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Abstract. In this paper we analyze the use of affine coordinates for pairing computation. We
observe that in many practical settings, for example when implementing optimal ate pairings in
high security levels, affine coordinates are faster than using the best currently known formulas
for projective coordinates. This observation relies on two known techniques for speeding up field
inversions which we analyze in the context of pairing computation. We give detailed performance
numbers for a pairing implementation based on these ideas, including timings for base field and
extension field arithmetic with relative ratios for inversion-to-multiplication costs, timings for
pairings in both affine and projective coordinates, and average timings for multiple pairings and
products of pairings.
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1 Introduction

Cryptographic pairing computations are required for a wide variety of new cryptographic
protocols and applications. All cryptographic pairings currently used in practice are based on
pairings on elliptic curves, requiring both elliptic curve operations and function computation
and evaluation to compute the pairing of two points on an elliptic curve [32]. For a given
security level, it is important to optimize efficiency of the pairing computation, and much
work has been done on this topic (see for example [6,7,5,26,31,40,38]).

Elliptic curve operations can be implemented using various coordinate systems, such as
affine or different variants of projective coordinates (for an overview see [10]). It has long
been the case that many implementers have found affine coordinates slow for elliptic curve
operations because of the relatively high costs of inversions and the relatively fast modular
multiplication that can be achieved for special moduli such as generalized Mersenne primes.
Thus projective coordinates were also suggested for pairing implementations [29,37], and very
efficient explicit formulas were found for various parameter choices [1,14]. So recently there
has been a bias in the literature towards the use of projective coordinates for pairings as well.

In this paper we analyze the use of affine coordinates for pairing computation in different
settings. We propose two known techniques for speeding up field inversions and analyze them
in the context of pairing computation. Based on these, we find that in many practical settings,
for example when implementing one of the optimal pairings based on the ate pairing [26] in
high security levels, affine coordinates will be much faster than projective coordinates.

The first technique we investigate is computing inverses in extension fields by using towers
of extension fields and successively reducing inverse computation to subfield computations
via the norm map. We show that this technique drastically reduces the ratio of the cost of
inversions to multiplications in extension fields. Thus when computing the ate pairing, where
most computations take place in a potentially large extension field, the advantage of projective
coordinates is eventually erased as the degree of the extension gets large. This happens for
example when implementing pairings on curves for higher security levels such as 256 bits, or
when special high-degree twists can not be used to reduce the size of the extension field.
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The second technique we investigate is the use of inversion-sharing for pairing compu-
tations. Inversion-sharing is a standard trick whenever several inversions are computed at
once. As the number of elements to be inverted grows, the average ratio of inversion-to-
multiplication costs approaches 3. Inversion-sharing can be used in a single pairing computa-
tion if the binary expansion is read from right-to-left instead of left-to-right. This approach
also has the advantage that it can be easily parallelized to take advantage of multi-core pro-
cessors. Inversion-sharing for pairing computation can also be advantageous for computing
multiple pairings or for computing products of pairings, as was suggested by Scott [37] and
analyzed by Granger and Smart [21].

Ironically, although the two techniques we investigate can be used simultaneously, it is
often not necessary to do so, since either technique alone can reduce the inversion to multipli-
cation ratio. Either technique alone makes affine coordinates faster than projective coordinates
in some settings.

To illustrate these techniques, we give detailed performance numbers for a pairing im-
plementation based on these ideas. This includes timings for base field and extension field
arithmetic with relative ratios for inversion-to-multiplication costs and timings for pairings
in both affine and projective coordinates, as well as average timings for multiple pairings and
products of pairings. In our implementation, affine coordinates are faster than projective co-
ordinates even for Barreto-Naehrig curves [8] with a high-degree twist at the lowest security
levels. However, we expect that for other implementations, the benefits of affine coordinates
would only be realized for higher security levels or for curves without high-degree twists.

The paper is organized as follows: Section 2 provides the necessary background on the
ate pairing and discusses the costs of doubling and addition steps in Miller’s algorithm. In
Section 3, we show how variants of the ate pairing can benefit from using affine coordinates
due to the fact that the inversion-to-multiplication ratio in an extension field is much smaller
than in the base field. Section 4 is dedicated to revisiting the well-known inversion-sharing
trick and its application in pairing computation. Finally, Section 5 gives benchmarking results
for our pairing implementation based on the Microsoft Research bignum library.

2 Pairing computation

A cryptographic pairing is a non-degenerate, efficiently computable, bilinear map. Practical
instantiations are defined on elliptic-curve point groups; therefore we begin by giving basic
background on elliptic curves.

Let p > 3 be a prime and Fq be a finite field of characteristic p. Let E be an elliptic curve
defined over Fq, given by a short Weierstrass equation E : y2 = x3+ax+b, where a, b ∈ Fq and
4a3 +27b2 6= 0. We denote by O the point at infinity on E. Let n = #E(Fq) = q+1− t, where
t is called the trace of Frobenius, which fulfills |t| ≤ 2

√
q. We fix a prime r with r | n. Let k

be the embedding degree of E with respect to r, i. e. k is the smallest positive integer with
r | qk − 1. This means that F

∗

qk
contains the group µr of r-th roots of unity. The embedding

degree of E is an important parameter, since it determines the field extensions over which the
groups that are involved in pairing computation are defined.

For m ∈ Z, let [m] be the multiplication-by-m map. The kernel of [m] is the set of m-
torsion points on E; it is denoted by E[m] and we write E(Fqℓ)[m] for the set of Fqℓ-rational
m-torsion points (ℓ > 0). If k > 1, which we assume from now on, we have E[r] ⊆ E(Fqk),
i.e. all r-torsion points are defined over Fqk .



An Analysis of Affine Coordinates for Pairing Computation 3

Most pairings that are suitable for use in practical cryptographic applications are derived
from the Tate pairing, which is a map E(Fqk)[r]×E(Fqk)/rE(Fqk) → F

∗

qk
/(F∗

qk
)r (for details

see [16,17]). In this paper, we focus on the ate pairing [26], variants of which are often the
most efficient choices for implementation. The ate pairing is a certain power of the reduced
Tate pairing and is defined on special subgroups of E[r].

