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Abstract. We describe a class of Barreto-Naehrig (BN) curves that
are not only computationally very simple to generate, but also specially
suitable for efficient implementation on the broadest possible range of
platforms.

1 Introduction

Barreto-Naehrig (BN) curves are among the most versatile classes of
pairing-friendly elliptic curves. Among other things, they are known
[4] to (this list may not be complete):

– facilitate the deployment of bilinear pairings at the 128-bit level
of security [8];

– enable all kinds of pairing-based cryptographic schemes and pro-
tocols (including short signatures) [12];

– be plentiful and easily found [23, Section 2.1.1];
– support a sextic twist [16], so the pairing parameters can be de-

fined over relatively small finite fields Fp and Fp2 respectively;
– be amenable to twofold or threefold pairing compression [24];
– attain high efficiency for all pairing computation algorithms

known, including the Tate [27], ate [16], eil [15], R-ate [19], X-ate
[26] and optimal [31] pairings;

– admit optimizations based on endomorphisms and homomor-
phisms for all groups involved [11, 13], thereby enabling fast non-
pairing operations as well;

? Supported by the Brazilian National Council for Scientific and Technological Devel-
opment (CNPq) under research productivity grant 303163/2009-7.



– be suitable for software and hardware implementations on a wide
range of platforms [9, 14].

Recent research has focused on certain individual curves to attain
exceptional performance gains [5, 25]. This is essential since pairings
are usually the most computationally expensive operation in any
pairing-based cryptographic scheme. On the other hand, one may ar-
gue that targeting fast pairings alone is insufficient, and can lead to
annoying or unacceptable inefficiencies on certain highly constrained
platforms like smart cards or wireless sensor networks. Indeed, be-
cause of the intrinsic high cost of pairings, many protocols are al-
ready designed to rely on them only when the corresponding protocol
parties are assumed to have plentiful computational resources (e.g.
server or clusters) while constrained parties only need to perform
non-pairing operations [2, 6, 20, 32]. In such scenarios, parameters
leading to fast (but still proportionally slow) pairings at the price of
deteriorating performance elsewhere would be harmful rather than
helpful.

A different line of research is that of obtaining parametrized
curves with certain prescribed properties, so as to avoid computa-
tionally expensive tests during curve generation. In general, con-
structing BN curves needs primality tests, parametrized quadratic
and cubic character tests to establish finite field representations, and
full group arithmetic in the curves and their twists for order tests.
While primality testing is likely to be unavoidable, devising sub-
classes of BN curves that make do without the last category of re-
quirements has been carried out successfully [30]. In contrast, the
choice of finite field representations has received only limited atten-
tion in the literature. Solutions are usually chosen a priori, based
on features of supporting libraries and oblivious to the peculiar na-
ture of BN curves, therefore lacking an overall unity and missing
optimization opportunities for curve generation.

Our contribution in this paper is the description of a (rather
large) subclass of BN curves that is particularly suitable for effi-
cient construction and implementation, while retaining a very sim-
ple description. The proposed subclass favours efficiency of all typical
arithmetic operations needed to instantiate cryptographic protocols



on the broadest possible landscape (targeting the widest possible
range of platforms and applications).

We stress that it is not our purpose to evaluate optimization
techniques that are exclusive to a particular platform, nor to focus
on the particular operation of computing a pairing or on techniques
that are only possible on a narrow set of circumstances. Rather,
our goal is to explore a simple yet comprehensive theoretical setting
that avoids most if not all general drawbacks and implementation
hindrances, while offering and favoring the most optimization op-
portunities for complete pairing-based cryptosystems, regardless of
particular platform idiosyncrasies. We point out, however, that the
proposed techniques may be useful to obtain optimized parameters
for other classes of pairing-friendly curves, particularly in the choice
of extension field representations.

The remainder of this paper is organized as follows. We intro-
duce theoretical concepts related to bilinear maps and BN curves in
Section 2 We describe the proposed implementation-friendly family
of BN curves and discuss its features in Section 3 Concrete exam-
ples tailored for practical deployment are suggested in Section 4 We
conclude in Section 5

2 Preliminaries

Let p be a prime and let m > 0. The conjugates of u ∈ Fpm are the

elements up
i
, 0 6 i < m. The norm of u ∈ Fpm is the product of

all its conjugates, |u| :=
∏

i u
pi . Whenever p ≡ 3 (mod 4) the finite

field Fp2 can be represented as Fp[i]/(i
2 + 1), mimicking complex

numbers. In this analogy, the conjugate of γ = α + iβ ∈ Fp2 is the
field element γ̄ = γp = α− iβ.

