and 2(−1)(p−1)/8d ≡ (a(p−1)/8 + a3(p−1)/8)c mod p

2) If p ≡ 1 mod 8 and a(p−1)/4 ≡ −1 mod p or if p ≡ 3 mod 8 and
a(p−1)/2 ≡ −1 mod p, then χ(t) = t4 + (4c2 − 2p)t2 + p2

Using the formulae in Theorem 1 Kawazoe and Takahashi developed
a Cocks-Pinch-like method to construct genus 2 ordinary pairing-friendly
hyperelliptic curves of the form y2 = x5 + ax. As expected the curves
generated by the Cocks-Pinch-like method had their ρ-values close to 4.

In addition, they also presented cyclotomic families. With this method
they managed to construct a k = 24 curve with ρ = 3.000. In both cases
the ultimate goal is to find integers c and d such that there is a prime
p = c2 + 2d2 with c ≡ 1 (mod 4) and χ(1) having a large prime factor.
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Algorithms 1 and 2 developed from Theorem 1 construct individual genus
2 pairing-friendly hyperelliptic curves with ρ ≈ 4.

Algorithm 1: Kawazoe-Takahashi Type I pairing-friendly Hyper-
elliptic curves with #JC = 1− 4d+ 8d2 − 4dp+ p2

Input: k ∈ Z.
Output: a Hyperelliptic curve defined by y2 = x5 + ax .

1. Choose r a prime such that lcm(8, k) divides r − 1.
2. Choose ζ a primitive kth root of unity in (Z/rZ)×, ω a positive

integer such that ω2 ≡ −1 mod r and σ a positive integer such that
σ2 ≡ 2 mod r.

3. Compute integers, c, d such that:

• c ≡ (ζ + ω)(σ(ω + 1))−1 mod r and c ≡ 1 mod 4
• d ≡ (ζω + 1)(2(ω + 1))−1 mod r.

4. Compute a prime p = (c2 + 2d2) such that p ≡ 1 mod 8.
5. Find a ∈ Fp such that:

• a(p−1)/2 ≡ −1 mod p and 2(−1)(p−1)/8d ≡ (a(p−1)/8 + a3(p−1)/8)c
mod p.

6. Define a hyperelliptic curve C by y2 = x5 + ax.
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Algorithm 2: Kawazoe-Takahashi Type II pairing-friendly Hyper-
elliptic curves with #JC = 1 + (4c2 − 2p) + p2

Input: k ∈ Z.
Output: a Hyperelliptic curve defined by y2 = x5 + ax.

1. Choose r a prime such that lcm(8, k) divides r − 1.
2. Choose ζ a primitive kth root of unity in (Z/rZ)×, ω positive integer

such that ω2 ≡ −1 mod r and σ a positive integer such that σ2 ≡ 2
mod r.

3. Compute integers, c, d such that:

• c ≡ 2−1(ζ − 1)ω) mod r and c ≡ 1 mod 4
• d ≡ (ζ + 1)(2σ)−1 mod r.

4. Compute a prime p = (c2 + 2d2) such that p ≡ 1, 3 mod 8 and for
some integer δ satisfying δ(p−1)/2 ≡ −1 mod p and

5. Find a ∈ Fp such that:

• a = δ2 when p ≡ 1 mod 8 or a = δ when p ≡ 3 mod 8.

6. Define a hyperelliptic curve C by y2 = x5 + ax.

Remark 1. The key feature in both algorithms is that r is choosen such
that r− 1 is divisible by 8 so that Z/rZ contains both −1 and 2 for both
c and d to satisfy the conditions in the algorithm.

4 Our Generalization

We observe that one can do better if the algorithms are parametrized by
polynomials as in Algorithms 3 and 4 below generalizing Algorithms 1
and 2 respectively. In particular we construct our curves by taking a sim-
ilar approach as described in [21] for constructing pairing friendly elliptic
curves. In general this method uses minimal polynomials rather than a
cyclotomic polynomial in defining the size of the prime order subgroup.
The contentious issue has always been the choice of the right polynomial
for representing the size of the cryptographic group.
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Algorithm 3: Our generalization for finding pairing-friendly Hyper-
elliptic curves with #JC(z) = 1− 4d(z) + 8d(z)2− 4d(z)p(z) + p(z)2

Input: k ∈ Z, ` = lcm(8, k),K ∼= Q[z]/Φ`(z)
Output:C a Hyperelliptic of genus 2 curve defined by y2 = z5 + az

1. Choose an irreducible polynomial r(z) ∈ Z[z].
2. Choose polynomials ζ(z), ω(z) and σ(z) in Q[z] such that ζ(z) is a

primitive kth root of unity, ω(z) =
√
−1 and σ(z) =

√
2 in K.