2.1 The ate pairing

Given m ∈ Z and P ∈ E[r], let fm,P be a rational function on E with divisor (fm,P ) =
m(P )−([m]P )−(m−1)(O). Let φq be the q-power Frobenius endomorphism on E. Define two
groups of prime order r by G1 = E[r]∩ker(φq− [1]) = E(Fq)[r] and G2 = E[r]∩ker(φq− [q]) ⊆
E(Fqk)[r]. The group G1 contains only points defined over the base field Fq, while the points
in G2 are minimally defined over Fqk . The ate pairing is defined as

aT : G2 ×G1 → µr, (Q,P ) 7→ fT,Q(P )(q
k
−1)/r, (1)

where T = t − 1. The group G2 has a nice representation by an isomorphic group of points
on a twist E′ of E, which is a curve that is isomorphic to E. Here, we are interested in those
twists which are defined over a subfield of Fqk such that the twisting isomorphism is defined
over Fqk . Such a twist E′ of E is given by an equation E′ : y2 = x3 + (a/α4)x + (b/α6) for
some α ∈ Fqk with isomorphism ψ : E′ → E, (x, y) 7→ (α2x, α3y). If ψ is minimally defined
over Fqk and E′ is minimally defined over Fqk/d for a d | k, then we say that E′ is a twist of
degree d. If a = 0, let d0 = 4; if b = 0, let d0 = 6, and let d0 = 2 otherwise. For d = gcd(k, d0)
there exists exactly one twist E′ of E of degree d for which r | #E′(Fqk/d) (see [26]). Define
G′

2 = E′(Fqk/d)[r]. Then the map ψ is a group isomorphism G′

2 → G2 and we can represent
all elements in G2 by the corresponding preimages in G′

2. Likewise, all arithmetic that needs
to be done in G2 can be carried out in G′

2. The advantage of this is that points in G′

2 are
defined over a smaller field than those in G2. Using G′

2, we may now view the ate pairing as

a map G′

2 ×G1 → µr, (Q′, P ) 7→ fT,ψ(Q′)(P )(q
k
−1)/r.

The computation of aT (Q′, P ) is done in two parts: first the evaluation of the function
fT,ψ(Q′) at P , and second the so-called final exponentiation to the power (qk − 1)/r. The
first part is done with Miller’s algorithm [32]. We describe it for even embedding degree in
Algorithm 1 which shows how to compute fm,ψ(Q′)(P ) for some integer m > 0. We denote the
function given by the line through two points R1 and R2 on E by lR1,R2. If R1 = R2, then
the line is given by the tangent to the curve passing through R1. Throughout this paper, we
assume that k is even so that denominator elimination techniques can be used (see [6,7]).

Miller’s algorithm builds up the function value fm,ψ(Q′)(P ) in a square-and-multiply-like
fashion from line function values along a scalar multiplication computing [m]Q′ (which is the
value of R′ after the Miller loop). Step 3 is called a doubling step, it consists of squaring the
intermediate value f ∈ Fqk , multiplying it with the function value given by the tangent to E
in R = ψ(R′), and doubling the point R′. Similarly, an addition step is computed in Step 5
of Algorithm 1.

The final exponentiation in (1) is common to all pairings on elliptic curves and represents
a large part of the computation. It maps classes in F

∗

qk
/(F∗

qk
)r to unique representatives in

µr. Given the fixed special exponent, there are many techniques that improve its efficiency
significantly over a plain exponentiation (see for example [38] and [20]).

The most efficient variants of the ate pairing are so-called optimal ate pairings [40]. They
are optimal in the sense that they minimize the size of m and with that the number of



4 Kristin Lauter, Peter L. Montgomery, and Michael Naehrig

Algorithm 1 Miller’s algorithm for even k and ate-like pairings
Input: Q′ ∈ G′

2, P ∈ G1, m = (1, ml−2, . . . , m0)2
Output: fm,ψ(Q′)(P ) representing a class in F

∗

qk/(F∗

qk )r

1: R′ ← Q′, f ← 1
2: for i from ℓ− 1 downto 0 do

3: f ← f2 · lψ(R′),ψ(R′)(P ), R′ ← [2]R′

4: if (mi = 1) then

5: f ← f · lψ(R′),ψ(Q′)(P ), R′ ← R′ + Q′

6: end if

7: end for

8: return f

iterations in Miller’s algorithm to log(r)/ϕ(k), where ϕ is the Euler totient function. Note
that throughout this paper, log denotes the logarithm to base 2. For these minimal values of
m, the function fm,ψ(Q′) alone usually does not give a bilinear map. To get a pairing, these
functions need to be adjusted by multiplying with a small number of line function values; for
details we refer to [40].

Secure and efficient implementation of pairings can be done only with a careful choice of
the underlying elliptic curve. The curve needs to be pairing-friendly, i.e. the embedding degree
k needs to be small, while r should be larger than

√
q. A survey of methods to construct such

curves can be found in [18]. For security, the parameters need to have certain minimal sizes
which lead to optimal values for the embedding degree k for specific security levels (see for
example the keysize recommendations in [39] and [4]).

Furthermore, it is advantageous to choose curves with twists of degree 4 or 6, so-called high-
degree twists, since this results in higher efficiency due to the more compact representation
of the group G2. To achieve security levels of 128 bits or higher, embedding degrees of 12 and
larger are optimal. Because the degree of the twist E′ is at most 6, this means that when
computing ate-like pairings at such security levels, all field arithmetic in the doubling and
addition steps in Miller’s algorithm takes place over a proper extension field of Fq.

2.2 Costs for doubling and addition steps

In this section, we take a closer look at the costs of the doubling and addition steps in Miller’s
algorithm. We begin by describing the evaluation of line functions in affine coordinates, i.e. a
point P on E, P 6= O, is given by two affine coordinates as P = (xP , yP ). Let R1, R2, S ∈ E
with R1 6= −R2 and R1, R2 6= O. Then the function of the line through R1 and R2 (tangent
to E if R1 = R2) evaluated at S is given by

lR1,R2(S) = yS − yR1 − λ(xS − xR1),

where λ = (3x2
R1

+ a)/2yR1 if R1 = R2 and λ = (yR2 − yR1)/(xR2 − xR1) otherwise. The
value λ is also used to compute R3 = R1 + R2 on E by xR3 = λ2 − xR1 − xR2 and yR3 =
λ(xR1 − xR3) − yR1. If R1 = −R2, then we have xR1 = xR2 and lR1,R2(S) = xS − xR1 .

