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Abstract

This paper investigates the existence of pure strategy, dominant-strategy, and mixed strat-

egy Nash equilibria in discontinuous and nonconvex games. We introduce a new notion of

very weak continuity, called weak transfer continuity, which holds in a large class of discon-

tinuous economic games and is easy to check. We show that it, together with the compactness

of strategy space and the quasiconcavity of payoff functions, permits the existence of pure

strategy Nash equilibria. Our equilibrium existence result neither implies nor is implied by

the existing results in the literature such as those in Baye et al. [1993] and Reny [1999].

We provide sufficient conditions for weak transfer continuity by introducing notions of weak

transfer upper continuity and weak transfer lower continuity. These conditions are satisfied in

many economic games and are often quite simple to check. We also introduce the notion of

weak dominant transfer upper continuity, and use it to study the existence of dominant strategy

equilibria. We then generalize these results and those in Baye et al. [1993] and Reny [1999]

without assuming any form of quasi-concavity of payoff functions or convexity of strategy

spaces.
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1 Introduction

Nash’s concept of equilibrium in Nash (1950, 1951) is probably the most important solution in

game theory. It is immune from unilateral deviations, that is, each player has no incentive to devi-

ate from his/her strategy given that other players do not deviate from theirs. Nash [1951] proved

that a finite game has a Nash equilibrium in mixed strategies. Debreu [1952] then showed that

games possess a pure strategy Nash equilibrium if (1) the strategy spaces are nonempty, convex

and compact, and (2) players have continuous and quasiconcave payoff functions. Game theory

has then been successfully applied in many areas in economics including oligopoly theory, social

choice theory, and mechanism design theory. These applications lead researchers from different

areas to investigate the possibility of weakening equilibrium existence conditions to further enlarge

its domain of applicability.

The uniqueness of pure strategy Nash equilibrium is established in Rosen [1965]. Nishimura

and Friedman [1981] and Yao [1992] considered the existence of Nash equilibrium in games where

the payoff functions are not quasi-concave (but satisfying a strong condition) and γ-diagonally

quasiconcave, respectively. Dasgupta and Maskin [1986] established the existence of pure and

mixed-strategy Nash equilibrium in games where the strategy sets are non-empty convex and com-

pact, and payoff functions are quasiconcave, upper semicontinuous and graph continuous by using

an approximation technique. Simon (1987) and Simon and Zame (1990) used a similar approach

to consider the existence of mixed-strategy Nash equilibria in discontinuous games. Simon and

Zame (1990) showed that if one is willing to modify the vector of payoffs at points of discontinu-

ity so that they correspond to points in the convex hull of limits of nearby payoffs, then one can

ensure a mixed-strategy equilibrium of such a suitably modified game. Vives [1990] established

the existence of Nash equilibrium in games where payoffs are upper semicontinuous and satisfy

certain monotonicity properties.

Baye et al. [1993] weakened quasiconcavity of payoffsprovided by providing necessary and

sufficient conditions for the existence of pure strategy Nash equilibrium and dominant-strategy

equilibrium in discontinuous games. It is shown that diagonal transfer quasiconcavity is necessary,

and further, under diagonal transfer continuity and compactness, sufficient for the existence of pure

strategy Nash equilibrium. Both transfer quasiconcavity and diagonal transfer continuity are very

weak notions of quasiconcavity and continuity and use a basic idea of transferring nonequilibrium

strategies to other nonequilibrium strategies.

Reny [1999] established the existence of Nash equilibrium in compact and quasiconcave

games where the game is better-reply secure, which is a weak notion of continuity. Reny [1999]

showed that better-reply security can be imposed separately as reciprocal upper semicontinuity
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introduced by Simon (1987) and payoff security. Bagh and Jofre [2006] further weakened recip-

rocal upper semicontinuity to weak reciprocal upper semicontinuity and showed that it, together

with payoff security, implies better-reply security. As one shall see, both better-reply security and

payoff security use a similar idea of transferring a (nonequilibrium) strategy to another strategy,

and they are actually also in the forms of transfer continuity. In fact, better-reply security intro-

duced by Reny [1999] is closely related to diagonal transfer continuity introduced by Baye et al.

[1993] under the form of the aggregate payoff function. Nevertheless, to use the result in Reny

[1999], one must analyze the closure of the graph of the vector payoff function of the game. Such

an analysis involves a high dimension and is hard to check. To check the (weak) reciprocal upper

semicontinuity also has a similar nature.

This paper investigates the existence of pure strategy, dominant-strategy, and mixed strategy

Nash equilibria in discontinuous and nonconvex games. We introduce a very weak notion of con-

tinuity, called weak transfer continuity. Roughly speaking, a game is weakly transfer continuous if

for every nonequilibrium strategy x, there exists some player that has a strategy yielding a strictly

better payoff even if all players deviate slightly from x. Weak transfer continuity holds in many

economic games and is easy to check. We provide three sets of sufficient conditions, each of

which implies weak transfer continuity: (1) transfer continuity; (2) weak transfer upper continu-

ity and payoff security,1 and (3) upper semicontinuity and weak transfer lower continuity. These

conditions are satisfied in many economic games and are often quite simple to check.

We show that weak transfer continuity, together with the compactness of strategy space and

the quasiconcavity of payoff functions, guarantees the existence of pure strategy Nash equilibria.

Our equilibrium existence result neither implies nor is implied by the existing results in the liter-

ature such as those in Baye et al. [1993] and Reny [1999]. We also introduce the notion of weak

dominant transfer upper continuity, and use it to study the existence of dominant strategy equi-

libria. Our results permit new equilibrium existence theorems for a large class of discontinuous

games. We generalize these results as well as those in Baye et al. [1993] and Reny [1999] without

assuming any form of quasi-concavity of payoff functions or convexity of strategy spaces.

The remainder of the paper is organized as follows. Section 2 describes the notation, and pro-

vides a number of preliminary definitions. Section 3 introduces the new condition, weak transfer

continuity, and provides our main pure strategy Nash equilibrium existence result and its proof.

Examples illustrating the theorem are also given. We then generalize the result and those in Baye

et al. [1993] and Reny [1999] without assuming any form of quasi-concavity of payoff functions
1It is worth pointing out that, while reciprocal upper semicontinuity combined with payoff security implies better-

reply security, here weak transfer upper semicontinuity combined with payoff security implies weak transfer continuity.
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or convexity of strategy spaces. Section 4 considers the existence of dominant strategy equilibria

by introducing a similar condition, weak dominant transfer continuity. We provide a main dom-

inant strategy Nash equilibrium existence result and its proof. We then generalize the result and

the one in Baye et al. [1993] by relaxing the convexity of strategy spaces. Section 5 considers the

existence of mixed strategy Nash equilibria by applying the main result obtained in Section 3 on

the existence of pure strategy Nash equilibria. Concluding remarks are offered in Section 6.

2 Preliminaries

Consider the following noncooperative game in normal form:

G = (Xi, ui)i∈I (1)

where I = {1, ..., n} is the finite set of players, Xi is player i’s strategy space which is a nonempty

subset of a topological space Ei, and ui : X −→ R is the payoff function of player i. Denote by

X =
∏
i∈I

Xi the set of strategy profiles of the game. For each player i ∈ I , denote by −i = {j ∈
I such that j 6= i} the set of all players rather than player i. Also denote by X−i =

∏
j∈−i

Xj the set

of strategies of the players in coalition −i.

We say that a game G = (Xi, ui)i∈I is compact, convex, bounded, and semi-continuous,

respectively if, for all i ∈ I , Xi is compact, convex, and ui is bounded and semi-continuous on

X , respectively. We say that a game G = (Xi, ui)i∈I is quasiconcave if, for every i ∈ I , Xi is

convex and the function ui is quasiconcave in xi.

We say that a strategy profile x∗ ∈ X is a Nash equilibrium of game G if,

ui(yi, x
∗
−i) ≤ ui(x∗) ∀i ∈ I, ∀yi ∈ Xi.

We say that a strategy profile x∗ ∈ X is a dominant-strategy equilibrium of a game G if,

∀(yi, y−i) ∈ X, ui(yi, y−i) ≤ ui(x∗i , y−i) ∀i ∈ I.

We review some of the basic definitions introduced in Baye et al. [1993], Reny [1999], Bagh

and Jofre [2006] and Morgan and Scalzo [2007].

Define a function U : X ×X → R by

U(x, y) =
n∑

i=1

Ui(yi, x−i), ∀(x, y) ∈ X ×X. (2)

DEFINITION 2.1 The function U : X ×X → R is said to be diagonally transfer continuous in x

if for (x, y) ∈ X ×X , U(x, y) > U(x, x) implies that there exists some point y
′ ∈ Y and some
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neighborhood V(x) ⊂ X of x such that U(z, y
′
) > U(z, z) for all z ∈ V(x). We say that a game

G = (Xi, ui)i∈I is diagonally transfer continuous if function U : X × X → R is diagonally

transfer continuous in x with respect to Y .

REMARK 2.1 Since diagonal transfer continuity requires taking an open neighborhood on both

sides of the inequality, it is a weak notion of continuity. It is clear that continuity implies diagonal

transfer continuity.