3. Compute polynomials, c(z), d(z) such that:

• c(z) ≡ (ζ(z) + ω(z))(σ(z)(ω(z) + 1))−1 in Q[z]/r(z).
• d(z) ≡ (ζ(z)ω(z) + 1)(2(ω(z) + 1))−1 in Q[z]/r(z).

4. Compute a polynomial, p(z) = c(z)2 + 2d(z)2.
5. For some z0 ∈ Z such that:

– p(z0) and r(z0) represents primes and p(z0) ≡ 1 mod 8 and
– c(z0), d(z0) represents integers and c(z0) ≡ 1 mod 4.

find a ∈ Fp(z0) satisfying:

• a(p(z0)−1)/2 ≡ −1 mod p(z0) and
• 2(−1)(p(z0)−1)/8d(z0) ≡ (a(p(z0)−1)/8 + a3(p(z0)−1)/8)c(z0) mod
p(z0).

6. Output (p(z0), r(z0), a)
7. Define a hyperelliptic curve C by y2 = x5 + ax.
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Algorithm 4: Our generalization for finding pairing-friendly Hy-
perelliptic curves with #JC(z) = 1 + (4c(z)2 − 2p(z)) + p(z)2

Input: k ∈ Z, ` = lcm(8, k),K ∼= Q[z]/Φ`(z)
Output:C a Hyperelliptic of genus 2 curve defined by
y2 = x5 + ax .

1. Choose an irreducible polynomial r(z) ∈ Z[z].
2. Choose polynomials ζ(z), ω(z) and σ(z) in Q[z] such that ζ(z) is a

primitive kth root of unity, ω(z) =
√
−1 and σ(z) =

√
2 in K.

3. Compute polynomials, c(z), d(z) such that

• c(z) ≡ 2−1(ζ(z)− 1)ω(z)) mod r(z) and c ≡ 1 mod 4
• d(z) ≡ (z(z) + 1)(2σ(z))−1 mod r(z)

4. Compute an irreducible polynomial p(z) = (c(z)2 + 2d(z)2)
5. For some z0 ∈ Z such that:

– p(z0) and r(z0) represents primes and p(z0) ≡ 1, 3 mod 8 and
– c(z0), d(z0) represents integers and c(z0) ≡ 1 mod 4.

6. Find a ∈ Fp(z0) such that:

• a = δ2 when p(z0) ≡ 1 mod 8 or
• a = δ when p(z0) ≡ 3 mod 8.

7. Output (p(z0), r(z0), a).
8. Define a hyperelliptic curve C by y2 = x5 + ax.

With this approach, apart from reconstructing the Kawazoe-Takahashi
genus 2 curves, we discover new families of pairing-friendly hyperelliptic
curve of embedding degree k = 7, 8, 10, 11, 13, 22, 26, 28, 44 and 52 with
2 < ρ ≤ 3.

The success depends on the the choice of the number field, K. Thus,
in the initial step we set K to be isomorphic to a cyclotomic field Q(ζ`) for
some ` = lcm(8, k). The condition on ` ensures Q[z]/r(z) contains square
roots of −1 and 2. We take the approach as described in [21] for construct-
ing pairing-friendly elliptic curves for defining the irreducible polynomial
r(z). Even though this method is time consuming as it involves search-
ing for a right element, it mostly gives a favorable irreducible polynomial
r(z), which defines the size of the prime order subgroup . Here we find a
minimal polynomial of an element γ ∈ Q(ζ`) and call it r(z), where γ is
not in any proper subfield of Q(ζ`). Since γ is in no proper subfield, then
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we have Q(ζ`) = Q(γ), where the degree of Q(γ) over Q is ϕ(`), where
ϕ(.) is Euler totient function.

However, with most values of k > 10 which are not multiples of 8, the
degree of r(z) tends to be large. As observed in [15], for such curves this
limits the number of usable primes. The current usable size of r is in the
range [2160, 2512].

4.1 The algorithm explained

Step 1: Set up This involves initializing the algorithm by setting Q(ζ`)
defined as Q[z]/Φ`(z). The Choice of this field ensures that it contains
ζk and

√
−1 and

√
2. The ideal choice, in such a case, is Q(ζ8, ζk) =

Q(ζlcm(k,8)).