Before analyzing the costs for doubling and addition steps, we introduce notation for field
arithmetic costs. Let Fqm be an extension of degree m of Fq for m ≥ 1. We denote by Mqm ,
Sqm , Iqm, addqm , subqm , and negqm the costs for multiplication, squaring, inversion, addition,
subtraction, and negation in the field Fqm. When we omit the indices in all of the above, this
indicates that we are dealing with arithmetic in a fixed field and field extensions do not play
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a role. The costs for a multiplication by a constant ω ∈ Fqm are denoted by M(ω). We assume
the same costs for addition of a constant as for a general addition.

Let notation be as described in Section 2.1, in particular we use a twist E′ of degree d to
represent the group G2 by the group G′

2. Let e = k/d, then G′

2 = E′(Fqe)[r]. Let P ∈ G1,
R′, Q′ ∈ G′

2 and let R = ψ(R′), Q = ψ(Q′). Furthermore, we assume that the field extension
Fqk is given by Fqk = Fqe(α) where α ∈ Fqk is the same element as the one defining the twist

E′, and we have αd = ω ∈ Fqe . This means that each element in Fqk is given by a polynomial
of degree d− 1 in α with coefficients in Fqe and the twisting isomorphism ψ maps (x′, y′) to
(α2x′, α3y′).

Doubling steps in affine coordinates: We need to compute

lR,R(P ) = yP − α3yR′ − λ(xP − α2xR′) = yP − αλ′xP + α3(λ′xR′ − yR′)

and R′

3 = [2]R′, where xR′

3
= λ′2 − 2xR′ and yR′

3
= λ′(xR′ − xR′

3
) − yR′ . We have λ′ =

(3x2
R′ + a/α4)/2yR′ and λ = (3x2

R + a)/2yR = αλ′. Note that [2]R′ 6= O in the pairing
computation.

The slope λ′ can be computed with Iqe +Mqe +Sqe + 4addqe , assuming that we compute
3x2

R′ and 2yR′ by additions. To compute the double of R′ from the slope λ′, we need at most
Mqe + Sqe + 4subqe . We obtain the line function value with a cost of eMq to compute λ′xP
and Mqe + subqe + negqe for d ∈ {4, 6}. When d = 2, note that α2 = ω ∈ Fqe and thus we
need (k/2)Mq + Mqk/2 + M(ω) + 2subqk/2 for the line.

We summarize the operation counts in Table 1. We restrict to even embedding degree and
4 | k for b = 0 as well as to 6 | k for a = 0 because these cases allow using the maximal-degree
twists, which are likely to be used in practice. We compare the affine counts to costs of the
fastest known formulas using projective coordinates. They are taken from [27] and [14]; see
these papers for explanations of the coordinates used. For an overview of the most efficient
explicit formulas known for elliptic-curve doubling and addition in different coordinates see
the EFD [10]. We transfer the formulas in [27] to the ate pairing using the trick in [14] where
the ate pairing is computed entirely on the twist. In this setting we assume the field extensions
are constructed in a way that favors the representation of line function values. This means
that the twist isomorphism can be different from the one described in this paper. Still, in the
case d = 2, the evaluation of the line function can not be done in k base field multiplications;
instead 2 multiplications in Fqk/2 need to be done (see also the discussion in the respective
sections of [14]). Furthermore, we assume that all precomputations are done as described in
the above papers and that small multiples are computed by additions.

DBL twist deg coordinates Mq Iqe Mqe Sqe M( · ) addqe subqe negqe

a 6= 0, b 6= 0
d = 2

affine k/2 1 3 2 1M(ω) 4 6 −
2 | k Jacobian [27] − − 3 11 1M(a/ω2) 6 17 −

b = 0
d = 4

affine k/4 1 3 2 − 4 5 1
4 | k W(1,2) [14] k/2 − 2 8 1M(a/ω) 9 10 1

a = 0
d = 6

affine k/6 1 3 2 − 4 5 1
6 | k projective [14] k/3 − 2 7 1M(b/ω) 11 10 1

Table 1. Operation counts for the doubling step in the ate-like Miller loop omitting 1Sqk + 1Mqk .
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Addition steps in affine coordinates: The line function value has the same shape as for
doubling steps. Note that we can replace R′ by Q′ in the line and compute

lR,Q(P ) = yP − α3yQ′ − λ(xP − α2xQ′) = yP − αλ′xP + α3(λ′xQ′ − yQ′)

and R′

3 = R′ + Q′, where xR′

3
= λ′2 − xR′ − xQ′ and yR′

3
= λ′(xR′ − xR′

3
) − yR′ . The slope

λ′ now is different, namely λ′ = (yR′ − yQ′)/(xR′ − xQ′). Note that R′ = −Q′ does not occur
when computing Miller function values of degree less than r. The costs for doing an addition
step are the same as those for a doubling step, except that the costs to compute the slope λ′

are now Iqe + Mqe + 2subqe .
Table 2 compares the costs for affine addition steps to those in projective coordinates.

Again, we take these operation counts from the literature (see [1,14,13] for the explicit formulas
and details on the computation). Concerning the field and twist representations and line
function evaluation, similar remarks as for doubling steps apply here.

The multiplication with ω in the case d = 2 can be done as a precomputation, since Q′ is
fixed throughout the pairing algorithm. Since other formulas do not have multiplications by
constants, we omit this column in Table 2.

ADD twist deg coordinates Mq Iqe Mqe Sqe addqe subqe negqe

a 6= 0, b 6= 0
d = 2

affine k/2 1 3 1 − 8 −
2 | k Jacobian [1] − − 8 6 6 17 −

b = 0
d = 4

affine k/4 1 3 1 − 7 1
4 | k W(1,2) [14] k/2 − 9 5 7 8 1

a = 0
d = 6

affine k/6 1 3 1 − 7 1
6 | k projective [13,14] k/3 − 11 2 1 7 −

Table 2. Operation counts for the addition step in the ate-like Miller loop omitting 1Mqk .

Affine versus projective: Doubling and addition steps for computing pairings in affine
coordinates include one inversion in Fqe per step. The various projective formulas avoid the
inversion, but at the cost of doing more of the other operations. How much higher these costs
are exactly, depends on the underlying field implementation and the ratio of the costs for
squaring to multiplication.