Given three groups G1, G2, and GT of the same prime order n,
a pairing is a feasibly computable, non-degenerate bilinear map e :
G1×G2 → GT . Usually G1 and G2 are written additively, while GT

is written multiplicatively. In practice, the pairing groups G1 and G2

are most commonly determined by the eigenspaces of the Frobenius
endomorphism φp on some elliptic curve E/Fp of embedding degree
k. Specifically, G1 is taken to be the 1-eigenspace E[n] ∩ ker(φp −
[1]) = E(Fp)[n], and G2 is taken to be the preimage E ′(Fpd)[n] of



the p-eigenspace E[n] ∩ ker(φp − [p]) ⊆ E(Fpk)[n] under a twisting
isomorphism ψ : E ′(Fpd)→ E(Fpk), (x, y) 7→ (µ2x, µ3y) for some µ ∈
Fpk , where d | k is as small as possible (or, equivalently, where the
twist E ′ has the largest degree k/d). Typical pairing algorithms are
based on Miller’s algorithm [21] with a number of optimizations [1,
16, 19, 26, 31], most notably optimal pairings [31] which have loop
order of length dlg ne/ϕ(k) in general (where ϕ is Euler’s totient
function), comparing well with the original Tate pairing which has
loop order of length dlg ne.

A Barreto-Naehrig (BN) curve [3] is an elliptic curve E : y2 =
x3 + b of prime order n(u) = 36u4 + 36u3 + 18u2 + 6u + 1 over a
finite field Fp where p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1 is prime for
some u ∈ Z. The BN field Fp contains a primitive cube root of unity
ζ(u) = 18u3 + 18u2 + 9u + 1 as one can check by straightforward
inspection. BN curves have embedding degree k = 12 and admit a
sextic twist (d = 6), so that one can set G2 = E ′(Fp2)[n]. For BN
curves the condition p ≡ 3 (mod 4) holds if and only if u is odd, and
the loop order of optimal pairings is ω = |6u+ 2|.

Since BN curves have j-invariant 0, it is relatively easy to find
them when compared to pairing-friendly curves from other families
(see [10] for an extensive survey). In particular, there is no need to
resort to the CM method explicitly. To generate a BN curve, one
chooses an integer u until p and n as given by the above polynomials
are prime. The size of u is selected such that it yields a desired size for
p and n. To find a corresponding curve, one choses b ∈ Fp randomly
until one finds a point on the curve E : y2 = x3 + b that has order
n [3]. For these steps, we need primality tests, possibly quadratic
character tests and square root computations in Fp to obtain a point
in E(Fp), and finally a scalar multiplication to check for order n.

The corresponding twist E ′/Fp2 is usually selected by finding
a non-square and non-cube ξ ∈ Fp2 and then checking via scalar
multiplication whether the curve E ′ : y2 = x3 + b′ given by b′ = b/ξ
or by b′ = b/ξ5 has order divisible by n. The element ξ can be used
to represent the field extensions of Fp2 contained in Fp12 since the
polynomial zm − ξ is irreducible over Fp2h for m ∈ {2, 3, 6} and
h ∈ {1, 2, 3} whenever gcd(h,m) = 1 [23, Lemma 2.14].



Example 1. Let pd ≡ 1 (mod 6). For each ξ ∈ Fpd that is neither a
square nor a cube, one can represent Fp6d as a tower extension of Fpd

in these three different ways:

– Fp6d = Fpd [u]/(u6 − ξ);
– Fp6d = Fp2d [v]/(v3 − ξ) with Fp2d = Fpd [s]/(s2 − ξ);
– Fp6d = Fp3d [w]/(w2 − ξ) with Fp3d = Fpd [t]/(t3 − ξ).