DEFINITION 2.2 The function U(x, y) : X × X → R is said to be diagonally transfer quasi-

concave in y if, for any finite subset Y m = {y1, ..., ym} ⊂ X , there exists a corresponding finite

subset Xm = {x1, ..., xm} ⊂ X such that for any subset {xk1
, xk2

, ..., xks} ⊂ Xm, 1 ≤ s ≤ m,

and any x ∈ co{xk1
, xk2

, ..., xks} we have min
1≤l≤s

U(x, ykl
) ≤ U(x, x). We say that a game

G = (Xi, ui)i∈I is diagonally transfer quasiconcave if U : X × Y → R is diagonally transfer

quasiconcave in y.

Theorem 1 in Baye et al. [1993] shows that a game that is compact, convex, diagonally transfer

continuous, and diagonally transfer quasiconcave must possess a pure strategy Nash equilibrium.

Note that a game is diagonally transfer quasiconcave if it is quasiconcave.

The graph of the game is Γ = {(x, u) ∈ X × Rn : ui(x) = ui, ∀i ∈ I}. The closure of Γ in

X × Rn is denoted by Γ̄. The frontier of Γ, which is the set of points that are in Γ̄ but not in Γ, is

denoted by Fr Γ.

DEFINITION 2.3 Player i can secure a payoff of α ∈ R at x ∈ X if there exists xi ∈ Xi, such

that ui(xi, y−i) ≥ α for all y−i in some open neighborhood of x−i.

DEFINITION 2.4 A game G = (Xi, ui)i∈I is payoff secure if for every x ∈ X and any ε > 0,

every player i can secure a payoff of ui(x)− ε.

DEFINITION 2.5 A game G = (Xi, ui)i∈I is better-reply secure if whenever (x∗, u∗) ∈ Γ̄, x∗ is

not an equilibrium, which implies that some player i can secure a payoff strictly above u∗i at x∗,

i.e., there exists xi ∈ Xi such that ui(xi, y−i) > u∗i for all y−i in some open neighborhood of x−i.

DEFINITION 2.6 A game G = (Xi, ui)i∈I is reciprocally upper semicontinuous if, whenever

(x, u) ∈ Γ̄ and ui(x) ≤ ui for every player i, then ui(x) = ui for every player i.

DEFINITION 2.7 A game G = (Xi, ui)i∈I is weakly reciprocal upper semicontinuous, if for any

(x, u) ∈ Fr Γ, there is a player i and x̂i ∈ Xi such that ui(x̂i, x−i) > ui.
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DEFINITION 2.8 Let Z be a topological space and f be an extended real valued function defined

on Z. f is said to be upper pseudocontinuous at z0 if for all z ∈ Z such that f(z0) < f(z), we

have lim sup
y→z0

f(y) < f(z). f is said to be lower pseudocontinuous at z0 if −f is upper pseudo-

continuous at z0. f is said to be pseudocontinuous if it is both upper and lower pseudocontinuous.

Theorem 3.1 in Reny [1999] shows that a G = (Xi, ui)i∈I possesses a Nash equilibrium if

it is compact, bounded, quasiconcave and better-reply secure. Reny [1999] and Bagh and Jofre

[2006] provided sufficient conditions for a game to be better-reply secure. Reny [1999] showed

that a game G = (Xi, ui)i∈I is better-reply secure if it is payoff secure and reciprocal upper

semicontinuous. Bagh and Jofre [2006] further showed that G = (Xi, ui)i∈I is better-reply secure

if it is payoff secure and weakly reciprocal upper semicontinuous. Morgan and Scalzo [2007]

showed that G = (Xi, ui)i∈I is better-reply secure if ui is pseudocontinuous, ∀i ∈ I .

REMARK 2.2 Since payoff security requires taking an open neighborhood in the upper contour

set of a given level of payoff, it is a weak notion of lower semicontinuity. Since better-reply se-

curity also requires the limit payoff resulting from strategies approaching a nonequilibrium point,

it is a weak notion of continuity (which displays a certain form of both lower semicontinuity and

upper semicontinuity). In addition, both notions use the same idea of transferring nonequilibrium

strategy to another strategy, thus they actually fall in the forms of transfer continuity.

REMARK 2.3 In fact, better-reply security is closely related to diagonal transfer continuity in-

troduced by Baye et al. [1993] under the form of U . Consider the function U : X × X → R

defined by (2). Suppose (x,U) is in the closure of the graph of U . Then, the fact that function U

is better-reply secure in x implies that, whenever U(x, y) > U(x, x), there exists y′ ∈ X and a

neighborhood V(x) of x such that U(z, y′) > U(x, x) for all z ∈ V(x). Thus, aside better-reply

security is required that (x,U) be in the closure of the graph of U , the only difference is that the

better-reply security takes an open neighborhood in the upper contour of a given level of payoff

while diagonal transfer continuity takes an open neighborhood in both upper and lower contour of

a given level of payoff. Moreover, if we define a function φ : X ×X → R by

φ(x, y) =
n∑

i=1

{ui(yi, x−i)− ui(x)}, ∀(x, y) ∈ X ×X,

then φ is better reply secure in x if and only if φ is diagonally transfer continuous in x when (x,U)

is in the closure of the graph of U .
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3 Existence of Nash Equilibria

In this section we investigate the existence of pure strategy Nash equilibrium in games that may

be discontinuous and may not have any form of quasiconcavities. We first provide our main result

on the existence of pure strategy Nash equilibrium in discontinuous games, and then characterize

the existence of pure strategy Nash equilibrium without assuming the convexity of strategy spaces

or any form of quasiconcavity of payoff functions. We also generalize existence results of Baye

et al. [1993], Reny [1999] and Bagh and Jofre [2006] by relaxing the convexity of strategy spaces

and diagonal transfer quasiconcavity of payoff functions.

3.1 Nash Equilibria in Discontinuous Games

We start by introducing the notions of (weak) transfer continuity.

DEFINITION 3.1 A game G = (Xi, ui)i∈I is said to be transfer continuous if for all player i, ui

is transfer upper continuous in x with respect to Xi, i.e., if ui(zi, x−i) > ui(x) for zi ∈ Xi and

x ∈ X , then there is some neighborhood V(x) of x and yi ∈ Xi such that ui(yi, x
′
−i) > ui(x′)

for all x′ ∈ V(x).

DEFINITION 3.2 A game G = (Xi, ui)i∈I is said to be weakly transfer continuous if x ∈ X

is not an equilibrium, then there exist player i, yi ∈ Xi and a neighborhood V(x) of x such that

ui(yi, x
′
−i) > ui(x′) for all x′ ∈ V(x).

Roughly speaking, a game is weakly transfer continuous if for every nonequilibrium strategy

x∗, there exists some player i that has a strategy yi yielding a strictly better payoff even if all

players deviate slightly from x∗.

REMARK 3.1 Since transfer continuity and weak transfer continuity require taking an open

neighborhood on both sides of the inequality, they are weak notions of continuity. It is clear

that they are (weakly) transfer continuous if they are continuous. Also, weak transfer continuity

only requires some player, but not all players, who can have a strategy resulting in a strictly better

payoff even if all players deviate slightly from a non-Nash equilibrium. It is clear that a game G

is weakly transfer continuous if it is transfer continuous. However, the following example shows

the reverse may not be true.

EXAMPLE 3.1 Consider a two-player game with X1 = X2 = [0, 1] and

u1(x1, x2) =





2 + x1 + x2, if x1 = x2,

x1 + x2, otherwise,

7



and

u2(x) = x1 + x2.

One can see that the strategy (1, 0) is not a Nash Equilibrium and u1(0, 0) > u1(1, 0) when

z1 = 0. Then, for all y1 ∈ [0, 1] and any δ > 0, there exists z = (1, z2) ∈ Bδ(1, 0) with z2 6= y1

such that u1(y1, z2) = y1 + z2 ≤ 1 + z2 = u1(1, z2). Then, u1 is not transfer continuous at (1,0)

with respect to X1.

However, since (1, 0) is not a Nash Equilibrium, there exists y2 = 1 and a neighborhood

V(1, 0) ⊂ [0, 1]× [0, 1) of (1,0) such that u2(z1, y2) = z1 + y2 > z1 + z2, for each z ∈ V(1, 0).

Thus, we can conclude that the game is weakly transfer continuous at (1, 0).

Now we state our main result that is formally unrelated to Baye et al. [1993] and Reny [1999].

THEOREM 3.1 Suppose G = (Xi, ui)i∈I is convex, compact, bounded, and weakly transfer

continuous. Then, the game G has a Nash equilibrium if and only if it is diagonally transfer

quasiconcave.

PROOF. Sufficiency (⇐). For each player i ∈ I and every (xi, y) ∈ Xi ×X , let

ϕi(xi, y) = sup
V∈Ω(y)

inf
z∈V

[ui(xi, z−i)− ui(z)]

where Ω(y) is the set of all open neighborhoods of y.

For each i and every xi ∈ Xi, the function ϕi(xi, .) is real-valued by boundedness of payoff

function. It is also lower semicontinuous over X . Indeed, for each i ∈ I , let xi ∈ Xi and V be a

open neighborhood. Consider the following function

gi
V(xi, y) =





inf
z∈V

[ui(xi, z−i)− ui(z)], if y ∈ V,

−∞, otherwise.