A rough estimate of the counts in Table 2 shows that for Sqe = Mqe or Sqe = 0.8Mqe

(commonly used values in the literature, see [10]), the costs traded for the inversion in the
projective addition formulas are at least 9Mqe . For doubling steps, they are smaller, but
larger than 3Mqe in all cases. Since doubling steps are much more frequent in the pairing
computation (especially when a low Hamming weight for the degree of the used Miller function
is chosen), the traded costs in the doubling case are the most relevant to consider.

Example 1. Let ab 6= 0, i.e. d = 2. The cost that has to be weighed against the inversion
cost for a doubling step is 9Sqk/2 − (k/2)Mq + M(a/ω2) − M(ω) + 2addqk/2 + 11subqk/2 .
Clearly, (k/2)Mq < Sqk/2, and we assume M(ω) ≈ M(a/ω2) and addqk/2 ≈ subqk/2 . If
Sqk/2 ≈ 0.8Mqk/2 , we see that if an inversion costs less than 6.4Mqk/2 + 13addqk/2, then
affine coordinates are better than Jacobian.

Example 2. In the case a = 0, d = 6, and Sqk/6 ≈ 0.8Mqk/6 , similar to the previous example,
we deduce that if an inversion in Fqk/6 is less than 3Mqk/6 + (k/6)Mq + M(b/ω) + 12addqk/6 ,
then affine coordinates beat the projective.



An Analysis of Affine Coordinates for Pairing Computation 7

To compare affine to projective formulas, we need to look at the relative cost of an inversion
that is used in the affine formulas versus the cost of the additional operations needed for the
projective formulas. Therefore, an important measure that determines whether the affine
formulas are competitive with the projective formulas is the ratio of the cost of an inversion
to the cost of a multiplication. For a positive integer ℓ, define the inversion-to-multiplication
ratio in the field Fqℓ by Rqℓ = Iqℓ/Mqℓ .

In implementations of prime fields, inversions are usually very expensive, i.e. the ratio Rq

is very large. So the costs for inversions are much higher than the above mentioned costs to
avoid them. Thus it does not make sense to use affine coordinates. But it is possible to obtain
much smaller ratios, e.g. when computing in extension fields. Since the ate pairing requires
inversions only in Fqe this could be in favor of affine coordinates. Depending on the specific
ratio Rq for a given implementation, affine coordinates might even be faster than projective.

3 Inversions in extension fields for the ate pairing

In this section, we describe and analyze a way to compute inversions in finite field extensions.
It is based on a given, fixed implementation of arithmetic in the underlying prime field and
explains that the inversion-to-multiplication ratio R = I/M decreases when moving up in a
tower of field extensions.

3.1 Inverses in field extensions

The method we suggest for computing the inverse of an element in an extension of some finite
field Fq was originally described by Itoh and Tsujii [28] for binary fields using normal bases.
Kobayashi et al. [30] generalize the technique to large-characteristic fields in polynomial basis
and use it for elliptic-curve arithmetic. It is a standard way to compute inverses in optimal
extension fields (see [2,23] and [15, Sections 11.3.4 and 11.3.6]).

We require the field extension of degree ℓ to be given by Fqℓ = Fq(α) where α has minimal

polynomial Xℓ−ω for some ω ∈ F
∗

q. Furthermore, we assume gcd(ℓ, q) = 1. Then, the inverse
of an element β ∈ F

∗

qℓ
can be computed as

β−1 = βv−1 · β−v,
where v = (qℓ− 1)/(q− 1) = qℓ−1 + · · ·+ q+ 1. Note that βv is the norm of β and thus lies in
the base field Fq. So the cost for computing the inverse of β is the cost for computing βv−1

and βv, one inversion in the base field Fq to obtain β−v, and the multiplication of βv−1 with
β−v. The powers of β are obtained by using the q-power Frobenius automorphism on F

ℓ
q.

We give a brief estimate of the cost of the above. A Frobenius computation using a
look-up table of ℓ− 1 pre-computed values in Fq consisting of powers of ω costs at most ℓ− 1
multiplications in Fq (see [30, Section 2.3], note gcd(ℓ, q) = 1). According to [25, Section 2.4.3]
the computation of βv−1 via an addition chain approach, using a look-up table for each needed
power of the Frobenius, costs at most ⌊log(ℓ − 1)⌋ + h(ℓ − 1) Frobenius computations and
fewer multiplications in Fqℓ . Here h(m) denotes the Hamming weight of an integerm. Knowing
that βv ∈ Fq, its computation from βv−1 and β costs at most ℓ base field multiplications, one
multiplication with ω, and ℓ − 1 base field additions. The final multiplication of β−v with
βv−1 can be done in ℓ base field multiplications. This leads to an upper bound for the cost of
an inversion in Fqℓ as follows:

Iqℓ ≤ Iq + (⌊log(ℓ− 1)⌋ + h(ℓ− 1))(Mqℓ + (ℓ− 1)Mq) + 2ℓMq + M(ω) + (ℓ− 1)addq. (2)
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Let M(ℓ) be the minimal number of multiplications in Fq needed to multiply two different,
non-trivial elements in Fqℓ not lying in a proper subfield of Fqℓ . Then the following lemma

bounds the ratio of inversion to multiplication costs in an extension field from above by 1
M(ℓ)

times the ratio in the base field plus an explicit constant. Thus the ratio in the extension field
improves by roughly a factor of M(ℓ).

Lemma 1. Let Fq be a finite field, ℓ > 1, Fqℓ = Fq(α) with αℓ = ω ∈ F
∗

q. Then using the

above inversion algorithm in Fqℓ leads to

Rqℓ ≤
1

M(ℓ)
Rq + C(ℓ),

where C(ℓ) = ⌊log(ℓ− 1)⌋ + h(ℓ− 1) + 1
M(ℓ)

(

3ℓ+ (ℓ− 1)(⌊log(ℓ− 1)⌋ + h(ℓ− 1))
)

.

Proof. Since M(ℓ) is the minimal number of multiplications in Fq needed for multiplying two
elements in Fqℓ , we can assume that the actual cost for the latter is Mqℓ ≥ M(ℓ)Mq. Using
inequality (2), we deduce

Rqℓ =
Iqℓ

Mqℓ
≤ Iq

M(ℓ)Mq
+ C̃(ℓ) =

1

M(ℓ)
Rq + C̃(ℓ),

where

C̃(ℓ) = ⌊log(ℓ− 1)⌋ + h(ℓ− 1)

+
1

M(ℓ)

(

2ℓ+ (ℓ− 1)(⌊log(ℓ− 1)⌋ + h(ℓ− 1)) +
1

Mq
(Mω + (ℓ− 1)addq)

)

.