The components of an element from Fp6d in any of these can be
extracted directly without the need to perform expensive computa-
tions. Thus: a0 + a1u + a2u

2 + a3u
3 + a4u

4 + a5u
5 ↔ (a0 + a3s) +

(a1 + a4s)v + (a2 + a5s)v
2 ↔ (a0 + a2t+ a4t

2) + (a1 + a3t+ a5t
2)w,

for ai ∈ Fpd . ut

We will propose a subfamily of BN curves that does away with
the quadratic and/or cubic character tests usually needed when de-
ciding how to represent the finite fields extensions that occur in
a typical implementation of pairing-based protocols. The following
lemma captures an important property of the class of elliptic curves
to which BN curves belong:

Lemma 1. ([23, Lemma 2.7]) Any b that defines a curve E : y2 =
x3 + b of order n such that 2 - n and 3 - n is neither a square nor a
cube in Fp.

Proof. For any γ, δ ∈ Fp, the point (0, γ) ∈ E : y2 = x3 + γ2 has
order 3 and hence 3 | n, while the point (−δ, 0) ∈ E : y2 = x3 + δ3

has order 2 and hence 2 | n, either way contradicting the assumption
that 2 - n and 3 - n. ut

As a consequence, we arrive at this useful result:

Theorem 1. Let ξ ∈ Fpd and let b = |ξ|. If E : y2 = x3 + b over Fp

has order n such that 2 - n and 3 - n, then ξ is neither a square nor
a cube in Fpd.

Proof. If ξ were a square or a cube in Fpd , i.e. ξ = γr for some γ ∈ Fpd

and r ∈ {2, 3}, then b =
∏

j ξ
pj =

∏
j (γr)p

j
= (

∏
j γ

pj)r = |γ|r, i.e.
b would be a square or a cube in Fp, contradicting Lemma 1. ut



This means that testing for quadratic or cubic character is not
necessary in either Fp or Fpd . In particular, the element ξ specified in
Theorem 1 can be used to define all extensions of Fpd that are of in-
terest to pairing implementation, namely, Fpmd = Fpd [z]/(zm− ξ) for
m ∈ {2, 3, 6}, as shown in the example above. This choice also facili-
tates changes of representations in field towers. We remark that this
choice of representation for finite field extensions may facilitate the
implementation of other families of pairing-friendly elliptic curves
(see [10]). Pursuing this possibility, however, transcends the scope of
this paper.

The next result addresses the matter of avoiding order compu-
tation for sextic twists, by revealing immediately which one has the
correct order. To that end we need one more property:

Lemma 2. For any ξ ∈ Fp2 for a BN prime p, let b = ξξ̄. Then
b/ξ5 is a cube.

Proof. We first notice that the element η := b/ξ2 is unitary, i.e.
|η| = η1+p = 1 = ζ3. Since 1 + p ≡ 2 (mod 3) by virtue of p being a
BN prime, η itself must be a cube, and hence b/ξ5 = η/ξ3 is a cube,
as claimed. ut

We are finally in a position to state the following theorem:

Theorem 2. Given a BN curve of form E : y2 = x3 + b with b = |ξ|
for some ξ ∈ Fp2, the particular sextic twist E ′ : y′2 = x′3+ξ satisfies
#E(Fp) | #E ′(Fp2).

Proof. The sextic twist E ′ of E has one of only two possible or-
ders [16, Proposition 2]. It is known [3, Section 3], on the one hand,
that the correct order is n′ := (p−1+t)(p+1−t), which is a multiple
of the order n = p+ 1− t of E(Fp), and on the other hand, that for
any ξ̄ ∈ Fp2 that is neither a square nor a cube, the correct twist is
either E ′ : y′2 = x′3 + b/ξ̄ or E ′ : y′2 = x′3 + b/ξ̄5 (the choice between
ξ and ξ̄ here is purely a matter of notation convenience). Substitut-
ing the BN parameters p(u) and t(u) yields n′(u) ≡ 1 (mod 2), i.e.
n′ must be odd. But since b = |ξ| = |ξ̄| the value b/ξ̄5 is a cube
by Lemma 2. This means that E ′ : y′2 = x′3 + b/ξ̄5 has a point of
order 2, and hence that the order of that particular twist is even. By
elimination, E ′ : y′2 = x′3 + b/ξ̄ is the twist one seeks. Notice that
b/ξ̄ = ξ. ut



3 The proposed family of curves

We propose to use BN curves of form E` : y2 = x3+b where b = c4+d6

for some c, d ∈ N \ {0}, the BN prime p satisfies p ≡ 3 (mod 4), the
Hamming weights of the (signed) binary representations of the loop
order ω of optimal pairings and the BN parameter u are minimal
(or near-minimal) for each bit length ` := dlg pe, and b is as small as
possible (preferably in the form 2j + 1 for some j). Notice that the
choice of b is consistent with both Theorem 1 and Theorem 2.