We show that gi
V(xi, .) is lower semicontinuous on X . Let

A(xi) = {y ∈ X such that gi
V(xi, y) ≤ α}, α ∈ R.

Suppose that there exists y ∈ X such that y is in the closure of A(xi), but not in A(xi). Then,

there exists a sequence {yp}p∈N ⊂ A(xi) converging to y. Since y /∈ A(xi), inf
z∈V

[ui(xi, z−i) −
ui(z)] > α. If y /∈ V , then −∞ > α, which is impossible, and thus y ∈ V and gi

V(xi, y) > α.

Otherwise, we have {yp}p∈N ⊂ A(xi), and then gi
V(xi, y

p) ≤ α for every p ∈ N. If there exists

p̄ ∈ N such that yp̄ ∈ V , then inf
z∈V

[ui(xi, z−i) − ui(z)] ≤ α, which contradicts the fact that
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inf
z∈V

[ui(xi, z−i)−ui(z)] > α. Thus, for all p ∈ N, yp /∈ V . Since the sequence {yp}p∈N converges

to y ∈ V , there exists η ∈ N such that, for all p ≥ η, yp ∈ V , which contradicts the fact that

yp /∈ V for all p ∈ N. Thus, A(xi) is closed, which means that the function gi
V(xi, .) is lower

semicontinuous over X . Since the function ϕi(xi, .) is the pointwise supremum of a collection of

lower semicontinuous functions on X , by Lemma 2.39, page 43 in Aliprantis and Border [1994],

ϕi(xi, .) is lower semicontinuous on X .

Now, if there exists x̄ ∈ X such that, for all i ∈ I ,

sup
xi∈Xi

ϕi(xi, x̄) ≤ 0, (3)

then x̄ is a Nash equilibrium. Indeed, suppose x̄ is not a Nash equilibrium. Since the game G

is weakly transfer continuous, then there exists player i, yi, and a neighborhood V of x̄ such that

ui(yi, z−i) > ui(z), for all z ∈ V . Then, ϕ(yi, x̄) > 0, which contradicts (3).

Consider the following collection:

C(y) = {x ∈ X : ϕi(yi, x) ≤ 0, i = 1, ..., n}, y ∈ X.

Then, for every y ∈ X , the set C(y) is closed in X and by Lemma 1 in Tian [1993], the collection

{C(y), y ∈ X} has the finite intersection if the game G is diagonally transfer quasiconcave.

Since X is compact, then
⋂

y∈X

C(y) 6= ∅. Hence, there exists x̄ ∈ X such that for all i ∈ I , we

have sup
xi∈Xi

ϕi(xi, x̄) ≤ 0.

Necessity (⇒): It is the same as that of Theorem 1 in Baye et al. [1993].

Since a game is diagonally transfer quasiconcave provided it is quasiconcave, we have the

following corollary.

COROLLARY 3.1 A game G = (Xi, ui)i∈I possesses a pure strategy Nash equilibrium if it is

convex, compact, bounded, weakly transfer continuous, and quasiconcave.

REMARK 3.2 Weak transfer continuity neither implies nor is implied by better-reply security in

Reny [1999] or diagonal transfer continuity in Baye et al. [1993].

EXAMPLE 3.2 Consider the two-player game with the following payoff functions defined on

[0, 1]× [0.1].

ui(x1, x2) =





ϕi(x1, x2), if x1 = x2,

ψi(x1, x2), otherwise,
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where ϕ1(x) ≥ 2 and is bounded, 0 ≤ ϕ2(x) ≤ 1, and ψi(x) ≤ 1, i = 1, 2, for all x ∈
[0, 1]× [0.1].

Clearly, the diagonal game G is compact and bounded. Suppose that G is also quasiconcave

and satisfies the following conditions:




ψ1(1, x2) > ψ1(x1, x2), ∀x1 < 1, x1 6= x2, ∀x2 ∈ [0, 1],

u2(x1, 1) > u2(x1, x2), ∀x2 < 1, ∀x1 ∈ [0, 1].

Then we can show that it is also weakly transfer continuous so that it has a Nash equilibrium by

Corollary 3.1.

Indeed, suppose x is not a Nash Equilibrium. Then there exists z ∈ X such that either

u1(z1, x2) > u1(x) or u2(x1, z2) > u2(x).

1. u1(z1, x2) > u1(x). If x1 = x2, then u1(z1, x2) > ϕ1(x1, x2), which is impossible. Thus,

x1 6= x2. Therefore, u1(z1, x2) > ψ1(x1, x2).

1.1. If x1 < 1, let y1 = 1 and choose a neighborhood V(x) of x such that V(x) ⊂ [0, 1)×
[0, 1] and for all x′ ∈ V(x), x′1 6= x′2. Thus, we have u1(y1, x

′
2) > ψ1(x′) for all

x′ ∈ V(x).

1.2. If x1 = 1, we must have x2 < 1. Then, let y2 = 1 and choose a neighborhood V(x)

of x such that V(x) ⊂ [0, 1] × [0, 1) and for all x′ ∈ V(x), x′1 6= x′2. Thus, we have

u2(x′1, y2) > u2(x′) for all x′ ∈ V(x).

2. u2(x1, z2) > u2(x). If x1 = x2 = 1, then u2(z1, x2) > ϕ2(x1, x2), which is impossible by

assumption. Thus, (x1, x2) 6= (1, 1).

2.1. If x1 6= x2 and x1 < 1, let y1 = 1 and choose a neighborhood V(x) of x such that

V(x) ⊂ [0, 1)× [0, 1] and for all x′ ∈ V(x), x′1 6= x′2. Thus, u1(y1, x
′
2) > ψ1(x′) for

all x′ ∈ V(x).

2.2. If x1 = x2 or x1 = 1, let y2 = 1 and choose a neighborhood V(x) of x such that

V(x) ⊂ [0, 1] × [0, 1) and for all x′ ∈ V(x). Thus, we have u2(x′1, y2) > u2(x′) for

all x′ ∈ V(x).

Let U(x, y) = u1(y1, x2)+u2(x1, y2) and let x = (0, 0), y = (0, 1). Then, U(x, y) = ϕ1(0, 0)+

ψ2(0, 1) > U(x, x) = ϕ1(0, 0) + ϕ2(0, 0). However, for all y
′ ∈ [0, 1] × [0, 1] and δ > 0,

there exists z ∈ Bδ(x) ∩ [0, 1] × [0, 1] such that z1 = z2 6= y
′
1. Thus, we have U(z, y

′
) =

ψ1(y
′
1, z1)+u2(z1, y

′
2) ≤ 2 ≤ ϕ1(z1, z2)+ϕ2(z1, z1) = U(z, z). Thus, the game is not diagonally

transfer continuous, so Theorem 1 of Baye et al. [1993] can not apply.
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EXAMPLE 3.3 Consider the two-player game with the following payoff functions defined on

[0, 1]× [0.1].

u1(x1, x2) =





4 + x1 + x2, if x1 = x2,

x1 + x2, otherwise,

u2(x1, x2) =





4, if x1 = x2 = 0,

6, if (x1, x2) = (0, 1),

3(x1 + x2), otherwise,

Clearly, this game G is compact, bounded, and quasiconcave. We can show that it is also

weakly transfer continuous so that it has a Nash equilibrium by Corollary 3.1.

To see this, suppose x is not a Nash Equilibrium. Then there exists z ∈ X such that either

u1(z1, x2) > u1(x) or u2(x1, z2) > u2(x).

1. u1(z1, x2) > u1(x). If x1 = x2, then u1(z1, x2) > 4 + x1 + x2, which is impossible. Thus,

x1 6= x2. Therefore, u1(z1, x2) > x1 + x2.

1.1. If x1 < 1, let y1 = 1 and choose a neighborhood V(x) of x such that V(x) ⊂ [0, 1)×
[0, 1] and for all x′ ∈ V(x), x′1 6= x′2. Thus, we have u1(y1, x

′
2) ≥ 1+x′2 > x′1 +x′2 =

u1(x′) for all x′ ∈ V(x).

1.2. If x1 = 1, we must have x2 < 1. Then, let y2 = 1 and choose a neighborhood V(x)

of x such that V(x) ⊂ [0, 1] × [0, 1) and for all x′ ∈ V(x), x′1 6= x′2. Thus, we have

u2(x′1, y2) = 3(x′1 + 1) > 3(x′1 + x′2) = u2(x′) for all x′ ∈ V(x).

2. u2(x1, z2) > u2(x). If x1 = x2 = 1, then u2(z1, x2) > 6, which is impossible. Thus,

(x1, x2) 6= (1, 1).

2.1. If x1 6= x2 and x1 < 1, let y1 = 1 and choose a neighborhood V(x) of x such that

V(x) ⊂ [0, 1) × [0, 1] and for all x′ ∈ V(x), x′1 6= x′2. Thus, u1(y1, x
′
2) ≥ 1 + x′2 >

x′1 + x′2 = u1(x′) for all x′ ∈ V(x).

