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1 Introduction

Let X and Y be two nonempty subsets of topological spaces E and F , respectively. Let
Ψ : X × Y → R be a function and r ∈ R a constant. Consider the minimax inequality
problem of finding x ∈ X such that

Ψ(x, y) ≤ r, ∀y ∈ Y. (1)

Ky Fan [1972] introduced and studied the minimax inequality problem of finding a solu-
tion x ∈ X of the inequality (1) in the case where E = F , X = Y and r = sup

x∈X
Ψ(x, x).

The Ky Fan inequality is one of the most important tools in nonlinear analysis and in
mathematical economics. Indeed, it allows one to derive many practical and theoretical
results in a wide variety of fields. In many situations, the Ky Fan inequality is more
flexible and adaptable than other basic theorems in nonlinear analysis, such as fixed point
theorems and variational inequalities. Aubin and Ekeland [1984] remarked that it is often
easier to reduce an equilibrium existence problem to a minimax inequality problem rather
than to transform it into a fixed point problem. Therefore, weakening its conditions further
enlarges its domain of applicability.

The many applications of Ky Fan [1972] in different areas (such as general equilib-
rium theory, game theory, and optimization theory) attracted researchers to weaken the
conditions on the existence of its solution. Lignola [1997] relaxed the assumption on
the compactness of the set X and the semicontinuity of the function Ψ(x, y). Ding and
Tan [1992], Tian and Zhou [1993], Georgiev and Tanaka [2000] weakened the condition
of quasi-concavity of the function Ψ(x, y) in y. Many other results were also obtained
such as those in Aubin and Ekeland [1984], Georgiev and Tanaka [2000], Nessah and
Chu [2004], Nessah and Larbani [2004], Simons [1986], Tian and Zhou [1993], Yu and
Yuan [1995] and Yuan [1995]. Equilibrium problems were studied in both mathematics
and economics such as those in Iusem and Soca [2003], Aubin and Ekeland [1984], Ding
and Park [1998], Ding and Tan [1992], Lin [2001], Lin and Chang [1998], Lin and Park
[1998], Nessah and Chu [2004] and Nessah and Larbani [2004], among which Nessah
and Chu [2004] and Nessah and Larbani [2004] generalized the Ky Fan inequality to the
case where two sets X and Y may be different. However, all the work mentioned above
is assumed that the set X is convex. In many practical situations a choice set may not be
convex and/or not compact so that the existing theorems cannot be applied.

In this paper we first provide characterization results on the existence of solution to
the minimax inequality without any form of quasi-concavity of function or convexity and
compactness of choice sets. We introduce a new condition, called local-dominatedness
property. It is shown that the local dominatedness condition is necessary and further, un-
der some mild continuity condition, sufficient for the existence of a solution to a minimax
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inequality. We then apply the basic result to study the existence of saddle points, fixed
points, and coincidence points. As an application of our basic result, we study the exis-
tence of equilibria for a noncooperative game without quasi-concavity of payoff functions
and convexity or compactness of strategy spaces.

The remainder of the paper is organized as follows. In Section 2 we give basic termi-
nologies used in our study. We introduce the concepts of α-local-dominatedness property,
α-transfer quasi-concavity, and α-transfer continuity. We also provide sufficient condi-
tions for these conditions to be true. Section 3 is dedicated to the development of exis-
tence theorems on minimax inequality for a function defined on cartesian product of two
different sets without the convexity and/or compactness assumptions. In Section 4, we
apply our results on the minimax inequality to offers new existence theorems on saddle
points without assuming convexity and/or compactness of choice sets. In Section 5, we
provide necessary and sufficient conditions for the existence of fixed points and coinci-
dence points. We introduce the concept of f -separability that can be used to characterizes
the existence of fixed point of a function without the convexity assumption. Section 6
considers the existence of coincidence points. In Section 7, we consider the existence of
equilibria in games discontinuous and non-quasiconcavity of payoff functions and con-
vexity and/or compactness of strategy spaces. Concluding remarks are offered in Section
8.

2 Notations and Definitions

Let Y be a nonempty subset of a topological space F . Denote by 2Y be the family of all
nonempty subsets of Y and 〈Y 〉 the set of all finite subsets of Y . Let S ⊂ Y . Denote by
int S the relative interior of S in Y and by cl S the relative closure of S in Y .

A function f : Y → R is upper semicontinuous on Y if the set {x ∈ Y, f(x) ≥ c} is
closed for all c ∈ R; f is lower semicontinuous on Y if −f is upper semicontinuous on
Y ; f is continuous on Y if f is both upper and lower semicontinuous on Y .

A function f : Y → R is quasiconcave on Y if for any y1, y2 in Y and for any
θ ∈ [0, 1], min {f(y1), f(y2)} ≤ f(θy1 + (1− θ)y2), and f is quasiconvex on Y if −f is
quasiconcave on Y . A function f : (x, y) ∈ Y × Y → R is diagonally quasiconcave in y

if for any finite points y1, . . . , ym ∈ Y and any y ∈ co{y1, . . . , ym}, min1≤k≤m f(y, yk) ≤
f(y, y). A function f : (x, y) ∈ Y × Y → R is α-diagonally quasiconcave in y if for any
finite points y1, . . . , ym ∈ Y and y ∈ co{y1, . . . , ym}, min1≤k≤m f(y, yk) ≤ α.

DEFINITION 2.1 (α-local-dominatedness). Let α ∈ R. A function Ψ : X × Y → R is

3



said to be α-locally-dominated in y if for any A ∈ 〈Y 〉, there exists x ∈ X such that:

max
y∈A

Ψ(x, y) ≤ α.

The term localness reflects to choose finite subsets from Y . Dominatedness refers to
the fact that f(x, y) is dominated by α. α-local-dominatedness property says that, given
any finite set A ⊂ Y , there exists a corresponding candidate point x ∈ X such that f(x, y)

is dominated by α for all points in A. We will see from Theorem 3.1 below that α-local-
dominatedness condition is necessary, and further under some mild condition, sufficient
for the existence of solution to the minimax inequality.

REMARK 2.1 Let H(y) = {x ∈ X : Ψ(x, y) ≤ α} for y ∈ Y . Then, y 7→ Ψ(x, y)

is α-locally-dominated in y if and only if the family sets {H(y), y ∈ Y } has the finite
intersection property.

EXAMPLE 2.1 Consider the following function.

f : R× R→ R
(x, y) 7→ f(x, y) = x3 − x× y2.

It is obvious if x < 0, the function y 7→ f(x, y) is not quasiconcave. However, it is
0-locally-dominated in y. To see this, let {y1, ...., yn} ∈ 〈R〉. Then there exists x =

− max
i=1,...,n

|yi| ∈ R such that y2
i ≤ x2 for all i ≤ n. Thus, −xy2

i ≤ −x3 for all i ≤ n, and

therefore f(x, yi) = x3 − xy2
i ≤ 0 for all i ≤ n.

The following definition generalizes the transfer quasiconcavity in Baye et al. [1993]
to a function defined in the product of different sets.