Step 2: Representing ζk,
√
−1 and

√
2 We search for a favorable

element, γ ∈ Q(ζ`) such that the minimal polynomial of γ has degree
ϕ(`) and we call this r(z). We redefine our field to Q[z]/r(z). In this field
we find a polynomial that represents ζk,

√
−1 and

√
2.

For ζk there are ϕ(k) numbers of primitive kth roots of unity. In fact
if gcd(α, k) = 1 then ζαk is also primitive kth root of unity. To find the
polynomial representation of

√
−1 and

√
2 in Q[z]/r(z) we find the solu-

tions of the polynomials z2 + 1 and z2− 2 in the number field isomorphic
to Q[z]/r(z) respectively.

Steps 3,4,5: Finding the family All computations in the algorithm
are done modulo r(z) except when computing p(z). It is likely that p(z) ∈
Q[z]. But since we need p(z) and r(z) to represent primes, for a favourable
set of r(z), p(z), c(z), d(z) we use the following conjecture:

Conjecture 1. Let f(z) ∈ Q[z]. f(z) represents primes if the following
conditions are satisfied:

– f(z) represents integers i.e. for some z0 ∈ Z, f(z0) ∈ Z.

– f(z) is irreducible polynomial with a positive leading coefficient.

– for some z0, z1 ∈ Z, gcd(f(z0), f(z1)) = 1.

Hence for a potential set of parameters, we check for a modular class
with both r(z) and p(z) represent primes and p(z) ≡ 1, 3 mod 8 and
furthermore c(z) ≡ 1 mod 4.
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4.2 New curves

We now present a series of new curves constructed using the approach
described above. Proving the theorems is simple considering γ has mini-
mal polynomial r(z). We give a proof of Theorem 2. For the other curves
the proofs are similar.

We start by constructing a curve of embedding degree, k = 7. It is
interesting to note that here we get a curve with ρ = 2.667.

Theorem 2. Let k = 7, ` = 56. Let γ = ζ` + 1 ∈ Q(ζ`) and define
polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z24 − 24z23 + 276z22 − 2024z21 + 10625z20 − 42484z19

+ 134406z18 − 344964z17 + 730627z16 − 1292016z15 + 1922616z14

− 2419184z13 + 2580005z12 − 2332540z11 + 1784442z10 − 1150764z9

+ 621877z8 − 279240z7 + 102948z6 − 30632z5 + 7175z4 − 1276z3 + 162z2 − 12z + 1

p(z) = (z32 − 32z31 + 494z30 − 4900z29 + 35091z28 − 193284z27 +

851760z26 − 3084120z25 + 9351225z24 − 24075480z23 + 53183130z22 −
101594220z21 + 168810915z20 − 245025900z19 + 311572260z18 −
347677200z17 + 340656803z16 − 292929968z15 + 220707810z14 − 145300540z13 +

83242705z12 − 41279004z11 + 17609384z10 − 6432920z9 + 2023515z8

− 569816z7 + 159446z6 − 49588z5 + 16186z4 − 4600z3 + 968z2 − 128z + 8)/8

c(z) = (−z9 + 9z8 − 37z7 + 91z6 − 147z5 + 161z4 − 119z3 + 57z2 − 16z + 2)/2

d(z) = (z16 − 16z15 + 119z14 − 546z13 + 1729z12 − 4004z11 + 7007z10

− 9438z9 + 9867z8 − 8008z7 + 5005z6 − 2366z5 + 819z4 − 196z3 + 28z2)/4

Then (r(2z)/8, p(2z)) constructs a complete ordinary pairing-friendly genus 2 hyperel-
liptic curves with embedding degree 7. The ρ-value of this family is 2.667.

Proof. Since ζ` + 1 ∈ Q(ζ`) has minimal polynomial r(z). We apply Algorithm 3
by working in Q[z]/r(z). We choose ζ7 7→ (z − 1)16,

√
−1 7→ (z − 1)14 and

√
2 7→

z(z−1)7(z−2)(z6−7z5+21z4−35z3+35z2−21z+7)(z6−5z5+11z4−13z3+9z2−3z+1).
Applying Algorithm 3 we find p(z) as stated. Computations with PariGP [31], show that
both r(2z)/8 and p(2z) represents primes and c(2z) represents integers such that it is
equivalent to 1 modulo 4. Furthermore, by Algorithm 3 the Jacobian of our hypothetical
curve has a large prime order subgroup of order r(z) and embedding degree, k = 7.
(Kawazoe-Takahashi Type I curves have their Jacobian equal to #Jc(z) = 1− 4d(z) +
8d(z)2 − 4d(z)p(z) + p(z)2).