2.2. If x1 = x2 or x1 = 1, let y2 = 1 and choose a neighborhood V(x) of x such that

V(x) ⊂ [0, 1] × [0, 1) and for all x′ ∈ V(x). Thus, we have u2(x′1, y2) > u2(x′)

for all x′ ∈ V(x). Indeed, if x′1 = 0, then u2(x′1, y2) = 6 > u2(0, x′2) =



4, if x′2 = 0,

3x′2, otherwise,
and if x′1 6= 0, u2(x′1, y2) = 3(x′1 + 1) > u2(x′1, x

′
2).

However, we can show the game is neither diagonally transfer continuous nor better-reply secure.
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Let U(x, y) = u1(y1, x2) + u2(x1, y2) and x = (ε, ε), y = (ε, 1) with 0 < ε < 0. Then,

U(x, y) = u1(ε, ε)+u2(ε, 1) > U(x, x) = u1(ε, ε)+u2(ε, ε). However, for all y
′ ∈ [0, 1]× [0, 1]

and δ > 0, there exists z ∈ Bδ(ε, ε) ∩ [0, 1] × [0, 1] such that z1 = z2 /∈ {0, y
′
1}. Thus, we have

U(z, y
′
) = u1(y

′
1, z1)+u2(z1, y

′
2) = y

′
1 +z1 +3(z1 +y

′
2) ≤ 4+4z1 ≤ 4+8z1 = U(z, z). Thus,

this game is not diagonally transfer continuous, so Theorem 1 of Baye et al. [1993] can not apply.

Now, let x = (0, 0) and u = (4, 4). Clearly (x, u) is in the closure of the graph of its vector

function, and x is not a Nash equilibrium, thus, player 1 cannot obtain a payoff strictly above

u1 = 4. Indeed, for all x1 ∈ [0, 1], and every δ > 0, there exists z2 6= x1 ∈ Bδ(0) such

that u1(x1, z2) = x1 + z2 ≤ u1 = 4. Player 2 cannot obtain a payoff strictly above u2 = 4

either. To see this, for all x2 ∈ [0, 1] and any δ > 0, there exists z1 6= x1 ∈ Bδ(0) where

z1 =





very small 6= 0, if x2 = 1,

0, if x2 < 1,
such that u2(z1, x2) ≤ u2 = 4. Thus, this game is not

better-reply secure, so Theorem 3.1 of Reny [1999] can not apply.

While it is simple to verify weak transfer continuity, it is sometimes even simpler to verify

other conditions leading to it. In addition to the fact that transfer continuity implies weak transfer

continuity, weak transfer upper continuity and weak transfer lower continuity introduced below,

combined respectively with payoff security and upper semicontinuity, also imply weak transfer

continuity, respectively.

DEFINITION 3.3 A game G = (Xi, ui)i∈I is said to be upper semicontinuous if for each player

i, the payoff function ui is upper semicontinuous over X , i.e. for each x ∈ X , and every ε > 0,

there exists a neighborhood Vx of x such that ui(x) ≥ ui(x′)− ε, for each x′ ∈ V(x).

DEFINITION 3.4 A game G = (Xi, ui)i∈I is said to be weakly transfer upper continuous if

x ∈ X is not an equilibrium, then there exists player i, x̂i ∈ Xi and a neighborhood V(x) of x

such that ui(x̂i, x−i) > ui(x′) for all x′ ∈ V(x).

REMARK 3.3 If the game G is upper semicontinuous, then G is weakly transfer upper continu-

ous. Indeed, suppose x is not a Nash equilibrium, then there exists player i and a strategy yi such

that ui(yi, x−i) > ui(x). Choose ε > 0 such that ui(yi, x−i)− ε > ui(x). Since G is upper semi-

continuous, then there exists a neighborhood Vx of x such that ui(yi, x−i)−ε > ui(x) ≥ ui(x′)−ε,

for each x′ ∈ V(x).

DEFINITION 3.5 A game G = (Xi, ui)i∈I is said to be weakly transfer lower continuous if x is

not a Nash Equilibrium, which implies that there exists a player i, yi ∈ Xi, and a neighborhood of

V(x−i) of x−i such that ui(yi, x
′
−i) > ui(x) for all x′−i ∈ Vx−i .
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REMARK 3.4 If the game G is payoff secure, then G is weakly transfer lower continuous. To

see this, suppose x ∈ X and x is not a Nash equilibrium, then there exists a player i that has a

strategy x̂i such that ui(x̂i, x−i) > ui(x). Choose ε > 0 such that ui(x̂i, x−i)− ε > ui(x). Since

G is payoff secure, then there exists a strategy yi and a neighborhood V(x−i) of x−i such that

ui(yi, x
′
−i) ≥ ui(x̂i, x−i)− ε > ui(x), for each x′−i ∈ V(x−i).

We then have the following propositions that provide sufficient conditions for weak transfer

continuity.

PROPOSITION 3.1 If a game G = (Xi, ui)i∈I is weakly transfer upper continuous and payoff

secure, then it is weakly transfer continuous.

PROOF. Suppose x ∈ X is not a Nash equilibrium. Then, by weak transfer upper continuity,

some player i has a strategy x̂i ∈ Xi and a neighborhood V(x) of x such that ui(x̂i, x−i) > ui(z)

for all z ∈ V(x). Choose ε > 0 such that ui(x̂i, x−i)− ε > sup
z∈V(x)

ui(z). The payoff security of G

implies that there exists a strategy yi and a neighborhood Ṽ(x−i) of x−i such that ui(yi, z−i) ≥
ui(x̂i, x−i)− ε for all z−i ∈ Ṽ(x−i). Thus, there exists yi ∈ Xi and a neighborhood of V̂(x) of x

such that ui(yi, z−i) > ui(z) for all z ∈ V̂(x).

PROPOSITION 3.2 If a game G = (Xi, ui)i∈I is weakly transfer lower continuous and upper

semicontinuous, then it is weakly transfer continuous.

PROOF. Suppose x ∈ X is not a Nash equilibrium. Then, by weak transfer lower continuity, some

player i has a strategy x̂i ∈ Xi and a neighborhood V(x−i) of xi such that ui(x̂i, z−i) > ui(x)

for all z−i ∈ V(x−i). Choose ε > 0 such that inf
z−i∈V(x−i)

ui(x̂i, z−i) > ui(x) + ε. The upper

semicontinuity of G implies that there exists a neighborhood Ṽ(x) of x such that ui(x) + ε ≥
ui(z) for all z ∈ Ṽ(x). Thus, there exists yi ∈ Xi and a neighborhood of V̂(x) of x such that

ui(yi, z−i) > ui(z) for all z ∈ V̂(x).

REMARK 3.5 It is worth to point out that, when payoffs are upper semicontinuous, payoff se-

curity implies better-reply security while weak transfer lower continuity implies weak transfer

continuity.

Propositions 3.1-3.2, together with Theorem 3.1, immediately yield the following useful re-

sults.

COROLLARY 3.2 If a game G = (Xi, ui)i∈I is convex, compact, bounded, weakly transfer upper

continuous and payoff secure, and quasiconcave, then it possesses a pure strategy Nash equilib-

rium.
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COROLLARY 3.3 If a game G = (Xi, ui)i∈I is convex, compact, bounded, weakly transfer lower

continuous and upper semicontinuous, and quasiconcave, then it possesses a pure strategy Nash

equilibrium.

As an application of the above proposition, consider the following well-known noisy game.

EXAMPLE 3.4 Consider the two-player, nonzero sum, noisy games with the following payoff

functions defined from [0, 1]× [0.1].

fi(xi, x−i) =





li(xi), if xi < x−i,

φi(xi), if xi = x−i,

mi(x−i), if xi > x−i,

where li(.), mi(.) and φi(.) are upper semicontinuous over [0, 1], li(.) is strictly nondecreasing on

[0, 1] and satisfies the following conditions:

ASSUMPTION 3.1

a) ∀x ∈ [0, 1], ∀ε > 0, there exists a neighborhood Vx of x such that φi(x) ≥
max(li(z),mi(z))− ε, for every z ∈ Vx.

b) if mi(x) > φi(x) with x < 1, then there exists a neighborhood Vx ⊂ [0, 1) of x such that

mi(z) > φi(x), for every z ∈ Vx.

c) if φi(x) > mi(x) with x < 1, then there exists a neighborhood Vx ⊂ [0, 1) of x such that

φi(z) > mi(x), for every z ∈ Vx.

It is clear that this game G is compact and convex. Suppose that G is quasiconcave. When the

game satisfies these conditions, one can show that it is upper semicontinuous and weakly transfer

lower continuous so that it has a Nash equilibrium by Corollary 3.3.2

Indeed, the condition a) and the upper semicontinuity of li(.), mi(.) and φi(.) over [0, 1],

imply that the noisy game is upper semicontinuous. The conditions b) and c) imply that the

game is weakly transfer lower continuous. Therefore the game processes a Nash equilibrium by

Corollary 3.3.

EXAMPLE 3.5 As an application of the above example, consider the following well-known Noisy

Duel game where x1, x2 ∈ [0, 1]:

u1(x1, x2) = u2(x1, x2) =





2x1 − 1, if x1 < x2,

0, if x1 = x2,

2x2 − 1, if x1 > x2.