Since M(ω) ≤ Mq and addq ≤ Mq, we get Mω+(ℓ−1)addq ≤ ℓMq and thus C̃(ℓ) ≤ C(ℓ). ⊓⊔

In Table 3 we give values for the factor 1/M(ℓ) and the additive constant C(ℓ) that
determine the improvements of Rqℓ over Rq for several small extension degrees ℓ. We take
the numbers for M(ℓ) from the formulas given in [34].

ℓ 2 3 4 5 6 7

1/M(ℓ) 1/3 1/6 1/9 1/13 1/17 1/22

C(ℓ) 3.33 4.17 5.33 5.08 6.24 6.05

Table 3. Constants that determine the improvement of Rqℓ over Rq

For small-degree extensions, the inversion method can be easily made explicit. We state
and analyze it for quadratic and cubic extensions.

Quadratic extensions: Let Fq2 = Fq(α) with α2 = ω ∈ Fq. An element β = b0 + b1α 6= 0
can be inverted as

1

b0 + b1α
=
b0 − b1α

b20 − b21ω
=

b0
b20 − b21ω

− b1
b20 − b21ω

α.

In this case the norm of β is given explicitly by b20 − b21ω ∈ Fq. The inverse of β thus can be
computed in 1 inversion, 2 multiplications, 2 squarings, 1 multiplication by ω, 1 subtraction
and 1 negation, all in Fq, i.e. Iq2 = Iq + 2Mq + 2Sq + M(ω) + subq + negq.
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We assume that we multiply Fq2-elements with Karatsuba multiplication, which costs
Mq2 = 3Mq +M(ω) + 2addq + 2subq. As in the general case above, we assume that the costs
for a full multiplication in the quadratic extension are at least Mq2 ≥ 3Mq, i.e. we restrict
to the average case where both elements have both of their coefficients different from 0. Thus
we can give an upper bound on the I/M-ratio in Fq2 depending on the ratio in Fq as

Rq2 = Iq2/Mq2 ≤ 1

3
(Iq/Mq) + 2 =

1

3
Rq + 2,

where we roughly assume that Iq2 ≤ Iq + 6Mq. This bound shows that for Rq > 3 the ratio
becomes smaller in Fq2. For large ratios in Fq it becomes roughly 1

3Rq.

Cubic extensions: Let Fq3 = Fq(α) with α3 = ω ∈ Fq. Similar to the quadratic case we can
invert β = b0 + b1α+ b2α

2 ∈ F
∗

q3 by

1

b0 + b1α+ b2α2
=
b20 − ωb1b2
N(β)

+
ωb22 − b0b1
N(β)

α+
b21 − b0b2
N(β)

α2

with N(β) = b30 + b31ω + b32ω
2 − 3ωb0b1b2. We start by computing ωb1 and ωb2 as well as b20

and b21. The terms in the numerators are obtained by a 2-term Karatsuba multiplication and
additions and subtractions. The norm can be computed by 3 more multiplications. Thus the
costs for the inversion are Iq3 = Iq + 9Mq + 2Sq + 2M(ω) + 2addq + 4subq. A Karatsuba
multiplication can be done in Mq3 = 6Mq + 2M(ω) + 9addq + 6subq. We use Mq3 ≥ 6Mq,
assume Iq3 ≤ Iq + 16Mq and obtain

Rq3=Iq3/Mq3 ≤ 1

6
(Iq/Mq) +

8

3
=

1

6
Rq +

8

3
.

Towers of field extensions: Baktir and Sunar [3] introduce optimal tower fields as an
alternative for optimal extension fields, where they build a large field extension as a tower of
small extensions instead of one big extension. They describe how to use the above inversion
technique recursively by passing down the inversion in the tower, finally arriving at the base
field. They show that this method is more efficient than computing the inversion in the
corresponding large extension with the Itoh-Tsujii inversion directly.

In pairing-based cryptography it is common to use towers of fields to represent the exten-
sion Fqk , where k is the embedding degree. Benger and Scott [9] discuss how to best choose
such towers, but do not address inversions.

3.2 Extension-field inversions for the ate pairing

We have seen in Section 2 that for the ate pairing, the inversions in the doubling and addition
steps are inversions in a proper extension field of Fq. We now take a closer look at specific
high-security levels to see which degrees these extension fields have. For a pairing-friendly
elliptic curve E over Fq with embedding degree k with respect to a prime divisor r | #E(Fq),
we define the ρ-value of E as ρ = log(q)/ log(r). This value is a measure of the base field size
relative to the size of the prime-order subgroup on the curve.

Table 4 gives the recommendations by NIST [4] and ECRYPT II [39] for equivalent levels
of security for the discrete logarithm problems in the elliptic curve subgroup of order r and
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security NIST [4] ECRYPT II [39]
(bits) r (bits) qk (bits) ρk qk (bits) ρk

128 256 3072 12 3248 12.69
192 384 7680 20 7936 20.67
256 512 15424 30 15424 30.13

Table 4. NIST [4] and ECRYPT II [39] recommendations for bitsizes of r and qk providing equivalent levels
of security on elliptic-curve point groups and in finite fields.

in a subgroup of F
∗

qk
. For efficiency reasons, it is desirable to balance the security in both

groups. The group sizes are linked by the embedding degree k, which leads to desired values
for ρk as given in Table 4.