We now give an example of a 254- bit prime subgroup that is con-
structed using the parameters in Theorem 2 .

Example 1.

r = 213748555325666652890713665865251428761742681841141544849244\
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05425230130090001

p = 741504661189142770769829861344257948821797401549707353154351\
08095481642765042445975666095781797666897

c = −21022477149693687350103984375

d = 192549300334893812717931530445605096860437011144944

a = 3

Hence our genus 2 pairing-friendly hyperelliptic equation is C : y2 =
x5 + 3x whose ρ = 2.646 and embedding degree is 7

The next curve is of embedding degree k = 8. It is shown in [34] that
curves of the form C : y5+ax and embedding degree 8 admits higher order
twists. In particular a degree 8 twist has a curve of the form C ′ : y5 +aκx
by (x, y) 7−→ (κ

1
4x, κ

5
8 y), where κ ∈ Fp is not ith power residue in Fp,

i ∈ {1, 2, 4, 8} [34].
Hence for this curve this means that it is possible to have both inputs

to a pairing defined over a base field. The previous record on this curve
was ρ ≈ 4.000. In Theorem 3 below we outline the parameters that defines
the hyperelliptic curves of embedding degree 8 with ρ ≈ 3.000.

Theorem 3. Let k = ` = 8. Let γ = ζ3
8 + ζ2

8 + ζ8 + 3 ∈ Q(ζ8) and define
polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z4 − 12z3 + 60z2 − 144z + 136

p(z) = (11z6 − 188z5 + 1460z4 − 6464z3 + 17080z2 − 25408z + 16448)/64

c(z) = (3z3 − 26z2 + 92z − 120)/8

d(z) = (−z3 + 8z2 − 26z + 32)/8

Then (r(32z)/8, p(32z)) constructs a complete ordinary pairing-friendly genus 2 hyper-
elliptic curves with embedding degree 8. The ρ-value of this family is 3.000.

This type of a curve is recommended at the 128 bit security level,
see Table 3.1 in [1]. Below we give an example obtained using the above
parameters.

Example 2.

r = 131072000000009898508288000280324362739203528331792090742477643363528725\
893137(257bits)

p = 1845493760000209056547471369867422517667678794745045604182525326695069336\
4290

4885116183766157641277112712983172884737

c = 12288000000000695988992000013140209336688082695322003440625

d = −4096000000000231996416000004380073001064027565137751569916

a = 3
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Hence our genus 2 pairing-friendly hyperelliptic equation is C : y2 = x5 + 3x with
ρ = 3.012 of embedding degree 8

Theorem 4. Let k = 10, ` = 40. Let γ = ζ10 + 1 ∈ Q(ζ`) and
define polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z16 − 16z15 + 120z14 − 560z13 + 1819z12 − 4356z11 + 7942z10 − 11220z9 +

12376z8 − 10656z7 + 7112z6 − 3632z5 + 1394z4 − 392z3 + 76z2 − 8z + 1

p(z) = (z24 − 24z23 + 274z22 − 1980z21 + 10165z20 − 39444z19 + 120156z18 −
294576z17 + 591090z16 − 981920z15 + 1360476z14 − 1578824z13 +

1536842z12 − 1253336z11 + 853248z10 − 482384z9 + 225861z8 − 88872z7 +

31522z6 − 11676z5 + 4802z4 − 1848z3 + 536z2 − 96z + 8)/8

c(z) = (−z7 + 7z6 − 22z5 + 40z4 − 45z3 + 31z2 − 12z + 2)/2

d(z) = (z12 − 12z11 + 65z10 − 210z9 + 450z8 − 672z7 + 714z6 − 540z5 + 285z4 −
100z3 + 20z2)/4

Then (r(4z), p(4z)) constructs a complete ordinary pairing-friendly genus 2 hyperellip-
tic curves with embedding degree 10. The ρ-value of this family is 3.000.

Below is a curve of embedding degree 10 with a prime subgroup of size
249 bits. The ρ-value of such curve is 3.036.

Example 3.

r = 47457491054103014068159312355967539444301108619814810948279793113214331\
8041

p = 33926804768354822744273489890750715219080248431481912549939341080217504\
4822928270159666053912399467210953623356417

c = −1189724159035338550797061406711295

d = 411866512163557810321097788276510052727469786602189684736

a = 3

Hence our genus 2 pairing-friendly hyperelliptic equation is C : y2 = x5 + 3x whose
embedding degree is 10.