2As Reny [1999] showed, if φi(x) ∈ co{li(x), mi(x)} and li(x) is nondecreasing, then the game is quasiconcave.
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Let l1(x) = l2(x) = l(x) = 2x− 1, m1(x) = m2(x) = m(x) = 2x− 1 and φ(x) = φi(x) = 0,

i = 1, 2. It is clear that the functions l(.), m(.) and φ(.) are continuous over [0, 1], and l(.) is

strictly nondecreasing on [0, 1] and satisfies the following conditions: 1) ∀x ∈ [0, 1], ∀ε > 0, there

exists a neighborhood Vx ⊂ [0, 1] of x such that 0 ≥ max(l(z),m(z)) − ε, for every z ∈ Vx; b)

if m(x) = 2x− 1 > φi(x) = 0 with x < 1, then there exists a neighborhood Vx ⊂ (1/2, 1) of x

such that m(z) > φ(x), for every z ∈ Vx; 3) if φ(x) = 0 > m(x) = 2x − 1, then there exists a

neighborhood Vx ⊂ [0, 1/2) of x such that φ(z) > m(x), for every z ∈ Vx. Then, according to

Example 3.4, the game is upper semicontinuous and weakly transfer lower continuous and since

G is compact, convex and quasiconcave, it processes a Nash equilibrium by Corollary 3.3.

3.2 Nash Equilibrium in Discontinuous and Nonconvex Games

In this subsection we characterize the existence of pure strategy Nash equilibrium in games that are

both discontinuous and nonconvex. We generalize the results above as well as the existence results

of Baye et al. [1993], Reny [1999] and Bagh and Jofre [2006] without assuming the convexity of

strategy spaces or any form of quasiconcavity of payoff functions.

The following theorem generalizes Theorem 3.1 by relaxing the convexity of strategy spaces

and diagonal transfer quasiconcavity of payoff functions.

THEOREM 3.2 Suppose G = (Xi, ui)i∈I is compact, bounded, and weakly transfer continuous.

Then, the game G has a Nash equilibrium if and only if for all A ∈ 〈X〉, there exists x ∈ X such

that for all i ∈ I , ui(yi, x−i) ≤ ui(x), ∀y ∈ A.

PROOF. Sufficiency (⇐). The proof of sufficiency is the same as that of Theorem 3.1 except

the last paragraph. Note that, for C(y) = {x ∈ X : ϕi(yi, x) ≤ 0, ∀i ∈ I} and for y ∈ X ,

C = (Xi, ui)i∈I has at least one pure strategy Nash equilibrium if and only if
⋂

x∈X

C(x) 6= ∅.

Thus, it suffices to show that
⋂

x∈X

C(x) 6= ∅ is nonempty. Since the function yi 7→ ϕi(x, yi) is

lower semicontinuous on compact set Xi, C(x) is a compact subset for every x ∈ X . Thus, it

suffices to show that the family {C(x)}x∈X possesses the finite intersection property. Indeed, by

assumption, for every A ∈ 〈X〉, there exists ŷ ∈ X such that ui(x) ≤ ui(ŷi, x−i), ∀x ∈ A and

∀i ∈ I .

Let V ∈ f(ŷi) be a neighborhood of ŷi. Then, inf
zi∈V

[ui(x) − ui(zi, x−i)] ≤ 0 for all x ∈ A.

Thus, ϕi(x, ŷi) ≤ 0, ∀x ∈ A and ∀i ∈ I . Therefore, for every A ∈ 〈X〉, there exists ŷ ∈ X such

that ŷ ∈ ⋂
x∈A

C(x).
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Necessity (⇒): Let x∗ ∈ X be a pure strategy Nash equilibrium of the game G. Then for all

i ∈ I , ui(yi, x
∗
−i) ≤ ui(x∗) for all y ∈ Xi, and thus we have max

y∈A
ui(yi, x

∗
−i) ≤ ui(x∗) for any

subset A = {y1, ..., ym} ∈ 〈Y 〉.

Theorem 1 in Baye et al. [1993] can also be generalized by relaxing the convexity of strategy

spaces and diagonal transfer quasiconcavity of payoff functions.

THEOREM 3.3 Suppose G = (Xi, ui)i∈I is compact and diagonally transfer continuous. Then,

the game G has a Nash equilibrium if and only if for all A ∈ 〈X〉, there exists x ∈ X such that

for all i ∈ I , ui(yi, x−i) ≤ ui(x), ∀y ∈ A.

PROOF. The proof of necessity is the same as that of Theorem 3.2. We only need to prove

sufficiency.

Let

F (y) = {x ∈ X : U(x, y) ≤ U(x, x), ∀i ∈ I} y ∈ X.

It is clear that G = (Xi, ui)i∈I has a pure strategy Nash equilibrium if and only if
⋂

y∈X

F (y) 6=
∅. Since U(x, y) is diagonally transfer continuous in x, we have

⋂
y∈X

F (y) =
⋂

y∈X

clF (y) by

Theorem 1 in Baye et al. [1993]. Furthermore, by assumption, for every A ∈ 〈X〉, there exists

x̂ ∈ X such that ui(yi, x̂−i) ≤ ui(x̂), ∀y ∈ A and ∀i ∈ I , and thus U(y, x̂) ≤ U(x̂), ∀y ∈ A,

which means F (y) has the finite intersection property. Since X is compact, we have
⋂

y∈X

F (y) =
⋂

y∈X

clF (y) 6= ∅. This completes the proof.

EXAMPLE 3.6 Consider a game with n = 2, I = {1, 2}, X1 = X2 = [1, 2]∪ [3, 4], x = (x1, x2)

and

u1(x) = x2x
2
1,

u2(x) = −x1x
2
2.

Note that, Xi is not convex for i = 1, 2, and the function yi 7→ ui(x−i, yi) is not quasiconcave for

i = 1 so that the existing theorems on Nash equilibrium are not applicable.

However, we can show the existence of Nash equilibrium by applying Theorem 3.3. Indeed,

for each x = (x1, x2) and y = (y1, y2),

U(x, y) = x2y
2
1 − x1y

2
2 .
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The function U is continuous on X × X . For any subset {(1y1,2 y2), ..., (ky1,k y2)} of X , let

x = (x1, x2) ∈ X such that x1 = max
h=1,...,k

iy1 and x2 = min
h=1,...,k

iy2. Then, we have





iy
2
2 ≥ x2

2, ∀i = 1, ..., k,

iy
2
1 ≤ x2

1.

Thus,



−x1 iy

2
2 ≤ −x1 x2

2, ∀i = 1, ..., k,

x2 iy
2
1 ≤ x2 x2

1.

Therefore, U(x, iy) ≤ U(x, x), ∀i = 1, ..., k. According to Theorem 3.3, this game has a Nash

equilibrium.

Finally we can also generalize Theorem 3.1 in Reny [1999] and the results in Bagh and Jofre

[2006] by relaxing convexity of strategy spaces and quasiconcavity of payoff functions.

THEOREM 3.4 Suppose that G = (Xi, ui)i∈I is compact, bounded, and better-reply secure.

Then, G = (Xi, ui)i∈I has a Nash equilibrium if and only if for all A ∈ 〈X〉, there exists x ∈ X

such that for each i ∈ I , we have ui(yi, x−i) ≤ ui(x), ∀y ∈ A.

PROOF. Necessity (⇒): The proof of necessity is the same as that of Theorem 3.2. We only need

to prove sufficiency.

Sufficiency (⇐): For each i and every x ∈ X , let

ui(x) = sup
V∈f(x−i)

inf
z−i∈V

ui(xi, z−i),

where f(a) is the set of all open neighborhoods of a.

We have:

• ui(xi, .) is lower semicontinuous on X−i

• If (x, α) ∈ Γ and ∀i ∈ I , sup
xi∈Xi

ui(xi, x−i) ≤ αi, then x is a Nash equilibrium (Reny

[1999]).

Let u(x, y) = (u(x1, y−1), ..., u(xI , y−I)) and E(x) = {(y, α) ∈ Γ : u(x, y) ≤ α}, where ≤
denotes componentwise weak order in RI .

Then, the game G has at least one Nash equilibrium if and only if E =
⋂

x∈X

E(x) 6= ∅. Thus,

it suffices to show that E is nonempty. Since Γ is a compact subset of X × RI , and the function

y 7→ u(x, y) is lower semicontinuous over X , for every x ∈ X , then E(x) is also a compact subset
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of X × RI . Thus, it suffices to show that the family {E(x)}x∈X possesses the finite intersection

property. To see this, note that, by assumption, for every A ∈ 〈X〉, there exists x̂ ∈ X such that

ui(yi, x̂−i) ≤ ui(x̂), ∀y ∈ A and ∀i ∈ I .

Let V ∈ f(x̂−i) be a neighborhood of x̂−i. We have inf
z−i∈V

ui(yi, z−i) ≤ ui(yi, x̂−i) for all

y ∈ A. Then, ui(yi, x̂−i) ≤ ui(yi, x̂−i) ≤ ui(x̂) = α̂i, ∀y ∈ A and ∀i ∈ I . Thus, for every

A ∈ 〈X〉, there exists (x̂, α̂) ∈ Γ such that (x̂, α̂) ∈ ⋂
y∈A

E(y). This completes the proof.

Since weak reciprocal upper semicontinuity and payoff security imply better-reply security,

we have the following corollary.