To implement pairings at a given security level, one needs to find a pairing-friendly elliptic
curve such that ρk is as close to the desired value as possible. An overview of construction
methods for pairing-friendly elliptic curves is given in [18]. In Table 5, we list suggestions for
curve families by their construction in [18] for high-security levels of 128, 192, and 256 bits.
The last column in Table 5 shows the field extensions in which inversions are done to compute
the line function slopes. We not only give families of curves with twists of degree 4 and 6,
but also more generic families such that the curves only have a twist of degree 2. Of course,
in the latter case the extension field, in which inversions for the affine ate pairing need to be
computed, is larger than when dealing with higher-degree twists. Because curves with twists
of degree 4 and 6 are special (they have j-invariants 0 and 1728), there might be reasons to
choose the more generic curves. Note that curves from the given constructions are all defined
over prime fields. Therefore we use the notation Fp in Table 5.

security construction in [18] curve k ρ ρk d extension

128

Ex. 6.8 a = 0 12 1.00 12.00 6 Fp2

Ex. 6.10 b = 0 8 1.50 12.00 4 Fp2

Section 5.3 a, b 6= 0 10 1.00 10.00 2 Fp5

Constr. 6.7+ a, b 6= 0 12 1.75 21.00 2 Fp6

192
Ex. 6.12 a = 0 18 1.33 24.00 6 Fp3

Ex. 6.11 b = 0 16 1.25 20.00 4 Fp4

Constr. 6.3+ a, b 6= 0 14 1.50 21.00 2 Fp7

256
Constr. 6.6 a = 0 24 1.25 30.00 6 Fp4

Constr. 6.4 b = 0 28 1.33 37.24 4 Fp7

Constr. 6.24+ a, b 6= 0 26 1.17 30.34 2 Fp13

Table 5. Extension fields for which inversions are needed when computing ate-like pairings for different
examples of pairing-friendly curve families suitable for the given security levels.

Remark 1. The conclusion to underline from the discussion in this section, is that, using
the improved inversions in towers of extension fields described here, there are at least two
scenarios where most implementations of the ate pairing would be more efficient using affine

coordinates:

1. When higher security levels are required, so that k is large. For example 256-bit security
with k = 28, so that most of the computations for the ate pairing take place in the field
extension of degree 7, even using a degree-4 twist (second-to-last line of Table 5). In that
case, the I/M ratio in the degree-7 extension field would be roughly 22 times less (plus
6) than the ratio in the base field (see the last entry in Table 3). The costs for doubling
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and addition steps given in the second lines of Tables 1 and 2 for degree-4 twists show
that the cost of the inversion avoided in a projective implementation should be compared
with the cost of roughly 6 extra squarings, 5 extra additions and 5 extra subtractions for
a doubling, all operations in the extension field of degree 7 (and 6 extra multiplications,
4 extra squarings, and 7 extra additions for an addition step). In most implementations
of the base field arithmetic, the cost of these 16 or 17 operations in the extension field
would outweigh the cost of one improved inversion in the extension field. See for example
our sample timings for degree-6 extension fields in Tables 6 and 7 in Section 5. Note there
that even the cost for additions and subtractions is not negligible as is usually assumed.

2. When special high-degree twists are not being used. Here there are two reasons why affine
coordinates will be better under most circumstances:
(a) The costs for doubling and addition steps given in the first lines of Tables 1 and 2

for degree-2 twists are not nearly as favorable towards projective coordinates as the
formulas in the case of higher degree twists. For degree-2 twists, both the doubling
and addition steps require roughly at least 9 extra squarings and 13 or 15 extra field
extension additions/subtractions for the projective formulas.

(b) The degree of the extension field where the operations take place is larger. See the
bottom row for each security level in Table 5, so extension degree 6 for 128-bit security
up to extension degree 13 for 256-bit security.

4 Sharing inversions for pairing computation

In this section, we revisit a well-known trick for efficiently computing several inverses at once,
asymptotically achieving an I/M-ratio of 3. We point out and recall possibilities to improve
pairing computation in affine coordinates by using this trick.

4.1 Simultaneous inversions

The inverses of s field elements a1, . . . , as can be computed simultaneously with Montgomery’s
well-known sharing-inversions trick [33, Section 10.3.1.] at the cost of 1 inversion and 3(s− 1)
multiplications. It is based on the following idea: to compute the inverse of two elements a
and b, one computes their product and its inverse 1/(ab). The inverses of a and b are then
found by 1/a = b · (1/(ab)) and 1/b = a · (1/(ab)).

In general, for s elements one first computes the products ci = a1 · · · · ·ai for 2 ≤ i ≤ s with
s−1 multiplications and inverts cs. Then we have a−1

s = cs−1c
−1
s . We get a−1

s−1 by c−1
s−1 = c−1

s as
and a−1

s−1 = cs−2c
−1
s−1 and so forth (see [15, Algorithm 11.15]), where we need 2(s − 1) more

multiplications to get the inverses of all elements.
The cost for s inversions is replaced by I + 3(s − 1)M. Let Ravg,s denote the ratio of the

cost of s inversions to the cost of s multiplications. It is bounded above by:

Ravg,s =
I

sM
+

3(s − 1)

s
≤ 1

s
R + 3,

i.e. when the number s of elements to be inverted grows, the ratio Ravg,s gets closer to 3. Note
that most of the time, this method improves the efficiency of an implementation whenever
applicable. However, as discussed in Section 3, in large field extensions, the I/M-ratio might
already be less than 3 due to the inversion method from Section 3.1, in which case the sharing
trick would make the average ratio worse.
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4.2 Sharing inversions in a single pairing computation

Schroeppel and Beaver [36] demonstrate the use of the inversion-sharing trick to speed up a
single scalar multiplication on an elliptic curve in affine coordinates. They suggest postponing
addition steps in the double-and-add algorithm to exploit the inversion sharing. In order
to do that, the double-and-add algorithm must be carried out by going through the binary
representation of the scalar from right to left. First, all doublings are carried out and the points
that will be used to add up to the final result are stored. When all these points have been
collected, several addition steps can be done at once, sharing the computation of inversions
among them.

Miller’s algorithm can also be done from right to left. The doubling steps are computed
without doing the addition steps. The required field elements and points are stored in lists
and addition steps are done in the end. The algorithm is summarized in Algorithm 2.

Algorithm 2 Right-to-left version of Miller’s algorithm with postponed addition steps

Input: Q′ ∈ G′

2, P ∈ G1, m = (1 = ml−1, ml−2, . . . , m0)2
Output: fm,ψ(Q′)(P ) representing a class in F

∗

qk/(F∗

qk )r

1: R′ ← Q′, f ← 1, j ← 0
2: for i from 0 to ℓ− 1 do

3: if (mi = 1) then

4: AR′ [j]← R′, Af [j]← f , j ← j + 1
5: end if

6: f ← f2 · lψ(R′),ψ(R′)(P ), R′ ← [2]R′

7: end for

8: R′ ← AR′ [0], f ← Af [0]
9: for (j ← 1; j ≤ h(m)− 1; j + +) do

10: f ← f ·Af [j] · lψ(R′),ψ(A
R′ [j])(P ), R′ ← R′ + AR′ [j]

11: end for

12: return f

Unfortunately, addition steps cost much more than in the conventional left-to-right algo-
rithm as it is given in Algorithm 1. In the right-to-left version, each addition step in Line 10
needs a general Fqk-multiplication and a multiplication with a line function value. The con-
ventional algorithm only needs a multiplication with a line. These huge costs can not be
compensated by using affine coordinates with the inversion-sharing trick.