DEFINITION 2.2 (α-Transfer Quasiconcavity) Let X be a nonempty convex subset of
a vector space E and let Y be a nonempty set. A function Ψ : X × Y → R is said to
be α-transfer quasiconcave in y if, for any finite subset Y m = {y1, ..., ym} ⊂ Y , there
exists a corresponding finite subset Xm = {x1, ..., xm} ⊂ X such that for any subset
L ⊂ {1, 2, ..., m} and any x ∈ co{xh : h ∈ L}, we have min

h∈L
f(x, yh) ≤ α.

REMARK 2.2 When X = Y , a sufficient condition for a function Ψ : X × Y → R to be
α-transfer quasiconcave in y is that it is α-diagonally quasiconcave in y.

The following proposition characterizes the α-local-dominatedness property if X is
convex and Ψ is lower semi-continuous in x.
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PROPOSITION 2.1 Let X be a nonempty convex and compact subset in a topological
vector space E and let Y be a nonempty set. Suppose function Ψ(x, y) is lower semi-
continuous in x. Then Ψ(x, y) is α-locally-dominated in y if and only if it is α-transfer
quasiconcave in y.

PROOF. Necessity (⇒): Suppose that Ψ(x, y) is α-locally-dominated in y. Then for
each B ∈ 〈Y 〉, there exists x̃ ∈ X such that sup

y∈B
Ψ(x̃, y) ≤ α. Now consider Y m =

{y1, ..., ym} ⊂ Y . Then there exists a corresponding finite subset Xm = {x1, ..., xm} ⊂
X with x1 = ... = xm = x̃ such that for each J ⊂ {1, ..., m}, we have ∀x ∈ co{xj : j ∈
J} = {x̃}, inf

j∈J
Ψ(x, yj) ≤ sup

j∈J
Ψ(x, yj) ≤ α with B = Y m.

Sufficiency (⇐): Suppose that Ψ(x, y) is α-transfer quasiconcave in y. Note that
Ψ(x, y) is α-locally-dominated in y if and only if the family {G(y) = {x ∈ X :

Ψ(x, y) ≤ α}, y ∈ Y } has the finite intersection property. Suppose that this family
does not have the finite intersection property. Then there exists B = {y1, ..., ym} ∈ 〈Y 〉
such that

⋂
y∈B

G(y) = ∅, i.e., for each x ∈ X , there exists y ∈ B such that x /∈ G(y).

Let A = {x1, ..., xm} ∈ 〈X〉 be the corresponding points in X such that for each
Mk ⊂ {1, 2, ..., m} and any x ∈ co{xh, h ∈ Mk}, we have min

h∈Mk

Ψ(x, yh) ≤ α. Let

Z = co(A) and L = span(A) = span{x1, ..., xm}. Since G(y) is closed, we can define
a continuous function g : Z → [0,∞[ by g(x) =

∑m
i=1 d(x,G(yi) ∩ L) where d is the

Euclidean metric on L. Since
⋂

y∈B

G(y) = ∅, then g(x) > 0 for each x ∈ X . Define

another continuous function f : Z → Z by

f(x) =
m∑

i=1

d(x,G(yi) ∩ L)

g(x)
xi.

By Brouwer fixed point theorem, there exists x ∈ Z such that

x = f(x) =
m∑

i=1

d(x,G(yi) ∩ L)

g(x)
xi. (2)

Let J = {i ∈ {1, ..., m} : (x,G(yi) ∩ L) > 0}. Then, for each i ∈ J , x /∈ G(yi) ∩ L.
Since x ∈ L, x /∈ G(yi) for any i ∈ J . Thus, we have

inf
i∈J

Ψ(x, yi) > α. (3)

¿From (2), x ∈ co{xi : i ∈ J}, and then by α-transfer quasiconcavity, we obtain

inf
i∈J

Ψ(x, yi) ≤ α,

which contradicts (3). Therefore, the function y 7→ Ψ(x, y) is α-locally-dominated.
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DEFINITION 2.3 (α-Transfer Lower continuity). Let X be a nonempty subset of a topo-
logical space and Y be a nonempty subset. A function f : X × Y → R is said to be
α-transfer lower continuous in x with respect to Y if for (x, y) ∈ X × Y , f(x, y) > α

implies that there exists some point y
′ ∈ Y and some neighborhood V(x) ⊂ X of x such

that f(z, y
′
) > α for all z ∈ V(x).

α-Transfer lower continuity in x with respect to Y says that if a point x in X is
dominated by another point y in Y comparing to α, then there is an open set of points
containing x, all of which can be dominated by a single point y

′ . Here, transfer lower
continuity in x with respect to Y refers to the fact that y may be transferred to some y

′

in order for the inequality to hold for all points in a neighborhood of x. The usual notion
of lower semicontinuity would require that the first inequality hold at y for all points in
a neighborhood of x. Thus, α-transfer lower continuity is weaker than the notions of
continuity used in the literature.

We have the following proposition.

PROPOSITION 2.2 Any one of the following conditions is sufficient for f(x, y) to be
α-transfer lower semicontinuous in x with respect to Y :

a) f(x, y) is continuous in x;

b) f(x, y) is lower semicontinuous in x;

REMARK 2.3 Proposition 2.1 are still held when lower semicontinuity is weakened to
transfer lower continuity.

3 Minimax Inequality without Convexity and/or Com-
pactness

In this section we present theorems on the existence of equilibrium in the Ky Fan min-
imax inequality for a function defined on cartesian product of two different sets X and
Y without any form of quasiconcavity of function and/or convexity and compactness of
sets.

THEOREM 3.1 Let X be a nonempty compact subset of a topological space E and Y

a nonempty set. Suppose Ψ is a real-valued function on X × Y such that Ψ(x, y) is
α-transfer lower continuous in x with respect to Y . Then, there exists x ∈ X such that

Ψ(x, y) ≤ α ∀y ∈ Y (4)

if and only if Ψ is α-locally-dominated in y.
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PROOF. Necessity (⇒): Let x ∈ X be a solution of the minimax inequality (4). Then
Ψ(x, y) ≤ α for all y ∈ Y , and of course we have max

y∈A
Ψ(x, y) ≤ α for any subset

A = {y1, ..., ym} ∈ 〈Y 〉. Hence Ψ(x, y) is α-locally-dominated in y.
Sufficiency (⇐): We first show that, if Ψ(x, y) is α-transfer lower continuous in x with

respect to Y ,
⋂

y∈Y

H(y) =
⋂

y∈Y

cl H(y) with H(y) = {x ∈ X : Ψ(x, y) ≤ α}. Indeed, let

x ∈ ⋂
y∈Y

cl H(y) but not in
⋂

y∈Y

H(y). Then, there exists y ∈ Y such that x /∈ H(y), i.e.,

Ψ(x, y) > α. By the α-transfer lower continuity of Ψ in x with respect to Y , there exists
y
′ ∈ Y and a neighborhood V(x) of x such that Ψ(z, y

′
) > α for all z ∈ V(x). Thus,

x /∈ cl H(y
′
), a contradiction. The condition that y 7→ Ψ(x, y) is α-locally-dominated in y

implies that {cl H(y) :∈ Y } has the finite intersection property. Since {cl H(y) : y ∈ Y }
is a compact family in the compact set X . Thus, ∅ 6= ⋂

y∈Y

H(y). Hence, there exists x ∈ X

such that Ψ(x, y) ≤ α for y ∈ Y . This completes the proof.