COROLLARY 3.4 Suppose that the game G = (Xi, ui)i∈I is compact, bounded, weakly re-

ciprocal upper semicontinuous and payoff secure. Then, G = (Xi, ui)i∈I has a Nash equilib-

rium if and only if for all A ∈ 〈X〉, there exists x ∈ X such that for each i ∈ I , we have

ui(yi, x−i) ≤ ui(x), ∀y ∈ A.

4 Existence of Dominant-Strategy Equilibria

In this section we investigate the existence of dominant strategy equilibria in games that may be

discontinuous and may not have any form of quasiconcavities.

We start by reviewing some of the basic definitions and results introduced and obtained in

Baye et al. [1993].

DEFINITION 4.1 The i-th player’s payoff function ui : X → R is said to be transfer upper

continuous in xi with respect to X , if for xi ∈ Xi and y ∈ X , ui(y) > ui(xi, y−i) implies that

there exists a point y
′ ∈ X and a neighborhood V(xi) of xi such that ui(y

′
) > ui(x

′
i, y

′
−i), for all

x
′
i ∈ V(xi).

DEFINITION 4.2 The i-th player’s payoff function ui : X → R is said to be uniformly transfer

quasiconcave on X if, for any finite subset Y m = {y1, ..., ym} ⊂ X , there exists a corresponding

finite subset {x1
i , ..., x

m
i } ⊂ Xi such that for any subset {yk1

i , yk2

i , ..., yks

i }, 1 ≤ s ≤ m, and any

xi ∈ co{xk1

i , xk2

i , ..., xks

i }, we have min
1≤l≤s

{ui(ykl
)− ui(xi, y

kl

−i)} ≤ 0.

Baye et al. [1993] showed that a game G = (Xi, ui)i∈I that is convex, compact and transfer

upper continuous in xi with respect to X must possess a dominant-strategy equilibrium if and only

if ui is uniformly transfer quasiconcave on X for all i ∈ I .

In the following subsections, we first provide a new result on the existence of dominant strategy

equilibrium in discontinuous games. We then characterize the existence of dominant strategy
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equilibrium without assuming the convexity of strategy spaces or any form of quasiconcavity

of payoff functions. We also generalize existence results of Baye et al. [1993] by relaxing the

convexity of strategy spaces and diagonal transfer quasiconcavity of payoff functions.

4.1 Dominant Strategy Equilibrium in Discontinuous Games

We start by introducing the notion of weak dominant transfer upper continuity, which permits us

to get new existence results on dominant strategy equilibrium in discontinuous and nonconvex

games.

DEFINITION 4.3 A game G = (Xi, ui)i∈I is said to be weakly dominant transfer upper con-

tinuous if for each x ∈ X , x is not a dominant-strategy equilibrium, then there exists player i, a

strategy y ∈ X and a neighborhood V(xi) of xi such that ui(y) > ui(zi, y−i), for each zi ∈ V(xi).

A game is weakly dominant transfer upper continuous if for every non dominant-strategy equi-

librium x∗, some player i has a strategy yi which dominates all other strategy zi in a neighborhood

of x∗i when other players play y−i.

The following theorem characterizes the existence of dominant-strategy equilibria if the game

is weakly dominant transfer upper continuous and the strategy spaces of players are convex.

THEOREM 4.1 Suppose G = (Xi, ui)i∈I is compact, bounded, convex and weakly dominant

transfer upper continuous. Then, the game G has a dominant-strategy equilibrium if and only if

G is uniformly transfer quasiconcave.

PROOF. Sufficiency (⇐): For each player i ∈ I and every (x, yi) ∈ X ×Xi, let

πi(x, yi) = sup
V∈Ω(yi)

inf
zi∈V

[ui(x)− ui(zi, x−i)]

where Ω(yi) is the set of all open neighborhoods of yi.

For each i and every x ∈ X , the function πi(x, .) is real-valued by bounded of payoff func-

tions. It is also lower semicontinuous over Xi. To see this, for i ∈ I , let x ∈ X and V be a open

neighborhood in Xi. Consider the following function

hi
V(x, yi) =





inf
zi∈V

[ui(x)− ui(zi, x−i)], if yi ∈ V,

−∞, otherwise.

We show that hi
V(x, .) is lower semicontinuous on Xi. Let

A(x) = {yi ∈ Xi : hi
V(x, yi) ≤ α}, α ∈ R.
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Suppose that there exists yi ∈ Xi such that yi is in the closure of A(x), but not in A(x). Then,

there exists a sequence {yp
i }p∈N ⊂ A(x) that converges to yi. Since yi /∈ A(x), inf

zi∈V
[ui(x) −

ui(zi, x−i)] > α. If yi /∈ V , then −∞ > α, which is impossible, and thus yi ∈ V . Also, we

have hi
V(x, yi) > α. Otherwise, we have {yp

i }p∈N ⊂ A(x), and then hi
V(x, yp

i ) ≤ α, for every

p ∈ N. If there exists p̄ ∈ N such that yp̄
i ∈ V , then inf

zi∈V
[ui(x) − ui(zi, x−i)] ≤ α, which

contradicts inf
zi∈V

[ui(x) − ui(zi, x−i)] > α. Then, for all p ∈ N, yp
i /∈ V . Since the sequence

{yp
i }p∈N converges to yi and yi ∈ V , then there exists η ∈ N such that for all p ≥ η, yp

i ∈ V ,

which contradicts the fact that for all p ∈ N, yp
i /∈ V . Thus, the set A(x) is closed, i.e. the function

hi
V(x, .) is lower semicontinuous over Xi. Since the function πi(x, .) is the pointwise supremum

of a collection of lower semicontinuous functions on Xi, then according to Lemma 2.39, page 43

in Aliprantis and Border [1994], πi(x, .) is lower semicontinuous on Xi.

Note that, if there exists ȳ ∈ X such that for all i ∈ I ,

sup
x∈X

πi(x, ȳi) ≤ 0, (4)

then ȳ is a dominant-strategy equilibrium. To see this, suppose ȳ is not a dominant-strategy equi-

librium. Since the game G is weakly dominant transfer upper continuous, then there exists player

i, a strategy x ∈ X , and a neighborhood V of ȳi such that ui(x) > ui(zi, x−i), for all zi ∈ V .

Then, π(x, ȳi) > 0 which contradicts (4).

Consider the following collection:

H(x) = {y ∈ X : πi(x, yi) ≤ 0, i = 1, ..., n}, x ∈ X.

Then, by lower semicontinuity of π, H(x) is closed for all x ∈ X , and by Lemma 1 in Tian

[1993], the collection {H(x), x ∈ X} has the finite intersection if the game G is uniformly

transfer quasiconcave. Since X is compact, then
⋂

x∈X

H(x) 6= ∅. Hence, there exists ȳ ∈ X such

that for all i ∈ I , we have sup
x∈X

πi(x, ȳi) ≤ 0.

Necessity (⇒): Suppose that the game G has a dominant-strategy equilibrium y ∈ X .

We need to show that G is uniformly transfer quasiconcave. For any finite subset

A = {x1, ..., xm} ⊂ X , let the corresponding finite subset B = {y1, ..., ym} = {y}.

Then, for any subset J ⊂ {1, 2, ...,m}, for any y ∈ co{yh, h ∈ J} = {y} and any i ∈ I we

have min
h∈J

[ui(xh) − ui(yi, x
h
−i)] ≤ ui(xh) − ui(yi, x

h
−i) ≤ 0. Hence, G is uniformly transfer

quasiconcave.

While it is also simple to verify weak dominant transfer upper continuity, it is sometimes

even simpler to verify other conditions leading to it. The following proposition provides sufficient
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conditions for a game to be weakly dominant transfer upper continuous.

PROPOSITION 4.1 Any of the following conditions implies that the game G = (Xi, ui)i∈I is

weakly dominant transfer upper continuous.

(a) ui is continuous in xi.

(b) ui is upper semi-continuous in xi.

(c) ui is transfer upper continuous in xi.

4.2 Dominant Strategy Equilibrium in Discontinuous and Nonconvex Games

In this subsection we characterize the existence of dominant strategy equilibrium in games that

are both discontinuous and nonconvex. We generalize the results above as well as the existence

results of Baye et al. [1993] without assuming the convexity of strategy spaces or any form of

quasiconcavity of payoff functions.

The following theorem generalizes Theorem 4.1 by relaxing the convexity of strategy spaces

and diagonal transfer quasiconcavity of payoff functions.

THEOREM 4.2 Suppose G = (Xi, ui)i∈I is compact, bounded, and weakly dominant transfer

upper continuous. Then, the game G has a dominant-strategy equilibrium if and only if for all

A ∈ 〈X〉, there exists x ∈ X such that ui(x) ≤ ui(yi, x−i), for each x ∈ A.

PROOF. Sufficiency (⇐): For each player i ∈ I and every (x, yi) ∈ X ×Xi, let

πi(x, yi) = sup
V∈Ω(yi)

inf
zi∈V

[ui(x)− ui(zi, x−i)]

where Ω(yi) is the set of all open neighborhoods of yi.

For each i and every x ∈ X , the function πi(x, .) is both real-valued and lower semicontinuous

over Xi (see the sufficiency proof of Theorem 4.1).

If there exists ȳ ∈ X such that for all i ∈ I ,

sup
x∈X

πi(x, ȳi) ≤ 0,

then ȳ is a dominant-strategy equilibrium.