Theorem 5. Let k = 28, ` = 56. Let γ = ζ28 + 1 ∈ Q(ζ`) and
define polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z24 − 24z23 + 276z22 − 2024z21 + 10625z20 − 42484z19 +

134406z18 − 344964z17 + 730627z16 − 1292016z15 + 1922616z14 −
2419184z13 + 2580005z12 − 2332540z11 + 1784442z10 − 1150764z9 + 621877z8 −
279240z7 + 102948z6 − 30632z5 + 7175z4 − 1276z3 + 162z2 − 12z + 1

p(z) = (z36 − 36z35 + 630z34 − 7140z33 + 58903z32 − 376928z31 +

1946800z30 − 8337760z29 + 30188421z28 − 93740556z27 + 252374850z26 −
594076860z25 + 1230661575z24 − 2254790280z23 + 3667649460z22 −
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5311037640z21 + 6859394535z20 − 7909656300z19 + 8145387218z18 −
7487525484z17 + 613613430z16 − 4473905808z15 + 2893567080z14 − 1653553104z13 +

830662287z12 − 364485108z11 + 138635550z10 − 45341540z9 + 12681910z8 −
3054608z7 + 660688z6 − 141120z5 + 32008z4 − 7072z3 + 1256z2 − 144z + 8)/8

c(z) = (−z11 + 11z10 − 55z9 + 165z8 − 331z7 + 469z6 − 483z5 + 365z4 − 200z3 +

76z2 − 18z + 2)/2

d(z) = (z18 − 18z17 + 153z16 − 816z15 + 3059z14 − 8554z13 + 18473z12 − 31460z11

+42757z10 − 46618z9 + 40755z8 − 28392z7 + 15561z6 − 6566z5 + 2058z4 −
448z3 + 56z2)/4

Then (r(2z), p(2z)) constructs a complete ordinary pairing-friendly genus 2 hyperellip-
tic curves with embedding degree 28. The ρ-value of this family is ρ ≈ 3.000.

Here is a curve with a 255 bit prime subgroup constructed from the
above parameters:

Example 4.

r = 42491960053938594435112219237666767431311006357122111696690362883228500208481

p = 10948891695013050372882471239448013664796533168415352392805683361930266321671951\
84728514564519636647060505191263121

c = −66111539648877169993055611952337239

d = 739894982244542944193343853775218465253390470331838998400

a = 23

Once again our genus 2 pairing-friendly hyperelliptic equation is C : y2 = x5 + 23x
whose embedding degree is 28 with ρ = 2.972.

The following family is reported in [22]. One can use the following
parameters to construct a Kawazoe-Takahashi Type II pairing-friendly
hyperelliptic curve of embedding degree k = 24 with ρ ≈ 3.000.

Theorem 6. Let k = ` = 24. Let γ = ζ24 + 1 ∈ Q(ζ24) and define
polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z8 − 8z7 + 28z6 − 56z5 + 69z4 − 52z3 + 22z2 − 4z + 1

p(z) = (2z12 − 28z11 + 179z10 − 688z9 + 1766z8 − 3188z7 +

4155z6 − 3948z5 + 2724z4 − 1336z3 + 443z2 − 88z + 8)/8

c(z) = (−z6 + 7z5 − 20z4 + 30z3 − 25z2 + 11z − 2)/2

d(z) = (z5 − 4z4 + 5z3 − 2z2 − z)/4

Then (r(8z + 4)/8, p(8z + 4)) constructs a complete ordinary pairing-friendly genus 2
hyperelliptic curves with embedding degree 24. The ρ-value of this family is 3.00.

We now present pairing-friendly hyperelliptic curves of embedding k
whose polynomial that defines the the size of the prime subgroup deg r(z)
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has its degree greater or equal to 40. Currently these curves, as already
pointed out, are only of theoretical interest.

Table 1. Families of curves, whose deg(r(z)) > 40

k γ Degree(r(z)) Degree(p(z)) ρ-value Modular class

11 ζ11 40 48 2.400 3 mod 4

13 ζ13 + 1 48 64 2.667 4 mod 8

22 ζ22 + 1 40 56 2.800 0 mod 4

26 ζ26 48 56 2.333 3 mod 4

44 ζ44 + 1 48 64 2.600 0 mod 4

52 ζ52 + 1 48 60 2.500 0 mod 4

5 Conclusion

We have presented an algorithm that produces more Kawazoe-Takahashi
type of genus 2 pairing friendly hyperelliptic curves. In addition we have
presented new curves with better ρ-values. A problem with some of the
reported curves is that the degree of the polynomial r(z), which defines
the prime order subgroup, is too large and hence a very small number, if
any, of usable curves could be found. Table 2 summarises the the curves
reported in this paper. Curves with 1 ≤ ρ ≤ 2 remain elusive.