REMARK 3.1 The above result generalizes the exiting results without assuming any form
of quasiconcavity or X = Y . Note that, in Example 2.1, if the function f is defined on
[−1, 1]× [−1, 1], the existing results cannot be applicable since the function y 7→ f(x, y)

is not quasiconcave in y on [−1, 1] for all x ∈ [−1, 1]. However, there exists a solution
since Ψ is α-locally-dominated in y. The following is an example.

EXAMPLE 3.1 Let X = Y = [1/2, 1] ∪ [3/2, 2], x = (x1, x2), y = (y1, y2), and

F (x, y) = x2y
2
1 − x1y

2
2 − x2x

2
1 + x1x

2
2.

The function F is continuous over X × X . For any subset {(1y1,2 y2), ..., (ky1,k y2)} of
X , let x = (x1, x2) ∈ X such that x1 = max

h=1,...,k
iy1 and x2 = min

h=1,...,k
iy2. Then

{
iy

2
2 ≥ x2

2, ∀i = 1, ..., k,

iy
2
1 ≤ x2

1.

Thus,
{
−x1 iy

2
2 ≤ −x1 x2

2, ∀i = 1, ..., k,

x2 iy
2
1 ≤ x2 x2

1.

Therefore, F (x, iy) − F (x, x) ≤ 0, ∀i = 1, ..., k. The other conditions of Theorem 3.1
are obviously verified. Thus, the minimax inequality has a solution. Since X is not
convex, the results in (Lignola [1997], Simons [1986], Tian and Zhou [1993], Ding and
Tan [1992] and Georgiev and Tanaka [2000]) on the existence of a solution to the Ky Fan
inequality are not applicable.
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When X is convex, by Proposition 2.1 and Theorem 3.1, we have the following corol-
lary.

COROLLARY 3.1 Let X be a nonempty convex and compact subset of a topological
vector space E and Y a nonempty set. Let Ψ : X×Y → R be α-transfer lower continuous
in x with respect to Y . Then, the minimax inequality (4) has at least one solution if and
only if Ψ(x, y) is α-transfer quasiconcave in y.

Theorem 3.1 can be generalized to the case where X is not compact.

THEOREM 3.2 Let X be a nonempty of a topological space E and Y a nonempty set.
Suppose Ψ is a real-valued function on X × Y such that:

(a) Ψ(x, y) is α-transfer lower continuous in x with respect to Y ;

(b) there exists a finite subset {y1, ..., yk} ⊂ Y such that
⋂

i=1,...,k

Gα(yi) is compact

where Gα(y) = {x ∈ X : Ψ(x, y) ≤ α}.

Then, there exists x ∈ X such that

Ψ(x, y) ≤ α, ∀y ∈ Y (5)

if and only if Ψ is α-locally-dominated in y.

PROOF. The necessity is the same as that of Theorem 3.1. We only need to prove the
sufficiency. For each y ∈ Y , let Gα(y) = {x ∈ X : Ψ(x, y) ≤ α}. Then,

⋂
y∈Y

Gα(y) =
⋂

y∈Y

cl Gα(y) by condition (a) of Theorem 3.2. The condition that y 7→ Ψ(x, y) is α-

locally-dominated implies that {cl Gα(y) : y ∈ Y } has the finite intersection property
and therefore {Gα(y) ∩ ⋂

i=1,...,k

Gα(yi) : y ∈ Y } has the finite intersection property. Since

{Gα(y) ∩ ⋂
i=1,...,k

Gα(yi) : y ∈ Y } is a compact family in the compact set
⋂

i=1,...,k

Gα(yi).

Thus, ∅ 6= ⋂
y∈Y

Gα(y) ∩ ⋂
i=1,...,k

Gα(yi) =
⋂

y∈Y

Gα(y). Hence, there exists x ∈ X such that

Ψ(x, y) ≤ α for all y ∈ Y . This completes the proof.

THEOREM 3.3 Let X be a nonempty of a topological space E and Y a nonempty set.
Let Ψ(x, y) be a real-valued function on X × Y . Then, the minimax inequality (4) has
at least one solution if and only if there exists a nonempty compact subset X0 of X such
that:

(a) Ψ|X0×Y (x, y) is α-transfer lower continuous in x with respect to Y ;
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(b) there exists y0 ∈ Y such that G(y0) is compact where G(y) = {x ∈ X0 : Ψ(x, y) ≤
α};

(c) the function y 7→ Ψ|X0×Y (x, y) is α-locally-dominated in x on X0.

PROOF. Necessity (⇒): Suppose that the minimax inequality (4) has a solution x ∈ X .
Let X0 = {x}. Then, the set X0 is nonempty compact, and the restricted function Ψ|X0×Y

is α-transfer lower continuous in x with respect to Y , and the set G(y) = {x ∈ X0 :

Ψ(x, y) ≤ α} is compact for each y ∈ X , and for each A ∈ 〈Y 〉, ∃x = x ∈ X0 such that
max
y∈A

Ψ(x, y) ≤ max
y∈Y

Ψ(x, y) ≤ α (because x is a solution of the minimax inequality (4)).

Sufficiency (⇐): For each y ∈ Y , let G(y) = {x ∈ X0 : Ψ(x, y) ≤ α}. Then,⋂
y∈Y

G(y) =
⋂

y∈Y

cl G(y) by condition (1) of Theorem 3.3. The condition (3) of Theo-

rem 3.3 implies that {cl G(y) : y ∈ Y } has the finite intersection property and therefore
{G(y)∩G(y0) : y ∈ Y } has the finite intersection property. Since {G(y)∩G(y0) : y ∈
Y } is a compact family in the compact set G(y0). Thus, ∅ 6= ⋂

y∈Y

G(y)∩G(y0) =
⋂

y∈Y

G(y).

Hence, there exists x ∈ X0 such that each y ∈ Y , Ψ(x, y) ≤ α. This completes the proof.

4 Existence of Saddle Point

Saddle point is an important tool in variational problems and game theory. Much work
has been dedicated to the problem of weakening its existence conditions. Almost all these
results assume that a bifunction is defined on convex sets. In this section we present
existence theorems on saddle point without any form of convexity conditions.

Consider two players, Juba and Massi, who have strategy sets X and Y , respectively.
If Juba chooses a strategy a ∈ X and Massi chooses a strategy b ∈ Y , the payoff is given
by

f(a, b) := gain by Massi = loss by Juba

(e.g. in euro). We allow f(a, b) to be negative, and if this is the case then player Massi
can obtain a negative gain, that is, a loss of |f(a, b)| euro.

DEFINITION 4.1 A pair (x, y) in X × Y is called a saddle point of f in X × Y , if

f(x, y) ≤ f(x, y) ≤ f(x, y) for all x ∈ X and y ∈ Y.

This definition reflects the fact that each player plays so as to maximize his or her
individual interests.