Consider the following collection:

H(x) = {y ∈ X : πi(x, yi) ≤ 0, i ∈ I}, x ∈ X.

Then, the game G has at least one dominant-strategy equilibrium if and only if H =
⋂

x∈X

H(x) 6=
∅. Thus, it suffices to show that H is nonempty. Since the function yi 7→ πi(x, yi) is lower
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semicontinuous on Xi, for every x ∈ X , then H(x) is also a compact subset of X . Thus, it

suffices to show that the family {H(x)}x∈X possesses the finite intersection property. To see this,

we have ∀A ∈ 〈X〉 and ∀i ∈ I , ∃yi ∈ Xi such that

ui(x) ≤ ui(yi, x−i), for each x ∈ A.

Then, for every A ∈ 〈X〉, there exists ŷ ∈ X such that ui(x) ≤ ui(ŷi, x−i), ∀x ∈ A and ∀i ∈ I .

Let U ∈ f(ŷi) be a neighborhood of ŷi. Then, inf
zi∈U

[ui(x) − ui(zi, x−i)] ≤ 0 for all x ∈ A.

Thus, πi(x, ŷi) ≤ 0, ∀x ∈ A and ∀i ∈ I . Therefore, for every A ∈ 〈X〉, there exists ŷ ∈ X such

that ŷ ∈ ⋂
x∈A

H(x).

Necessity (⇒): It is the same as that of Theorem 3.2, so it is omitted here.

The existence theorem on dominant strategy in Baye et al. [1993] can be also generalized

by relaxing the convexity of strategy spaces and the uniform transfer quasiconcavity of payoff

functions. We first introduce the following weak notion of continuity.

DEFINITION 4.4 Let X be a nonempty subset of a topological space and Y be a nonempty subset.

A function f : X × Y → R is said to be α-transfer lower continuous in x with respect to Y if for

(x, y) ∈ X × Y , f(x, y) > α implies that there exists some point y
′ ∈ Y and some neighborhood

V(x) ⊂ X of x such that f(z, y
′
) > α for all z ∈ V(x).

Let X̂ = Π
i∈I

X = Xn. A generic element of X̂ is denoted by ŷ = (y1, . . . , yI). Define a

function φ : X × X̂ → R by

φ(x, ŷ) =
n∑

i=1

{ui(yi)− ui(xi, y
i
−i)}, ∀(x, ŷ) ∈ X × X̂.

Assume that for each i, Xi is a nonempty and compact subset of a topological space Ei and ui

is continuous on X . Then, for all x ∈ X , the maximum of φ(x, .) over X̂ and min
x∈X

max
ŷ∈X̂

φ(x, ŷ)

exists.

Note that, by the definition of φ, we have

∀x ∈ X, max
ŷ∈X̂

φ(x, ŷ) ≥ 0. (5)

The following Lemma shows the relationship between the solution of φ and dominant strategy

equilibrium for G = (Xi, ui)i∈I .

LEMMA 4.1 A strategy profile x ∈ X is a dominant-strategy equilibrium for G = (Xi, ui)i∈I if

and only if max
ŷ∈X̂

φ(x, ŷ) = 0.
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PROOF. Necessity (⇒): Let x ∈ X be a dominant-strategy equilibrium for G = (Xi, ui)i∈I .

Then, ui(xi, y
i
−i) ≥ ui(yi), ∀yi ∈ X , ∀i ∈ I . Hence, φ(x, ŷ) =

n∑
i=1
{ui(yi) − ui(xi, y

i
−i)} ≤

0, ∀ŷ ∈ X̂ , i.e., max
ŷ∈X̂

φ(x, ŷ) ≤ 0. Combining this inequality with inequality (5), we have

max
ŷ∈X̂

φ(x, ŷ) = 0.

Sufficiency (⇐): Let x ∈ X be a strategy profile such that max
ŷ∈X̂

φ(x, ŷ) = 0. This

equality implies ∀ŷ ∈ X̂ , φ(x, ŷ) =
n∑

i=1
{ui(yi) − ui(xi, y

i
−i)} ≤ 0. For each i ∈ I ,

we write φ(x, ŷ) = ui(yi) − ui(xi, y
i
−i) +

n∑
j=1,j 6=i

{uj(yj) − uj(xj , y
j
−j)} ≤ 0 ∀ŷ ∈ X̂ .

Letting ŷ = (x, ..., x, yi, x, ..., x) ∈ X̂ with yi arbitrarily chosen in X , we have
n∑

j=1,j 6=i

{uj(x) − uj(xj , x̄−j)} = 0, and thus ui(yi) ≤ ui(xi, y
i
−i) ∀yi ∈ X , i = 1, . . . , I .

Thus, x is a dominant-strategy equilibrium for the game G = (Xi, ui)i∈I .

By the inequality (5) and Lemma 4.1, we have the following proposition.

PROPOSITION 4.2 Suppose that X is compact and ui is continuous on X . Let

α = min
x∈X

max
ŷ∈X̂

φ(x, ŷ). (6)

Then, the game G = (Xi, ui)i∈I has at least one dominant strategy equilibrium if and only if

α = 0.

DEFINITION 4.5 G = (Xi, ui)i∈I is 0-transfer lower continuous if φ is 0-transfer lower contin-

uous in x with respect to X̂ .

We then have the following result.

THEOREM 4.3 Suppose G = (Xi, ui)i∈I is compact and 0-transfer lower continuous in x with

respect to X̂ . Then, G = (Xi, ui)i∈I has a dominant-strategy equilibrium if and only if for all

A ∈ 〈X〉, there exists x ∈ X such that ui(x) ≤ ui(yi, x−i), for each x ∈ A.

PROOF. Sufficiency (⇐): Let D(y) = {x ∈ X : φ(x, y) ≤ 0} for y ∈ Y . Since G is 0-transfer

lower continuous,
⋂

y∈Y

D(y) =
⋂

y∈Y

cl D(y). To see this, let x ∈ ⋂
y∈Y

cl D(y) but not in
⋂

y∈Y

D(y).

Then, there exists y ∈ Y such that x /∈ D(y), i.e., φ(x, y) > 0. By 0-transfer lower continuity of

φ in x with respect to X , there exists y
′ ∈ X and a neighborhood V(x) of x such that φ(z, y

′
) > 0

for all z ∈ V(x). Thus, x /∈ cl D(y
′
), a contradiction. Since by assumption, for all A ∈ 〈X〉,

there exists x ∈ X such that ui(x) ≤ ui(yi, x−i), for each x ∈ A, we know that {cl D(y) :∈ Y }
has the finite intersection property. Also, {cl D(y) : y ∈ Y } is a compact family in the compact

23



X . Thus, ∅ 6= ⋂
y∈X

D(y). Hence, there exists x ∈ X such that φ(x∗, y) ≤ 0 = φ(x∗, x∗) for

y ∈ X , and thus, by Lemma 4.1, x∗ is a dominant strategy equilibrium.

Necessity (⇒): It is the same as that of Theorem 3.2, so it is omitted here.

COROLLARY 4.1 Suppose that the game (1) is partially separable3, Xi is a nonempty and com-

pact subset of a topological space Ei, and hi(xi) is upper semicontinuous over Xi, ∀i ∈ I . Then,

the game G = (Xi, ui)i∈I has a dominant-strategy equilibrium.

EXAMPLE 4.1 Again consider Example 3.6.

u1(x) = x2x
2
1,

u2(x) = −x1x
2
2.

Since Xi is not convex ∀i ∈ I , Theorem 4 in Baye et al. [1993] is not applicable.

For x = (x1, x2) and y = (y1, y2), we have

Φ(x, (y, z)) = y2y
2
1 − x2

1y2 − z1z
2
2 + z1x

2
2.

Note that Φ is continuous on X × X̂ . For any subset {((1y1,2 y2), (1z1,2 z2)),

..., ((ky1,k y2), (kz1,k z2))} of X̂ , let x = (x1, x2) ∈ X such that x1 = max
h=1,...,k

iy1 and

x2 = min
h=1,...,k

iz2. Then





iz
2
2 ≥ x2

2, ∀i = 1, ..., k,

iy
2
1 ≤ x2

1.

Thus,




iz1 iz
2
2 ≥i z1 x2

2, ∀i = 1, ..., k,

iy2 iy
2
1 ≤i y2 x2

1.
and then




− iz1 iz

2
2 + iz1 x2

2 ≤ 0, ∀i = 1, ..., k,

iy2 iy
2
1 − iy2 x2

1 ≤ 0.

Therefore, Φ(x, ( iy, iz)) ≤ 0, ∀i = 1, ..., k. According to Theorem 4.3, this game has a

dominant-strategy equilibrium. Indeed, x = (4, 1) is such a point.