Parallelizing a single pairing. However, the right-to-left algorithm can be parallelized, and
this can lead to more efficient implemenations taking advantage of the recent advent of many-
core machines. Grabher, Großschädl, and Page [19, Algorithm 2] use a version of Algorithm 2
to compute a single pairing by doing addition steps in parallel on two different cores. They
divide the lists with the saved function values and points into two halves and compute two
intermediate values which are in the end combined in a single addition step. They show that
this is faster than the conventional non-parallel algorithm. It is straightforward to extend this
algorithm to more cores.

So we suggest that the parallelized algorithm of Grabher, Großschädl, and Page can
be combined with the shared inversion trick. The improvements achieved by this approach
strongly depend on the Hamming weight of the value m in Miller’s algorithm. If it is large,
then savings are large, while for very sparse m there is almost no improvement. Therefore,
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when it is not possible to choose m with low Hamming weight, combining the parallelized
right-to-left algorithm for pairings with the shared inversion trick can speed-up the compu-
tation. Grabher et al. [19] note that when multiple pairings are computed, it is better to
parallelize by performing one pairing on each core.

4.3 Multiple pairings and products of pairings

Many protocols involve the computation of multiple pairings or products of pairings. For
example, multiple pairings need to be computed in the searchable encryption scheme of Boneh
et al. [11], and the non-interactive proof systems proposed by Groth and Sahai [22] need
to check pairing product equations. In these scenarios, we propose sharing inversions when
computing pairings with affine coordinates. In the case of products of pairings, this has already
been proposed and investigated by Scott [37, Section 4.3] and Granger and Smart [21].

Multiple pairings. Assume we want to compute s pairings on points Q′

i and Pi, i.e. a priori
we have s Miller loops to compute fm,ψ(Q′

i)
(Pi). We carry out these loops simultaneously,

doing all steps up to the first inversion computation for a line function slope for all of them.
Only after that, all slope denominators are inverted simultaneously, and we continue with
the computation for all pairings until the next inversion occurs. The s Miller loops are not
computed sequentially, but rather sliced at the slope denominator inversions. The costs stay
the same, except that now the average inversion-to-multiplication cost ratio is 3 + Rqe/s,
where e = k/d and d is the twist degree.

So when computing enough pairings such that the average cost of an inversion is small
enough, using the sliced-Miller approach with inversion sharing in affine coordinates is faster
than using the projective coordinates explicit formulas described in Section 2.2.

Products of pairings. For computing a product of pairings, more optimizations can be
applied, including the above inversion-sharing. Scott [37, Section 4.3] suggests using affine
coordinates and sharing the inversions for computing the line function slopes as described
above for multiple pairings. Furthermore, since the Miller function of the pairing product is
the product of the Miller functions of the single pairing, in each doubling and addition step the
line functions can already be multiplied together. In this way, we only need one intermediate
variable f and only one squaring per iteration of the product Miller loop. Of course in the end,
there is only one final exponentiation on the product of the Miller function values. Granger
and Smart [21] show that by using these optimizations the cost for introducing an additional
ate pairing to the product can be as low as 13% of the cost of a single ate pairing.

5 Example implementation

The implementation described in this section is an implementation of the optimal ate pairing
on a Barreto-Naehrig (BN) curve [8] over a 256-bit prime field, i.e. the curve has a 256-bit
prime number n of Fp-rational points and embedding degree k = 12 with respect to n.

The implementation is part of the Microsoft Research pairing library. It is specialized to
the BN curve family but is not specialized for a specific BN curve. It is based on Microsoft
Research’s general purpose library for big number arithmetic, which can be compiled under
32-bit or 64-bit Windows. On top of that, we use the tower of field extensions Fp12/Fp6/Fp2/Fp
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to realize field arithmetic in Fp12. In Tables 6 and 7 we give timings for the required field arith-
metic in the fields Fp, Fp2, Fp6, and Fp12 for the 32-bit and 64-bit versions, respectively. The
32-bit timings are for a pure software C-implementation, while the 64-bit software makes use
of assembly code for base field multiplications, i.e. special code for Montgomery multiplication
with a prime modulus of 256 bits. Note that the timings in cycles and miliseconds stem from
two different measurements and thus do not exactly translate.

The last columns in Tables 6 and 7 give the I/M-ratios for the corresponding extension
field and demonstrate the effect of using the inversion method for extension field towers
described in Section 3.1. The ratios are even smaller than predicted by the theoretical upper
bounds in Lemma 1 and Table 3. This is explained by the fact that actual multiplication
costs for elements in Fqℓ are higher than the estimates given there that only take into account
multiplications from the base field and neglect all other base field operations.

The pairing implementation uses the usual optimizations. First of all, a twist E′/Fp2
provides the group G′

2 to represent elements in G2 as described in Section 2.1. The affine
doubling and addition steps in Miller’s algorithm are computed as shown in Section 2.2. The
projective steps use the explicit formulas from the recent paper of Costello et al. [14]. The
final exponentiation is done as described in [38], and uses the special squaring formulas given
by Granger and Scott [20].

Tables 8 and 9 give benchmarking results for several pairing functions in the library,
compiled under 32-bit and 64-bit Windows 7, respectively. All functions compute the optimal
ate pairing for BN curves as

aopt : G′

2 ×G1 → µr, (Q′, P ) 7→ (f6u+2,Q(P ) · h6u+2,Q(P ))(p
12
−1)/n,

where Q = ψ(Q′) and h6u+2,Q = l[6u+2]Q,φp(Q)(P ) · l[6u+2]Q+φp(Q),φ2
p(Q)(P ).