Before we give our new results, we state two classical results on saddle point.
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THEOREM 4.1 (Von Neumann Theorem). Let X and Y be nonempty compact and con-
vex subsets in a Hausdorff locally convex vector spaces E and F respectively and f a real
valued function defined on X × Y . Suppose (1) the function x 7→ f(x, y) is lower semi-
continuous and quasiconvex on X , (2) the function y 7→ f(x, y) is upper semicontinuous
and quasiconcave on Y . Then, f has a saddle point.

THEOREM 4.2 (Kneser Theorem) Let X be a nonempty convex subset in a Hausdorff
topological vector space E and Y a nonempty compact and convex subset of a Haus-
dorff topological vector space F . Let f be a real valued function defined on X × Y . If
(1) the function x 7→ f(x, y) is concave on X , (2) the function y 7→ f(x, y) is lower
semicontinuous and convex on Y , then min

y∈Y
sup
x∈X

f(x, y) = sup
x∈X

min
y∈Y

f(x, y).

By relaxing the convexity of function, we obtain the following theorem.

THEOREM 4.3 (Saddle-Point without Convexity) Let X and Y be two nonempty com-
pact subsets in topological spaces E and G, respectively. Let f : X × Y 7→ R be a
real valued function defined on X × Y such that f(x, y

′
) − f(x

′
, y) is 0-transfer lower

continuous in (x, y) with respect to X × Y . Then, the bifunction f(x, y) has a saddle
point if and only if for all {(ai, bi) : i = 1, ..., n} ⊂ X × Y , there exists (x, y) ∈ X × Y

such that f(x, bi) ≤ f(ai, y), for all i = 1, ..., n.

PROOF. Necessity (⇒): Let (x, y) ∈ X × Y be a saddle point of f . Then,

f(x, y) ≤ f(x, y) ≤ f(x, y) for all x ∈ X and y ∈ Y. (6)

Suppose that there exists A = {(ai, bi), i = 1, ..., n} ⊂ X × Y , such that

∀(x, y) ∈ X × Y, ∃i = 1, ..., n such that f(x, bi) > f(ai, y). (7)

Let x = x and y = y in (7). Then there exists (ã, b̃) ∈ A such that

f(x, b̃) > f(ã, y).

Now choose x = ã and y = b̃. Inequality (6) then becomes:

f(x, b̃) ≤ f(x, y) ≤ f(ã, y).

Thus, we have f(x, b̃) ≤ f(ã, y) < f(x, b̃), a contradiction. Therefore, for all {(ai, bi) :

i = 1, ..., n} ⊂ X × Y , there exists (x, y) ∈ X × Y such that f(x, bi) ≤ f(ai, y) for all
i = 1, ..., n.

Sufficiency (⇐): Let F : Z × Z 7→ R, where Z = X × Y and

F (z, t) = f(x, y′)− f(x′, y), ∀z = (x, y) ∈ Z and t = (x′, y′) ∈ Z.
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It is easy to verify that all conditions of Theorem 3.1 are satisfied for the F (z, t). Then,
there exists z0 = (x0, y0) ∈ Z such that

max
t∈T

F (z0, t) ≤ 0. (8)

Now we prove that z0 = (x0, y0) is a saddle point of the bifunction f(x, y). From (8) we
get

∀(x, y) ∈ X × Y, f(x0, y) ≤ f(x, y0). (9)

Letting x = x0 in (9), we have ∀y ∈ Y , f(x0, y) ≤ f(x0, y0). Letting y = y0 in (9), we
have ∀x ∈ X , f(x0, y0) ≤ f(x, y0). Therefore, for all (x, y) ∈ X × Y , we have

f(x0, y) ≤ f(x0, y0) ≤ f(x, y0),

i.e., z0 = (x0, y0) is a saddle point of the bifunction f(x, y).

When X is convex, by Proposition 2.1 and Theorem 4.3, we have the following corol-
lary.

COROLLARY 4.1 Let X and Y be two nonempty compact and convex subsets in topo-
logical spaces E and G, respectively. Let f : X × Y 7→ R be a real valued function
defined on X × Y such that f(x, y

′
) − f(x

′
, y) is 0-transfer lower continuous in (x, y)

with respect to X × Y . Then, the bifunction f(x, y) has a saddle point if and only if
f(x, y

′
)− f(x

′
, y) is 0-transfer quasiconcave in (x′, y′).

Theorem 4.3 can be generalized by relaxing the compactness of X and Y .

THEOREM 4.4 Let X and Y be two nonempty subsets in topological spaces E and G,
respectively. Let f : X × Y 7→ R such that:

(a) f(x, y
′
)− f(x

′
, y) is 0-transfer lower continuous in (x, y) with respect to X × Y ;

(b) there exists {(x1, y1), ..., (xk, yk)} ⊂ X × Y such that
⋂

i=1,...,k

G(xi, yi) is compact

where G(u, v) = {(x, y) ∈ X × Y : f(x, v) ≤ f(u, y)}.

Then, the bifunction f(x, y) has a saddle point if and only if for all {(ai, bi) : i =

1, ..., n} ⊂ X × Y , there exists (x, y) ∈ X × Y such that f(x, bi) ≤ f(ai, y), for all
i = 1, ..., n.

PROOF. The necessity is the same as that of Theorem 4.3 and the sufficiency is the same
as that of Theorem 3.2.

REMARK 4.1 The function f(x, y
′
) − f(x

′
, y) is 0-transfer lower continuous in (x, y)

with respect to X × Y if (1) x 7→ f(x, y) is lower semicontinuous function in x and (2)
y 7→ f(x, y) is upper semicontinuous function in y.
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5 Existence of Fixed Point

This section provides a necessary and sufficient for the existence of fixed point of a func-
tion defined on a set that may not be compact or convex.

A correspondence C defined from Y into 2F has a fixed point x ∈ Y if x ∈ C(x). If
C is a single-valued function, then a fixed point x of C is characterized by x = C(x).

We start by considering the following example of a fixed point problem:

EXAMPLE 5.1 Define a function f : X = [0, 3] → R by

f(x) =
x + 4

x + 1
.

Since max
x∈[0,3]

|f ′(x)| = 3, f is a 3-lipschitz. Also since f([0, 3]) = [7
4
, 4] * [0, 3], all

the classical fixed point Theorems (Banach’s,1 Brouwer-Schauder-Tychonoff’s,2 Halpern-
Bergman’s,3 Kakutani-Fan-Glicksberg’s,4 ...: see Aliprantis and Border [1994]) are not
applicable.

Let (E, d) be a metric space. The subset B(a, r) is defined by

B(a, r) = {x ∈ E : d(x, a) < r}
where a ∈ X and r ∈ R∗+, is called open ball centered at a point a with radius r.

DEFINITION 5.1 Let X be a nonempty set in a metric space (E, d) and f be a function
defined on X into E. The set X is called f -separate if at least one of the following
conditions holds:

1) for all A ∈ 〈X〉, there exists x ∈ X such that:

A ∩B(x, d(f(x), x)) = ∅;

2) for all A ∈ 〈f(X)〉, there exists x ∈ X such that:

A ∩B(f(x), d(f(x), x)) = ∅.

1Banach Fixed Point Theorem: Let (K, d) be a complete metric space and let f : K → K be a d-
contraction (d ∈ [0, 1[). Then, f has a unique fixed point.

