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ABSTRACT
Recently, cryptanalysts have found collisions on the MD4,
MD5, and SHA-0 algorithms ; moreover, a method for find-
ing SHA–1 collisions with less than the expected amount
of work complexity has been published. The National In-
stitute of Standards and Technology (NIST : http://
www.nist.gov/index.html) has decided that it is
prudent to develop a new hash algorithm that shall be re-
ferred to as “SHA–3”, and will be developed through a pub-
lic competition (http://www.nist.gov/itl/csd/
ct/hash_competition.cfm). From the set of pro-
posal accepted for the second round of the competition, the
solution we have chosen to explore in this paper for provid-
ing an efficient parallel algorithm, is the Skein hash func-
tion family. Its design combines speed, security, simplicity,
and a great deal of flexibility in a modular package that
is easy to analyze. The main reason for parallelizing such
an algorithm is to obtain optimal performances when deal-
ing with critical applications which require implementation
on multi-core target processors. For parallelizing Skein we
have used the tree hash mode which virtually creates one
thread for each node of the tree. We claim that this is one
of the first parallel implementation with associated perfor-
mances evaluation of this SHA-3 candidate algorithm.
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1 Introduction

Skein [10] is a new family of cryptographic hash
functions, candidate in the SHA-3 competition [13]
(see http://www.nist.gov/itl/csd/ct/hash_
competition.cfm). Its design combines speed, secu-
rity, simplicity, and a great deal of flexibility in a modular
package.

In 2005, security flaws were identified in SHA-
1 [14][1], indicating that a stronger hash function is
quite desirable. The NIST ( : http://www.nist.gov/
index.html) then published four additional hash func-
tions in the SHA family, named after their digest length
(in bits) : SHA-224, SHA-256, SHA-384, SHA-512, also
known as the SHA-2 family which does not share the weak-
ness of SHA-1.

The SHA-3 project was announced in Nov. 2, 2007
and was motivated by the collision attacks on commonly
used hash algorithms (MD5 and SHA-1). The new hash
function shall not be linked to its predecessor, so that an
attack on SHA-2 is unlikely applicable to SHA-3.

Since the new proposals are intended to be a drop-in
replacement, some properties of the SHA-2 family must be
preserved. However, some new properties and feature must
be provided by SHA-3 : it may be parallelizable, more suit-
able for certain applications, more efficient to implement
on actual platforms, or may avoid some of the inciden-
tal “generic” properties (such as length extension) of the
Merkle-Damgard construct ([8] [7]) that may often result
in insecure applications.

The work described in this paper refers to sequential
and parallel algorithms for Skein cryptographic hash func-
tions, analysis, tests and optimizations. Our new approach
for parallelizing Skein is by using the tree hash mode which
creates one thread task for each node of the tree.

The paper is structured as following : Section 2 and
3 give a brief description of Skein and a detailed descrip-
tion of its Tree Mode, section 4 presents the potential ap-
proaches for parallelism. Then we present the work done
for parallelizing the hash algorithm : speedup, implementa-
tion description, testing and elements of performance eval-
uation. Finally, the conclusion and some recommendations
for future work are given in the last chapter.

2 Brief description of Skein

The structure of the Skein algorithm (Unique Block
Iteration, UBI chaining) has its origin in the sponge hash
functions [5][6].

Definition [6] : Let A be an alphabet group which
represent both input and output characters and C be a finite
set whose elements represents the inner part of the state of a
sponge. A sponge function takes as input a variable-length
string p of characters of A that does not end with 0 and
produces an infinite output string z of characters of A . It is
determined by a transformation f of A × C .

Skein works like a Sponge function : it takes a vari-
able length string of characters as its input and produces an
infinite output string (it can generate long output by using
the threefish block cipher in counter mode). The capacity of
the sponge function is replaced in Skein by a tweak which



is unique for each block.
A sponge function works by absorbing and squeez-

ing its input ; these steps in Skein correspond to the pro-
cessing stage and the output function. The main difference
between sponge functions and UBI chaining is that the in-
put chaining value for the UBIs of the output function is
the same, while in the sponge function it depends on the
previous state.

Skein also has a configuration block that is processed
before any other blocks.

The Skein family of hash functions use three different
internal state size : 256, 512 and 1024 bits :

• Skein-512 : the primary proposal ; it should remain se-
cure for the foreseeable future.

• Skein-1024 : the ultra-conservative variant. If some
future attack managed to break Skein-512, it should
remain secure. Also, with dedicated hardware it can
run twice as fast as Skein-512.

• Skein-256 : the low memory variant. It can be imple-
mented using about 100 bytes of memory.

Skein uses Threefish as a tweakable block cipher, with
the Unique Block Iteration (UBI) chaining mode to build a
compression function that maps an arbitrary input size to
a fixed output size. Figure 6 shows a UBI computation for
skein-512 on a 166-byte (three blocks) input, which use
three calls to Threefish-512.