5 Nash Equilibrium in Mixed Strategies

In this section, we consider the existence of mixed strategy Nash equilibria by applying the pure

strategy existence results derived in the previous sections. Assume that each Xi is a compact
3A game G = (I, (X)i∈I , (f)i∈I) is partially separable if for each i ∈ I there exist two functions hi : Xi → R

and g−i : X−i → R such that ui(x) = hi(xi) + g−i(x−i) for all x ∈ X .
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Hausdorff space. Let ui be bounded and measurable for all i ∈ I and let Mi be the regular,

countably additive probability measures on the Borel subsets of Xi, Mi is compact in the weak*

topology. Let us consider Ui be the extend of ui to M = Π
i∈I

Mi by defining Ui(µ) =
∫
X

ui(x)dµ(x)

for all µ ∈ M with dµ(x) = dµ1(x1)×dµ2(x2)× ...×dµn(xn), and let G = (Mi, Ui)i∈I denote

the mixed extension of G.

DEFINITION 5.1 A mixed strategy Nash equilibrium of the game G is an n-tuple of probability

measures (µ∗1, ..., µ
∗
n) ∈ M such that for all i ∈ I

Ui(µ∗) =
∫

X

ui(x)dµ∗(x) ≥ max
µi∈Mi

∫

X

ui(x)dµ∗1(x1)× ...× dµi(xi)× ....× dµ∗n(xn).

The definitions of weak transfer continuity, weak transfer upper continuity, weak transfer lower

continuity, upper semicontinuity, payoff security, etc. given in Subsection 3.1 apply in obvious

ways to the mixed extension G by replacing Xi with Mi in each definition. However, it may

be noted that weak transfer continuity (resp., weak transfer upper continuity, weak transfer lower

continuity, payoff security) of G neither implies nor is implied by weak transfer continuity (resp.,

weak transfer upper continuity, weak transfer lower continuity, payoff security) of G.

LEMMA 5.1 If G is upper semicontinuous, then the mixed extension of G is also upper semicon-

tinuous.

PROOF. See the proof of Proposition 5.1 in Reny [1999] page 1052.

Nash [1950] and Glicksberg [1952] show that a game that is compact, Hausdorff, and continu-

ous possesses mixed strategy Nash equilibria. Robson [1994] proves that in a compact game with

metric strategy spaces, if each player’s payoff is u.s.c. in all players’ strategies, and continuous in

the other players’ strategies, then the game possesses a mixed strategy Nash equilibrium.

The following theorem generalizes the mixed strategy Nash equilibrium existence of Nash

[1950], Glicksberg [1952], and Robson [1994] by weakening continuity condition.

THEOREM 5.1 Suppose that G = (Xi, ui)i∈I is a compact, Hausdorff game. Then G has a

mixed strategy Nash equilibrium if its mixed extension G is weakly transfer continuous. Moreover,

G is weakly transfer continuous if it is 1) weakly transfer upper continuous and payoff secure, or

2) weakly transfer lower continuous and upper semicontinuous.

The following example illustrates an application of Theorem 5.1.
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EXAMPLE 5.1 Consider the following silent duel game studied by Dasgupta and Maskin [1986],

Karlin [1959]:

ui(x1, x2) =





x1 − x2 + x1x2, if x1 < x2,

0, if x1 = x2,

x1 − x2 − x1x2, otherwise,

, i = 1, 2.

Note that the extended game G is weakly transfer lower continuous and the game G is upper semi-

continuous. Then, according to Lemma 5.1, the extended game G is also upper semicontinuous.

Thus, Theorem 5.1 implies that the game G has a mixed-strategy Nash equilibrium.

Monteiro and Page [2007] introduce the concept of uniformly payoff security for games that

are compact, Hausdorff, bounded and measurable. They show that if a game is compact and

uniformly payoff secure, then its mixed extension Ḡ is payoff secure, but the reverse may not be

true, as shown by an example in Carmona [2005].

DEFINITION 5.2 The game G is uniformly payoff secure if for every xi ∈ Xi, and every ε > 0,

there is a strategy xi ∈ Xi such that for every y−i ∈ X−i there exists a neighborhood V(y−i) of

y−i such that ui(xi, z−i) ≥ ui(xi, y−i)− ε, for all z−i ∈ V(y−i).

DEFINITION 5.3 The game G is said to be uniformly transfer continuous if for every xi ∈ Xi,

and every ε > 0, there is a strategy xi ∈ Xi such that for every y−i ∈ X−i there exists a

neighborhood V(xi, y−i) of (xi, y−i) such that

ui(xi, z−i) + ε ≥ ui(xi, y−i) ≥ ui(z)− ε, for all z ∈ V(xi, y−i).

Thus, a game G is uniformly transfer continuous if for any strategy xi ∈ Xi, player i can

choose a strategy xi ∈ Xi to secure a payoff of ui(xi, y−i)− ε against deviations by other players

in some neighborhood of y−i ∈ X−i, and would be better off at (xi, y−i) even if all players deviate

slightly from (xi, y−i) for all strategy profiles y−i ∈ X−i.

PROPOSITION 5.1 If a game G = (Xi, ui)i∈I is uniformly transfer continuous, then the mixed

extension G is weakly transfer continuous.

PROOF. Suppose µ ∈ X is not a mixed strategy Nash equilibrium. Then, there exists a player i,

a measure µ∗i ∈ Mi and a ε > 0 such that

Ui(µ∗i , µ−i)− ε =
∫

X

ui(x)dµ∗i (xi)dµ−i(x−i)− ε > Ui(µ) =
∫

X

ui(x)dµ(x). (7)
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Since the game G is uniformly transfer continuous, then the function ui is upper semicon-

tinuous over X and uniformly payoff secure. According to Proposition 5.1 of Reny [1999], the

function
∫
X

ui(x)dµ(x) is upper semicontinuous in µ. Thus, there exists V1(µ) such that:

∫

X

ui(x)dµ(x) ≥
∫

X

ui(x)dµ(x)− ε/2, for all µ ∈ V1(µ). (8)

Also, according to the proof of Theorem 1 in Monteiro and Page [2007], there exists a measure

µ̃i ∈ Mi and a neighborhood V2(µ−i) of µ−i such that
∫

X

ui(x)dµ̃i(xi)dµ−i(x−i) ≥
∫

X

ui(x)dµ∗i (xi)dµ−i(x−i)− ε/2, for all µ−i ∈ V2(µ−i). (9)

Combining (7), (8) and (9), then we conclude: there exists a measure µ̃i ∈ Mi and a neigh-

borhood V(µ) of µ such that for all µ ∈ V(µ), we have

∫
X

ui(x)dµ̃i(xi)dµ−i(x−i) + ε/2 ≥ ∫
X

ui(x)dµ∗i (xi)dµ−i(x−i)

>
∫
X

ui(x)dµ(x) + ε

≥ ∫
X

ui(x)dµ(x) + ε/2

Thus, the mixed game G is weakly transfer continuous.

Proposition 5.1, together with Corollary 5.1, immediately yields the following useful result.

COROLLARY 5.1 If a game G = (Xi, ui)i∈I is compact, bounded, Hausdorff, and uniformly

transfer continuous, then it possesses a mixed strategy Nash equilibrium.

As an application of the above proposition, consider the following well-known concession

game.

EXAMPLE 5.2 Let us consider i = 1, 2 and x1, x2 ∈ [0, 1] with:

ui(xi, x−i) =





li(xi), if xi < x−i,

φi(xi), if xi = x−i,

mi(xi), if xi > x−i.

We make the following assumption on ui:

ASSUMPTION 5.1

a) ∀x ∈ [0, 1], ∀ε > 0, there exists a neighborhood V(x) of x such that φi(x) ≥
max(mi(z), li(z))− ε, for every z ∈ V(x).
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b) ∀x ∈ [0, 1], ∀ε > 0, there exists y ∈ [0, 1] such that min{φi(y),mi(y), li(y)} ≥
max{φi(x),mi(x), li(x)} − ε.

Then we have the following result.

PROPOSITION 5.2 Suppose the concession game satisfies Assumption 5.1, and the functions

li(.), mi(.) and φi(.) are upper semicontinuous on [0, 1]. Then, the game has a mixed-strategy

Nash equilibrium.

PROOF. Upper semicontinuity of li(.), mi(.) and φi(.), together with condition a) in Assumption

5.1, implies that the concession game is upper semicontinuous. Condition b) implies that for each

xi ∈ Xi, and ε > 0 there exists a strategy xi ∈ Xi such that for every yi ∈ X−i there exists

a neighborhood V(yi) of yi such that ui(xi, zi) ≥ ui(xi, yi) − ε, for all zi ∈ V(yi). Then, it is

uniformly transfer continuous. It is clear that this game G is compact, then by Corollary 5.1, we

conclude that the game has a mixed strategy Nash equilibrium.

6 Conclusion

In this paper, we characterize the existence of equilibria in games which may have nonconvex

strategy spaces and non-quasiconcave payoff functions. We first offer new Nash equilibrium

existence results for a large class of discontinuous games, which rely on (weak) transfer upper

continuities. We then characterize the existence of pure-strategy, dominant-strategy, and mixed

strategy Nash equilibria in noncooperative games which may not have convex strategy spaces or

non-quasiconcave payoff functions.

These results permit us to significantly weaken the key assumptions, such as continuity, con-

vexity, and quasi-concavity on the existence of Nash equilibria. We also provide examples where

our general results are applicable, but the existing theorems for pure strategy, dominant-strategy,

and mixed strategy Nash equilibria fail to hold. These new results help us understand the exis-

tence or non-existence of pure strategy, dominant-strategy, and mixed strategy Nash equilibria in

discontinuous and non-concave games.
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