2Brouwer-Schauder-Tychonoff Fixed Point Theorem: Let K be a nonempty compact convex subset of a
locally convex Hausdorff space, and let f : K → K be a continuous function. Then the set of fixed points
of f is compact and nonempty.

3Halpern-Bergman Fixed Point Theorem: Let K be a nonempty compact convex subset of a locally
convex Hausdorff space X , and let C : K → 2X be an inward pointing upper demicontinuous mapping
with nonempty closed convex values. Then C has a fixed point.

4Kakutani-Fan-Glicksberg Fixed Point Theorem: Let K be a subset nonempty compact convex of a
locally convex Hausdorff space, and let C : K → 2K have closed graph and nonempty convex values.
Then the set of fixed points of C is nonempty and compact.

12



Figure 1: X is f -separate

The geometric interpretation that X is f -separate is that, for finite points in X (or in
f(X)), one can separate these points by an open ball centered at a point x (or in f(x))
with radius r(x) = d(f(x), x).

By relaxing the convexity of set, we have the following theorem.

THEOREM 5.1 (Fixed-Point without Convexity Assumption) Let X be a nonempty com-
pact subset of a metric space (E, d) and f be a continuous function over X into E. Then,
f has a fixed point if and only if X is f -separate.

PROOF. Necessity (⇒): Let x ∈ X be a fixed point of f . Then f(x) = x, i.e.,
d(f(x), x) = 0. Suppose that X is not f -separate. We distinguish two cases:

1. There exists A = {y1, ..., yn} ∈ 〈X〉 such that A ∩ B(x, d(f(x), x)) 6= ∅ for all
x ∈ X . Then, ∀x ∈ X there exists y(x) ∈ A such that y(x) ∈ B(x, d(f(x), x)),
i.e., d(f(x), x) > d(x, y(x)).
Let x = x in the last inequality. Then there exists y(x) ∈ A such that d(f(x), x) >

d(x, y(x)). We have d(f(x), x) = 0, and therefore 0 > d(x, y(x)), which is impos-
sible. Thus, for all A ∈ 〈X〉, there exists x ∈ X such that A∩B(x, d(f(x), x)) = ∅.
Hence, X is f -separate.
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2. There exists A = {y1, ..., yn} ∈ 〈f(X)〉 such that for A ∩B(f(x), d(f(x), x)) 6= ∅
for all x ∈ X . Then, ∀x ∈ X there exists y(x) ∈ A such that y(x) ∈
B(f(x), d(f(x), x)), i.e., d(f(x), x) > d(f(x), y(x)).
Let x = x in the last inequality. Then there exists y(x) ∈ A such that d(f(x), x) >

d(f(x), y(x)). We have d(f(x), x) = 0, and therefore 0 > d(f(x), y(x)),
a contradiction. Thus, for all A ∈ 〈f(X)〉, there exists x ∈ X such that
A ∩B(f(x), d(f(x), x)) = ∅. Hence, X is f -separate.

Sufficiency (⇐): Suppose that X is f -separate. Then, one of the following conditions
holds:

3. For all A ∈ 〈X〉, there exists x ∈ X such that A ∩ B(x, d(f(x), x)) = ∅. Consider
the following real-valued function ϕ defined on X ×X and by

(x, y) 7→ ϕ(x, y) = d(f(x), x)− d(x, y).

The function x 7→ ϕ(x, y) is then continuous over X , ∀y ∈ X . Thus, for all A ∈
〈X〉, there exists x ∈ X such that A∩B(x, d(f(x), x)) = ∅, and then for all y ∈ A,
d(x, y) ≥ d(f(x), x), i.e., max

y∈A
ϕ(x, y) ≤ 0. By Theorem 3.1, there exists x ∈ X

such that sup
y∈X

ϕ(x, y) ≤ 0. Then, for each y ∈ X , we have d(x, f(x)) ≤ d(x, y).

Letting y = x in last inequality, we obtain d(x, f(x)) = 0, which means x = f(x).
Then, f has a fixed point.

4. For all C ∈ 〈f(X)〉, there exists x ∈ X such that C ∩ B(f(x), d(f(x), x)) = ∅.
Consider the following real-valued function ϕ defined on X × f(X) and by

(x, y) 7→ ϕ(x, y) = d(f(x), x)− d(f(x), y).

The function x 7→ ϕ(x, y) is continuous over X , ∀y ∈ f(X). Since for all C ∈
〈f(X)〉, there exists x ∈ X such that C∩B(f(x), d(f(x), x)) = ∅. Thus, for all y ∈
C, d(f(x), y) ≥ d(f(x), x), i.e., max

y∈C
ϕ(x, y) ≤ 0. By Theorem 3.1, there exists x ∈

X such that sup
y∈f(X)

ϕ(x, y) ≤ 0. Then, for each y ∈ f(X), we have d(x, f(x)) ≤
d(f(x), y). Letting y = f(x) in last inequality, we obtain d(x, f(x)) = 0, which
means x = f(x). Then, f has a fixed point.

REMARK 5.1 If X is compact in a metric space, then the conditions 1) and 2) in Defini-
tion 5.1 are equivalent.
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EXAMPLE 5.2 (Continued) Let us again consider Example 5.1.

f : X = [0, 3] → R
x 7→ f(x) = x+4

x+1
.

The point x = 2 is a fixed point of f in [0, 3], then the set [0, 3] is f -separate.
Theorem 5.1 can be generalized by relaxing the compactness of X .

THEOREM 5.2 (Fixed-Point without Convexity or Compactness) Let X be a nonempty
subset of a metric space (E, d) and f a continuous function over X into E. Suppose that
there exist {y1, ..., yk} ⊂ X such that

⋂
i=1,...,k

G(yi) is compact where

G(y) =

{
{x ∈ X, d(f(x), x) ≤ d(x, y)}, if condition 1) in Definition 5.1 is satisfied
{x ∈ X, d(f(x), x) ≤ d(f(x), y)}, if condition 2) in Definition 5.1 is satisfied.

Then, f has a fixed point if and only if X is f -separate.

PROOF. The necessity is the same as that of Theorem 5.1. We only need to prove the
sufficiency in the case where condition 1) in Definition 5.1 is satisfied. For each y ∈ Y ,
let G(y) = {x ∈ X : d(f(x), x) ≤ d(x, y)}. Since f is continuous, G(x) is a closed
set. Also, the condition that X is f -separate implies that {G(y) : y ∈ X} has the
finite intersection property and therefore {G(y) ∩ ⋂

i=1,...,k

G(yi) : y ∈ X} has the finite

intersection property. Since {G(y) ∩ ⋂
i=1,...,k

G(yi) : y ∈ X} is a compact family in the

compact set
⋂

i=1,...,k

G(yi). Thus, ∅ 6= ⋂
y∈X

G∩ ⋂
i=1,...,k

G(yi) =
⋂

y∈X

G(y). Hence, there exists

x ∈ X such that each y ∈ X , d(f(x), x) ≤ d(x, y). Then, letting y = x, we obtain
f(x) = x. This completes the proof.

The following proposition provides a sufficient condition for a set X to be f -separate.