The rationale for our proposal is summarized as follows.

Pairing efficiency

First and foremost, pairing computation must be as efficient as pos-
sible, since this is the most expensive operation in any pairing-based
protocol. Low-weight ω minimizes the cost of the Miller loop in op-
timal pairings, while low-weight u minimizes the cost of the final
exponentiation [29]. Small values of b favor faster pairing compu-
tation [7], especially if b has the overall form b = 2j + 1 for some
j (hence, either c or d is a power of 2 and the other is 1), which
is clearly possible with the prescribed form we suggest. The best
situation arises when b = 2 and ξ = 1 + i, since multiplications
by b are most efficient on all platforms (not only on those where
a dedicated multiplication by a small constant is readily available,
but also those where it has to be emulated with simpler operations
like shifts or additions) and the computation of conjugates, which
involves multiplications by ξ, incurs the least overhead.

Overall efficiency

All operations involved in pairing-based protocols must be as effi-
cient as possible. Works like [5] only consider pairing computation
speed as a metric, disregarding operations like generating random
points or hashing to the pairing groups G1 and G2 which are essen-
tial to most cryptographic schemes based on pairings. For BN curves,
this means there must be a very efficient method to compute square
roots in Fp and Fp2 . This is least expensive when p ≡ 3 (mod 4)
and p2 ≡ 9 (mod 16), since the Cippolla-Lehmer method simplifies
to one quadratic character test and one exponentiation for square



roots in Fp, namely,
√
a = a(p+1)/4, and the KCYL [18] method ap-

plies to the computation of square roots in Fp2 , taking one quadratic
character test and 1.5 exponentiation. The case p2 ≡ 17 (mod 32) is
almost as efficient, taking one quadratic character test and 2 expo-
nentiations to extract roots in Fp2 with the method of [22].

Uniform finite field arithmetic

Arithmetic in all finite fields involved must be efficient. Operations
in G1 and G2 already need efficient arithmetic in Fp and Fp2 , and
further processing (e.g. explicit or implicit exponentiation) of pairing
values need efficient algorithms for Fp12 itself, or in some cases for the
subfield Fp6 or Fp4 , if pairing compression techniques are adopted (by
factors of 2 and 3, respectively). Also, potential support for efficient
conversions between different representations have to be planned for
the sake of interoperability.

Generator simplicity

Obvious generators that do not involve any extra processing or
storage are clearly desirable. A curve equation of form E : y2 =
x3 +(c4 +d6) admits the obvious solution (−d2, c2). Besides, by The-
orem 2 the sextic twist of form E ′ : y′2 = x′3 + (c2 + id3) always
contains a subgroup of the same order n as E, and the curve equa-
tion for E ′ admits the obvious solution (id, c), so that h·(id, c), where
h = p − 1 + t, only fails to be a generator of E ′[n] with negligibly
low probability O(1/h). A particularly sensible choice is to set d = 1
and look for the smallest c such that E has order n. The cofactor
multiplication can be carried out very efficiently [28, Section 6].

Suitable field sizes

An obvious bottleneck is Fp2 arithmetic, since it is at the bottom
of all operations in G2, GT , and pairing computation. Choosing p
slightly smaller than a multiple of the platform word size (say, more
than two bits but less than three bits). This enables not only post-
poning modular reductions in critical operations like Fp2 multiplica-
tion or squaring, but also simplifying the actual reduction when it
is finally applied, as pointed out in [5, Section 5.2].