The line entitled “20 at once (per pairing)” gives the average timing for one pairing out of
20 that have been computed at the same time. This function uses the inversion-sharing trick
as described in Section 4.3. The function corresponding to the line “product of 20” computes
the product of 20 pairings using the optimizations described in Section 4.3. The lines with
the attribute “1st arg. fixed” mean functions that compute multiple pairings or a product of
pairings, where the first input point is fixed for all pairings, and only the second point varies.
In this case, the operations depending only on the first argument are done only once. We
separately list the final exponentiation timings. They are included in the pairing timings of
the other lines.

Implementation notes.

1. For both the 32 and 64-bit versions of the library, a single pairing is computed faster
with affine coordinates than with projective coordinates. This is due to the relatively
low I/M-ratios in the base field Fp (13.45 and 21.94 respectively) and in the quadratic
extension (ratios 4.13 and 5.24 respectively). These low ratios are due to a relatively
efficient inversion implementation in the base field combined with the improved inversion
for quadratic extensions given in Section 3.1.

2. At this security level (128-bits) and using the special high-degree-6 twist, the projective
implementation is almost at par with the affine implementation, so that even a small
improvement in the base field multiplication would tip the balance in favor of a projective
implementation (for example if we used the multiplication for the 64-bit version from [24]
which is claimed to be around 310 cycles as opposed to our 424 cycles).
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32-bit add sub M S I R = I/M
cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 327 0.11 309 0.10 988 0.32 945 0.32 13285 4.18 13.45

Fp2 588 0.19 585 0.18 4531 1.44 2949 0.91 18687 5.65 4.13

Fp6 1746 0.54 1641 0.52 38938 12.09 26364 8.44 78847 24.98 2.03

Fp12 3300 1.06 3233 1.03 123386 38.97 88249 27.94 210907 66.90 1.71

Table 6. Field arithmetic timings in a 256-bit prime field, on an Intel Core 2 Duo E8500 @ 3.16 GHz under
32-bit Windows 7. Average over 1000 operations in cpucycles (cyc) and microseconds (µs).

64-bit add sub M S I R = I/M
cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 184 0.07 174 0.06 424 0.15 355 0.15 9299 3.62 21.94

Fp2 323 0.12 290 0.12 2133 0.84 1267 0.51 11194 4.41 5.24

Fp6 946 0.35 840 0.29 18049 7.17 12462 5.01 39121 15.69 2.17

Fp12 1859 0.71 1624 0.61 58657 23.27 41641 16.43 104091 41.23 1.77

Table 7. Field arithmetic timings in a 256-bit prime field, on an Intel Core 2 Duo P9500 @ 2.53 GHz under
64-bit Windows Vista. Average over 1000 operations in cpucycles (cyc) and microseconds (µs).

32-bit optimal ate pairings cyc ms

projective 32,288,630 10.06

single pairing 30,091,044 9.49
20 at once (per pairing) 29,681,288 9.39

affine 20 at once, 1st arg. fixed (per pairing) 27,084,852 8.53
product of 20 (per pairing) 10,029,724 3.16
product of 20, 1st arg. fixed (per pairing) 7,316,501 2.32

single final exponentiation 15,043,435 4.75

Table 8. Optimal ate pairing timings on a 256-bit BN curve, measured on an Intel Core 2 Duo E8500 @ 3.16
GHz under 32-bit Windows 7. Average over 20 pairings in cpucycles (cyc) and milliseconds (ms).

64-bit optimal ate pairings cyc ms

projective 15,103,568 6.08

single pairing 14,474,049 5.74
20 at once (per pairing) 14,099,948 5.56

affine 20 at once, 1st arg. fixed (per pairing) 12,869,928 5.12
product of 20 (per pairing) 4,702,357 1.88
product of 20, 1st arg. fixed (per pairing) 3,471,030 1.38

single final exponentiation 7,176,840 2.80

Table 9. Optimal ate pairing timings on a 256-bit BN curve, measured on an Intel Core 2 Duo P9500 @ 2.53
GHz under 64-bit Windows Vista. Average over 20 pairings in cpucycles (cyc) and milliseconds (ms).
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3. However, as was explained in Remark 1 in Section 3.2, either for higher security levels
or for curves without special high degree twists, affine coordinates will be much faster
than projective coordinates given our base field and extension field arithmetic. Indeed,
our I/M-ratio in a degree 6 extension is already roughly 2, for both our 32 and 64-bit
versions. With a ratio of 2, projective coordinates are not a good choice.

4. Because our I/M-ratios in the quadratic field extension are already so close to 3, there is
little improvement expected or observed from using the shared inversion tricks discussed
in Section 4.

5. Note that field addition and subtraction costs are not negligible, as one might think
from the fact that they are not often included in the operation counts when comparing
various methods for elliptic curve operations and pairing implementations. In our base field
arithmetic, 1 multiplication costs roughly the same as 3 field additions or subtractions,
but the relative cost of additions and subtractions in extension fields is significantly less.

6. Note that the ratio of squarings to multiplications changes in the extension fields as well.
A squaring in the quadratic extension is done with only 2 multiplications using the fact
that the extension is generated by

√
−1. This improvement carries through to squarings

in the higher field extensions.

Comparison to previous work. We compare our implementation with the best published
results for optimal ate pairing implementations on BN curves that we are aware of.

The software described in [24] needs about 10, 000, 000 cycles on an Intel Core 2 processor
for the R-ate pairing. The degree of the required Miller function is the same as for the optimal
ate pairing described here, thus it is also an optimal ate pairing. Their modular multiplication
in the base field is claimed to be around 310 cycles, which is about 25% faster than ours. Their
faster modular multiplication seems to mostly account for the difference in performance with
our implementation for a single pairing in projective coordinates.

The paper [35] presents an implementation that computes the optimal ate pairing as
described here on one core of an Intel Core 2 Quad processor in about 4, 470, 000 cycles.
This is much faster than our implementation. The drastically improved performance in [35] is
achieved by a new representation for base field elements using the polynomial parametrization
of the BN prime p, and specialized assembly code for doing field arithmetic in Fp2. This code
is tailored for a specially chosen curve from a very small subset of BN curves at the 256-bit
security level. Instead, our implementation is based on a general-purpose library for the base
field arithmetic which can be compiled on many platforms. It is valid for all BN curves. Thus it
is clear that our implementation is not competitive with the specially tailored implemenation
in [35].

Acknowledgements: We would like to thank Dan Shumow and Tolga Acar for their help
with the development environment for our implementation.
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