PROPOSITION 5.1 Let X be a nonempty, compact and convex subset of a normed space
(E, ‖.‖) and f a continuous function over X into E such that X ⊂ f(X) and the function
z 7→ ‖f(z)− x‖ is quasiconvex over X , for all x ∈ X . Then, X is f -separate and thus it
has a fixed point.

PROOF. Let A = {y1, y2, ..., yn} be any set in 〈X〉. Suppose that ∀x ∈ X , ∃y ∈ A such
that

‖x− y‖ < ‖f(x)− x‖, (10)

i.e., X is not f -separate. Consider the following multi-valued function:

C : X → 2X
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defined by

x 7→ C(x) = {z ∈ X : min
y∈A

‖x− y‖ ≥ ‖f(z)− x‖}.

1) The condition X ⊂ f(X) implies that for each x ∈ X , C(x) 6= ∅.

2) The continuity of f and the compactness of X imply that C is upper semicontinuous
over X and for each x ∈ X , the set C(x) is closed in X .

3) The quasiconvexity of function z 7→ ‖f(z) − x‖ implies that for each x ∈ X so
that set C(x) is convex in X .

¿From 1)-3) we conclude that the function C satisfies all the conditions of Kakutani’s
fixed point theorem in Kakutani [1941]. Consequently, ∃x̃ ∈ X such that x̃ ∈ C(x̃), i.e.,

min
y∈A

‖x̃− y‖ ≥ ‖f(x̃)− x̃‖.

Let x = x̃ in (10). Then there exists y(x̃) ∈ A such that ‖x̃ − (x̃)‖ < ‖f(x̃) − x̃‖.
Therefore, ‖f(x̃)− x̃‖ ≤ min

y∈A
‖x̃− y‖ ≤ ‖x̃− (x̃)‖ < ‖f(x̃)− x̃‖, a contradiction. Thus,

X is f -separate.

EXAMPLE 5.2 Let f be the following function

f : X = [0, 3] → R
x 7→ f(x) = x2 − 2.

Then max
x∈[0,3]

|f ′(x)| = 6, and so f is a 6-lipschitz. Also since f([0, 3]) = [−2, 7] * [0, 3], all

the classical fixed point Theorems (Banach’s, Brouwer-Schauder-Tychonoff’s, Halpern-
Bergman’s, Kakutani-Fan-Glicksberg’s, ...: see Aliprantis and Border [1994]) are not
applicable. However, since z 7→ |z2 − 2 − x| is quasiconvex over [0, 3], ∀x ∈ [0, 3] (see
Figure 2), by Proposition 5.1, f has a fixed point in [0, 3]. Indeed, x = (1+

√
5)/2 is such

a point.

In the following theorem, we show the existence of fixed point without the quasicon-
vexity of z 7→ ‖f(z)− x‖ or the convexity of X .

THEOREM 5.3 Let (E, ‖.‖) be a normed space and f a function over E into E. Suppose
that there exists a compact set X in E such that:

1) The restriction of f on X is continuous;

2) f(X) is convex in E; and

16



Figure 2: The graph of function z 7→ |z2 − 2− x|, ∀x ∈ [0, 3]

3) X ⊂ f(X).

Then, f has a fixed point.

PROOF. Consider the following function:

φ : X × f(X) → R

defined by (x, y) 7→ φ(x, y) = ‖f(x)− x‖ − ‖x− y‖.

• The function x 7→ φ(x, y) is continuous over X , for each y ∈ f(X).

• The function y 7→ φ(x, y) is quasiconcave over f(X), for each x ∈ X .

Suppose that

∀x ∈ X, there exists y ∈ f(X), such that φ(x, y) > 0. (11)

Then, f(X) can be covered by the sets

θy = { f(x) ∈ f(X) : φ(x, y) > 0} , y ∈ f(X).

Since θy is open in f(X) and f(X) is compact, it can be covered by a finite number r of
subsets {int θy1 , ..., int θyr} of type θy. Consider a continuous partition of unity {hi}i=1,...,r

associated to this finite covering, and the following function:

α : f(X) → f(X), such that α(y) =
r∑

i=1

hi(y)yi.
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Since the function α is continuous over the compact convex f(X) into f(X), then by
Brouwer Fixed-Point Theorem, there exists ỹ = f(x̃) ∈ f(X) such that ỹ = f(x̃) =
r∑

i=1

hi(ỹ)yi. Let J = {i = 1, ..., r : hi(ỹ) > 0}.

The quasiconcavity of y 7→ φ(x, y) implies that:

min
i∈J

φ(x̃, yi) ≤ 0. (12)

If i ∈ J , ỹ ∈ supp(hi) ⊂ θyi
. Thus, φ(x̃, yi) > 0 for each i ∈ J . Therefore,

min
i∈J

φ(x̃, yi) > 0. (13)

Then inequalities (12) and (13) imply 0 < min
i∈J

φ(x̃, yi) ≤ 0 which is impossible. Thus,
supposition in (11) is not true, i.e.,

∃x ∈ X, such that ∀y ∈ f(X), we have φ(x, y) = ‖f(x)− x‖ − ‖x− y‖ ≤ 0.

Hence, ‖f(x)− x‖ ≤ ‖x− y‖ for each y ∈ f(X). By condition 3) of Theorem, we have
X ⊂ f(X). Thus, letting y = x, we obtain ‖f(x) − x‖ = 0 in last inequality, which
means x is a fixed point of f in X .

EXAMPLE 5.3 Let f be the following function

f : R→ R
x 7→ f(x) = x4 + 2x2 − 5x + 1.

Let X = [1, 2]. We have max
x∈[1,2]

|f ′(x)| = 35 so that f is a 35-lipschitz. Also, since

f([1, 2]) = [−1, 15] * [1, 2], all the classical fixed point theorems are not applicable.
However, since the restriction of f on [1, 2] is continuous, f([1, 2]) is convex and

f([1, 2]) = [−1, 15] ⊃ [1, 2], then, by Theorem 5.3, f has a fixed point in [1, 2]. Indeed,
x ' 1.36 is such a point.

EXAMPLE 5.4 Let f be the following function

f : R→ R
x 7→ f(x) = 2x2−4

x+2
.

Let X = [−1, 4]. We then have max
x∈[−1,4]

|f ′(x)| = 17
9

so that f is a 17
9

-lipschitz. Also, since

f([−1, 4]) = [4
√

2− 8, 14/3] * [−1, 4], the function z 7→ ‖f(z)− x‖ is not quasiconvex
in z and thus all the classical fixed point Theorems and Proposition 5.1 are not applicable.

However, since the restriction of f on [−1, 4] is continuous, f([−1, 4]) is convex and
f([−1, 4]) = [4

√
2 − 8, 14/3] ⊃ [−1, 4], then, by Theorem 5.3, f has a fixed point in

[−1, 4]. Indeed, x = 1 +
√

5 is such a point.
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The following theorem generalizes the existence theorems on fixed point to a multi-
function mapping.

THEOREM 5.4 Let X be a nonempty compact subset of a metric space E and C a mul-
tifunction mapping defined on X into E such that the function x 7→ d(x,C(x)) is lower
semicontinuous over X . Then, C has a fixed point if and only if for each A ∈ 〈X〉, there
exists x ∈ X such that d(x,C(x)) ≤ d(x,A).