4 Sample curves

We provide on Table 1 practical curves of the proposed family for
fields of bit length ` := 32m− 2 where 5 6 m 6 20, thus ranging
between 80-bit and 192-bit security levels. All of them have the form
E` : y2 = x3 + (c4 + 1) over Fp(u), prime order n(u), and admit a
twist of correct order given by E ′ : y′2 = x′3 + (c2 + i) over Fp2 . Also,
c is always a power of 2.

Field extensions Fp2d can be represented, if desired, directly as
Fp2 [z]/(zd − c2 − i) for d = 2, 3, 6, or via towers as indicated in
Example 1.

The pairing groups are G1 = 〈G〉 for G = (−1, c2), and G2 = 〈G′〉
for G′ = h · (i, c) with h = p−1+ t, respectively. The low weight of u
enables very efficient multiplication by the cofactor h [28, Section 6].

The peculiar choice ` := 32m− 2 deserves some attention, since
it is smaller (albeit not by much) than a multiple of typical word
sizes (more precisely, a multiple of 8 bits) and hence leads to secu-
rity levels that are very slightly lower than usual. This was done so
that, adopting Montgomery arithmetic in the base field, all values
listed here enable all modular reductions involved in an Fp2 multi-
plication or squaring to be postponed and carried out only once at
the very end of that operation, in a very simple and efficient manner
as suggested by [5, Section 5.2]. The value b232m/pc indicates how
many modular reductions can be postponed if Fp elements are held
in 32m-bit variables. With the suggested choice of ` = 32m − 2,
b232m/pc = 7 for all examples on Table 1 except for the entry at
` = 254, where it is 6 (Fp2 multiplication or squaring does not need
this value to be larger than 5).

Square roots in Fp2 can be efficiently computed with the sug-
gested method, either KCYL [18] or Müller [22].

Example 2. The parameters for the 254-bit curve defined by u =
−(262 + 255 + 1) are E254 : y2 = x3 + 2, G = (−1, 1), E ′

u : y′2 =
x′3 + (1 + i), G′ = h · (i, 1).

The parameter of for this particular curve has been apparently
first suggested in [26, Section 4.2], albeit without the benefit of a
simple model for the curve equation, its twist, and the finite fields
involved as per our proposal. Notice that E254 and all other curves



with c = 1 (and hence b = 2) have u ≡ 11 (mod 12). Therefore, as
first pointed out in [30], they could have been found even without
the test for order n. ut

Table 1. Sample curves

m ` u c wt(6u+ 2)
√

Fp2

5 158 −(238 + 228 + 1) 2 5 KCYL
6 190 −(246 + 223 + 222 + 1) 8 5 KCYL
7 222 254 − 244 + 1 4 5 Müller
8 254 −(262 + 255 + 1) 1 5 KCYL
9 286 −(270 + 29 + 28 + 1) 4 5 KCYL
10 318 278 + 262 + 21 + 1 1 6 KCYL
11 350 −(286 − 269 + 228 + 1) 1 7 KCYL
12 382 −(294 + 276 + 272 + 1) 1 7 KCYL
13 414 −(2102 − 284 + 255 + 1) 1 7 KCYL
14 446 2110 + 236 + 1 4 5 Müller
15 478 −(2118 − 255 − 219 + 1) 1 7 KCYL
16 510 −(2126 + 253 − 250 + 1) 4 6 KCYL
17 542 −(2134 + 2114 + 230 + 1) 1 7 KCYL
18 574 −(2142 + 2120 − 299 + 1) 1 7 KCYL
19 606 −(2150 − 295 + 28 + 1) 1 7 KCYL
20 638 2158 − 2128 − 268 + 1 4 7 Müller

5 Conclusion

We have presented a subclass of Barreto-Naehrig curves that gener-
ically favors efficient implementation while retaining a very simple
description. Our proposal targets the efficiency of all typical arith-
metic operations needed to instantiate cryptographic protocols, and
focuses on offering optimization opportunities on the broadest pos-
sible landscape of platforms rather than restricting them to the id-
iosyncrasies of any particular one.

One problem still open is that of highly efficient hashing onto the
G1 and G2 groups. Although our proposal addresses this problem by
enabling the fastest known arithmetic algorithms for these groups
(particularly square root extraction), more advanced hashing tech-
niques like that of Icart [17] are currently not applicable to any BN
curve. Finding a fast and secure hashing method for those groups is
of great importance for many protocols.
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