Table 2. Families of curves, k < 60, with 2.000 < ρ ≤ 3.000

k Degree(r(z)) Degree(p(z)) ρ-value

7 24 32 2.667

8 4 6 3.000

10 16 24 3.000

11 40 48 2.400

13 48 64 2.667

22 40 56 2.800

24 8 12 3.000

26 48 56 2.333

28 24 36 3.000

44 48 64 2.600

52 48 60 2.500
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Appendix A: Magma Code

Here we include a basic magma code for computing Tate pairing on Hy-
perelliptic curves[1]. The implementation was done on a pairing-friendly
hyperelliptic curve of embedding degree k = 8.
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Listing 1. Magma code for Tate pairing computation on k=8 curve

k:=8;
p:=0x4AF0A9F269200645D6FBDC4F94A975A9F5EDD683B630AF39470343C\\
6FE7825680D8B8958646620262E34031F8A66C2901;

r:=0x121C81F7DD4528470D24FCE166AD379A5BEDA4C80FF4C2CABAE72AFA\\
3C23A1011;

c:=12288000000000695988992000013140209336688082695322003440625;
d:=-4096000000000231996416000004380073001064027565137751569916;
zk:=8192000000000463992320000008760126669120055130093000601585;

Z<x> := PolynomialRing(GF(p));
f:= xˆ5+3*x;
h:=0;
C:=HyperellipticCurve(f);
g:=Genus(C);
Jc := Jacobian(C);
Jc2 := BaseExtend(Jc,8);

IdJc:=Identity(Jc);
ordJc:=1-4*d+8*dˆ2-4*d*p+pˆ2;
cofactor:= ordJc div r;
P:=Random(Jc)*cofactor;
Q:=Random(Jc2);

//Cantor’s Algorithm
ReducedDivisor:=function(L,K,M)
u1:=L[1];
v1:=L[2];
u2:=K[1];
v2:=K[2];

d1,e1,e2:=ExtendedGreatestCommonDivisor(u1,u2);
d,c1,c2:=ExtendedGreatestCommonDivisor(d1,v1+v2+h);

h1tilda:= d mod M[1];
h2tilda:= 1;
h3:= 1;

s1:=c1*e1;
s2:=c1*e2;
s3:=c2;
u:=(u1*u2) div dˆ2;
v:=(((s1*u1*v2) +(s2*u2*v1)+s3*(v1*v2+f))div d) mod u;

repeat;
uprime:=(f-v*h-vˆ2) div u;
vprime:=(-h-v) mod uprime;
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h1tilda:= h1tilda*(M[2]-v) mod M[1];
h2tilda:= h2tilda*uprime mod M[1];

if Degree(v) gt g then
h3:=-LeadingCoefficient(v)*h3;

end if;
u:=uprime;
v:=vprime;

until Degree(u) le g;
u:=1/LeadingCoefficient(u)*u;
ReducedD:=[u,v];
dd:=d;
return ReducedD, h1tilda,h2tilda,h3;
end function;

//Miller’s Algorithm
HyperTatePairing:= function(D1,D2,r)
D:=D1;
f1:=1;
f2:=1;
f3:=1;
i:=Floor(Log(2,r))-1;
while i ge 0 do

f1:=f1ˆ2 mod D2[1];
f2:=f2ˆ2 mod D2[1];
f3:=f3ˆ2;
D,h1,h2,h3:=ReducedDivisor(D,D,D2);
f1:=f1* h1 mod D2[1];
f2:=f2*h2 mod D2[1];
f3:=f3*h3;
si:=Intseq(r,2);

if si[i+1] eq 1 then
D,h1,h2,h3:=ReducedDivisor(D,D1,D2);
f1:=f1* h1 mod D2[1];
f2:=f2*h2 mod D2[1];
f3:=f3*h3;

end if;
i:=i-1;

end while;
pairing_value:=Resultant(D2[1],f1) / (f3ˆ(Degree(D2[1]))*Resultant(

D2[1],f2));
return pairing_valueˆ((pˆk-1) div r);
end function;