PROOF. It is a consequence of Theorem 3.1 by defining Ψ(x, y) = d(x,C(x))− d(x, y).

THEOREM 5.5 Let X be a nonempty compact subset of a metric space E and Y a
nonempty subset of a metric space (F, d), and let C be a multifunction mapping defined
on X into Y such that the function x 7→ d(g(x), C(x)) is lower semicontinuous over X ,
where g is a continuous function defined from X into Y . Then, C has a g-fixed point (i.e.,
∃x̄ ∈ X such that g(x̄) ∈ C(x̄)) if and only if for each A ∈ 〈g(X)〉, there exists x ∈ X

such that d(g(x), C(x)) ≤ d(g(x), A).

PROOF. It is a consequence of Theorem 3.1 by defining Ψ(x, y) = d(g(x), C(x)) −
d(g(x), y).

THEOREM 5.6 Let X be a nonempty compact subset of a metric space (E, d1) and Y

a nonempty subset of a metric space (F, d2). Let C be a multifunction mapping defined
on X into Y such that the function x 7→ d2(g(x), C(x)) is lower semicontinuous over X ,
where g is a continuous function defined from X into Y . Then, C has a g-fixed point if
and only if for each A ∈ 〈X〉, there exists x ∈ X such that d2(g(x), C(x)) ≤ d1(x,A).

PROOF. It is a consequence of Theorem 3.1 by defining Ψ(x, y) = d2(g(x), C(x)) −
d1(x, y).

6 Existence of Coincidence Points

This section provides a necessary and sufficient for the existence of coincidence points of
two functions defined on a set that may not be compact or convex.

DEFINITION 6.1 Let X be a nonempty compact subset of a metric space (E, d1), and
let f and g be two continuous functions over X into a metric space (F, d2). Then, f and
g are said to have a coincidence point if there exists x ∈ X such that f(x) = g(x).
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DEFINITION 6.2 Let X be a nonempty set in a metric space (E, d1), and let f and g be
two functions from X into a metric space (F, d2). The set X is called fg-separate if one
of the following conditions holds:

1) for all A ∈ 〈X〉, there exists x ∈ X such that

A ∩B(x, d2(f(x), g(x))) = ∅;

2) for all A ∈ 〈f(X)〉, there exists x ∈ X such that

A ∩B(f(x), d2(f(x), g(x))) = ∅.

3) for all A ∈ 〈g(X)〉, there exists x ∈ X such that

A ∩B(g(x), d2(f(x), g(x))) = ∅.

THEOREM 6.1 (Coincidence Theorem without Convexity Assumption) Let X be a
nonempty compact subset of a metric space (E, d1), and let f and g be two continu-
ous functions over X into a metric space (F, d2). Then, f and g has a coincidence point
if and only if X is fg-separate.

PROOF. Necessity (⇒): It is the same as that of Theorem 5.1.
Sufficiency (⇐): If the first condition in Definition 6.2 is satisfied, let

φ : X ×X → R, (x, y) 7→ φ(x, y) = d2(f(x), g(x))− d1(x, y).

If the second condition of Definition 6.2 is satisfied, let

φ : X × f(X) → R, (x, y) 7→ φ(x, y) = d2(f(x), g(x))− d2(f(x), y).

If the third condition of Definition 6.2 is satisfied, let

φ : X × g(X) → R, (x, y) 7→ φ(x, y) = d2(f(x), g(x))− d2(g(x), y).

The remaining proof of the sufficiency is the same as that in the proof of Theorem 5.1.

THEOREM 6.2 Let E be a topological space and (F, ‖.‖) a normed space. Let f and g

be two functions over E into F . Suppose that there exists a compact set X in E such that
the restriction of f and g on X are continuous and

{
1) f(X) is convex in F ;

2) g(X) ⊂ f(X).
or

{
1
′
) g(X) is convex in F ;

2
′
) f(X) ⊂ g(X).
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Then, f and g has a coincidence point.

PROOF. If Conditions 1-2 are satisfied, let

φ : X × f(X) → R, (x, y) 7→ φ(x, y) = ‖f(x)− g(x)‖F − ‖g(x)− y‖F .

If Conditions 1
′-2′ are satisfied, let

φ : X × g(X) → R, (x, y) 7→ φ(x, y) = ‖f(x)− g(x)‖F − ‖f(x)− y‖F .

The remaining proof of the sufficiency is the same as that in the proof of Theorem 5.3.

7 Existence of Nash Equilibrium

As an application of our basic result on the minimax inequality, in this section we provide
a result on the existence of pure strategy Nash equilibrium without assuming the convexity
of strategy spaces and any form of quasiconcavity of payoff functions.

Consider the following noncooperative game in normal form:

G = (Xi, fi)i∈I (14)

where I = {1, ..., n} is the finite set of players, Xi is player i’s strategy space which is
a nonempty subset of a topological space Ei, and fi : X −→ R is the payoff function
of player i. Denote by X =

∏
i∈I

Xi the set of strategy profiles of the game and f =

(f1, f2, ..., fn) the profile of payoff functions. For each player i ∈ I , denote by−i = {j ∈
I such that j 6= i} the set of all players rather than player i. Also denote by X−i =

∏
j∈−i

Xj

the set of strategies of the players in coalition −i.

DEFINITION 7.1 A strategy profile x ∈ X is said to be a pure strategy Nash equilibrium
of game (14) if,

∀i ∈ I, ∀yi ∈ Xi, fi(x−i, yi) ≤ fi(x).

The aim of each player is to choose a strategy in Xi that maximizes his payoff func-
tion.

Define a function Ψ : X ×X → R by

Ψ(x, y) =
n∑

i=1

{fi(x−i, yi)− fi(x)}, ∀(x, y) ∈ X ×X.

The following theorem generalized Theorem 1 in Baye et al. [1993] by relaxing the
convexity of strategy spaces and 0-transfer quasiconcavity of payoff function.
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THEOREM 7.1 (Nash Equilibrium without Convexity Assumption) Let I = {1, ..., n} be
an indexed finite set, let Xi be a nonempty and compact subset of a topological space
Ei. Suppose that the function Ψ(x, y) is 0-transfer lower continuous in x with respect to
X . Then, the game G = (Xi, fi)i∈I has a Nash equilibrium if and only if, ∀A ∈ 〈X〉,
∃x ∈ X such that for each i ∈ I , we have

fi(yi, x−i) ≤ fi(x), for each y ∈ A. (15)

PROOF. First note that the condition (15) is equivalent to the function y 7→ Ψ(x, y)

is 0-locally-dominated. Then it is a straightforward consequence of Theorem 3.1 and
definition of Ψ.

EXAMPLE 7.1 Suppose that in game (14) n = 2, I = {1, 2}, X1 = X2 = [1, 2] ∪ [3, 4],
x = (x1, x2) and

f1(x) = x2x
2
1,

f2(x) = −x1x
2
2.

In this example, Xi is not convex, ∀i ∈ I , and the function yi 7→ fi(x−i, yi) is not
quasiconcave for i = 1 so that the existing theorems on Nash equilibrium such as in Nash
[1951], Debreu [1952], Rosen [1965]. Nishimura and Friedman [1981], Dasgupta and
Maskin [1986], Baye et al. [1993], Tian and Zhou [1993], Yao [1992], and Reny [1999]
are not applicable.

However, we can show the existence of Nash equilibrium by applying Theorem 7.1.
Indeed, for each x = (x1, x2) and y = (y1, y2),

Ψ(x, y) = x2y
2
1 − x1y

2
2 .

The function Ψ is continuous on X ×X . For any subset {(1y1,2 y2), ..., (ky1,k y2)} of X ,
let x = (x1, x2) ∈ X such that x1 = max

h=1,...,k
iy1 and x2 = min

h=1,...,k
iy2. Then, we have

{
iy

2
2 ≥ x2

2, ∀i = 1, ..., k,

iy
2
1 ≤ x2

1.

Thus,
{
−x1 iy

2
2 ≤ −x1 x2

2, ∀i = 1, ..., k,

x2 iy
2
1 ≤ x2 x2

1.

Therefore, Ψ(x, iy) ≤ Ψ(x, x), ∀i = 1, ..., k. According to Theorem 7.1, this game has a
Nash equilibrium.

Theorem 7.1 can be generalized by relaxing the compactness of X .
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THEOREM 7.2 (Nash Equilibrium without Convexity and Compactly Set) Let I =

{1, ..., n} be an indexed finite set and let Xi be a nonempty subset of a topological space
Ei. Suppose that function Ψ : X ×X → R ∪ {∞} satisfies the following conditions:

(a) Ψ(x, y) is 0-transfer lower continuous in x with respect to X;

(b) there exists {y1, ..., yk} ⊂ X such that
⋂

i=1,...,k

G(yi) is compact where G(y) = {x ∈
X :

∑n
i=1[fi(x−i, yi)− fi(x)] ≤ 0}.

Then, the game G = (Xi, fi)i∈I has a Nash equilibrium if and only if, ∀A ∈ 〈X〉, ∃x ∈ X

such that for each i ∈ I , we have fi(yi, x−i) ≤ fi(x), ∀y ∈ A.

8 Conclusion

In this paper, we introduced a new condition, called “local-dominatedness property,” that
can be used to characterize existence of equilibria in many problems which may have non-
convex and/or compact sets and have non-quasiconcave functions. We first investigated
the existence of equilibrium in minimax inequalities under the local-dominatedness con-
dition. We proved that the local-dominatedness condition is necessary, and further under
mild continuity condition, sufficient for the existence of solution in minimax inequality.
The basic results on the minimax inequality are then used to get new theorems on the exis-
tence of saddle points, fixed points, and coincidence points of functions. As an application
of our basic result, we also characterize the existence of pure strategy Nash equilibrium
in games with discontinuous and nonquasiconcave payoff functions and nonconvex and
noncompact strategy spaces.

23



References

Aliprantis, C.B., Border, K.C. (1994). Infinite Dimensional Analysis. Springer-Verlag,
New York.

Aubin, J.P.,Ekeland, I. (1984). Applied Nonlinear Analysis. Wiley Interscience, New
York.

Baye, M.R., Tian, G., Zhou, J. (1993). Characterizations of the Existence of Equilibria in
Games with Discontinuous and Non-Quasiconcave Payoffs. The Review of Economic
Studies 60 935–948.

Dasgupta, P., Maskin, E. (1986). The Existence of Equilibrium in Discontinuous Eco-
nomic Games, I: Theory. The Review of Economic Studies 53 1–26.

Debreu, G. (1952): A Social Equilibrium Existence Theorem. Proceedings of the National
Academy of Sciences of the U. S. A., 38.

Ding, X.P., Park, S. (1998). Existence of Solutions for Nonlinear Inequalities in G-Convex
Spaces. Applied Mathematics Letters 15 735–741.

Ding, X.P., Tan, K.K. (1992). A Minimax Inequality with Application to Existence of
Equilibrium Points and Fixed Point Theorems. Colloque Mathematics 63 233–274.

Iusem, A.N., Soca, W. (2003). New Existence Results for Equilibrium Problems. Nonlin-
ear Analysis 54 621–635.

Georgiev, P.G., Tanaka, T. (2000). Vector-Valued Set-Valued Variants of Ky Fan’s In-
equality. Journal of Nonlinear and Convex Analysis 1 245–254.

Ky Fan (1972). Minimax Inequality and Applications. in: O. Shisha (Ed.), Inequality, vol.
III, Academic Press, New York 103–113.

Kakutani, S. (1941). A Generalization of Bouwer’s Fixed Point Theorem. Duke Math-
emtical Journal 8 457–459.

Lignola, M.B. (1997). Ky Fan Inequalities and Nash Equilibrium Points without Semi-
continuity and Compactness. Journal of Optimization Theory and Applications 94 137–
145.

Lin, L.J. (2001). Applications of a Fixed Point Theorem in G-Convex Space. Nonlinear
Analysis 46 601–608.

24



Lin, L.J., Chang, T.H. (1998). S-KKM Theorems, Saddle Points and Minimax Inequali-
ties. Nonlinear Analysis 34 86–73.

Lin, L.J., Park, S. (1998). On Some Generalized Quasi-Equilibrium Problems. Journal
Mathematics Analysis and Applications 224 167–181.

Nash, J.F. (1951). Noncooperative Games. Annals of Maths 54 286–295.

Nessah, R., Larbani, M. (2004). g-Maximum Equality. In proceedings of the NACA2003
conference, Wataru Takahashi and Tamaki Tanaka (Eds), Yokohama Publishers 391-
400.

Nessah, R., Chu, C. (2004). Quasivariational Equation. Mathematical Inequalities and
Applications 7 149–160.

Nishimura, K., Friedman, J. (1981). Existence of Nash Equilibriumin n-Person Games
without Quasi-Concavity. International Economic Review 22 637–648.

Reny, J.P. (1999). On the Existence of Pure and Mixed Strategy Nash Equilibria in Dis-
continuous Games. Econometrica 67 1029–1056.

Rosen, J.B. (1965). Existence and Uniqueness of Equilibrium Point for Concave n-Person
Games. Econometrica 33 520–534.

Simons, S. (1986). Two Function Minimax Theorem and Variational Inequalities for
Functions on Compact and Noncompact Sets, with some Comments on Fixed-Point
Theorems. Proc. Symp. Pure Math. 45 377–392.

Tian, G., Zhou, Z. (1993). Quasi-Inequalities without the Concavity Assumption. Journal
of Mathematical Analysis and Applications 172 289–299.

Yao, J.C. (1992). Nash Equilibria in n-Person Games without Convexity. Applied Mathe-
matics letters 5 67–69.

Yu, J., Yuan, X.Z. (1995). The Study of Pareto Equilibria for Multiobjective Games by
Fixed Point Theorems and Ky Fan Minimax Inequality Methods. Research Report, no
1/95, Department of institute of mathematics, Guizhou Institute of technology, China.

Yuan, X.Z. (1995). KKM Principal, Ky Fan Minimax Inequalities and Fixed Point Theo-
rems. Nonlinear World 2 131–169.

25