The core of Threefish is a non-linear mixing func-
tion called MIX that operates on two 64-bit words. This
cipher repeats operations over a block a certain number
of rounds (72 for Threefish-256 and Threefish-512, 80 for
Threefish-1024), each of these rounds being composed of
a certain number of MIX functions (2 for Threefish-256, 4
for Threefish-512 and 8 for Threefish-1024) followed by a
permutation. A subkey is injected every four rounds. From
a parallelization point of view, each mix operation could
be assigned to one thread since, for a given round, they
operate on different 128-bits blocks. In theory, we could
achieve a maximum speedup of 2 with Threefish-256, 4
with Threefish-512 and 8 with Threefish-1024 provided
that at each round waiting times (for instance for schedul-
ing) between threads are quite negligeable, a permutation
being performed at the end of each round.

Skein is built with three elements : the block cipher
(Threefish), the UBI, and an argument (containing a con-
figuration block and optional arguments). The configura-
tion block is mainly used for tree hash, while optional ar-
guments make it possible to create different hash functions
for different purposes, all based on Skein.

Skein can work in two modes of operation, which are
built on a chaining of UBI operations :

• Simple hash : it take a variable sized input and return
the corresponding hash. It’s a simple and reduced ver-
sion of the full Skein mode. For instance with a hash
processus where the desired output size is equal to
the internal state size it consists of three chained UBI

functions, the first process the configuration string, the
second the message and the latter is used to supply the
output.

• Full skein : The general form of Skein admits key pro-
cessing, tree hashing and optional arguments (person-
alization string, public key, key identifier, nonce...).
The tree mode replaces the single UBI call which pro-
cesses the message by a tree of UBI calls.

The result of the last UBI call (the root UBI call in
case of tree processing) is an input to the Output function
which generates a hash of desired size.

The followings section presents the two modes of
Skein intended to be widely used.

3 Simple Hash Mode

3.1 Specification

This section recalls the specification of the Simple
Hash mode (refer to the Skein paper for more information).

A simple Skein hash computation has the following
inputs :

Nb The internal state size, in bytes. Must be 32, 64,
or 128.

No The output size, in bits.
M The message to be hashed, a string of up to 299−8

bits (296 − 1 bytes).
Let C be the configuration string for which Yl = Yf =
Ym = 0. We define :

K ′ := 0Nb a string of Nb zero bytes (1)
G0 := UBI(K ′, C, Tcfg2120) (2)
G1 := UBI(G0,M, Tmsg2120) (3)
H := Output(G1, No) (4)

where H is the result of the hash.
If the three parameters Yl, Yf and Ym are not all zero,

then the straight UBI operation of the equation (3) is re-
placed by a tree of UBI operations as defined in the section
4.1.

3.2 Remarks

UBI is a chaining mode for the Threefish cipher, so
there is no underlying parallelism other than that which
can be obtained into the Threefish block encryption as ex-
plained above. The Output operation of the equation (4) is
in fact a sequence of UBI operations iterated according to
a counter mode, so this last one can be done in parallel by
assigning one UBI operation to one thread.



UBI UBI UBI UBI UBI

UBI

UBIUBI

UBI UBI

UBI

messageNb -sized

FIG. 1: Tree hashing with Yl = Yf = 1

4 Hash Tree Mode

4.1 Specification

This section recalls the specification of the Hash Tree
mode (refer to the Skein paper for more information), a
mode specifically designed for parallel implementations.

Tree processing vary according to the following input
parameters :

Yl The leaf size encoding. The size of each leaf of the
tree is Nl = Nb2Yl bytes with Yl ≥ 1 (where Nb is
the size of the internal state of Skein).

Yf The fan-out encoding. The fan-out of a tree node is
2Yf with Yf ≥ 1. The size of each node is Nn =
Nb2Yf .

Ym The maximum tree height ; Ym ≥ 2. If the hieght of
the tree is not limited this parameter is set to 255.

G0 The input chaining value and the output of the previ-
ous UBI function.

M The message data.

We define the leaf size Nl = Nb2Yl and the node size
Nn = Nb2Yf .

We first split the message M into one or more mes-
sage blocks M0,0,M0,1, ..., M0,k−1, each of size Nl bytes
and the latter possibly smaller. We now define the first level
of tree hashing by :

M1 =
k−1!

i=0

UBI(G,M0,i, iNl + 1 · 2112 + Tmsg · 2120)

The rest of the tree is defined iteratively. For any level l =
1, 2, ... we use the following rules :

1. If Ml has length Nb then the result G0 is defined by
G1 = Ml.

2. If Ml is longer than Nb bytes and l = Ym − 1 the we
have almost reached the maximum tree height. The
result is then defined by :

G1 = UBI(G,Ml, Ym · 2112 + Tmsg · 2120)

3. If neither of these conditions holds, we create
the next tree level. We split Ml into blocks
Ml,0,Ml,1, ...,Ml,k−1, where all blocks are of size
Nn, except the latter possibly smaller. We then define :

Ml+1 =
k−1!

i=0

UBI(G,Ml,i, iNn+(l+1)·2112+Tmsg·2120)

and apply the above rules to Ml+1 again.

The result G1 is then the chaining input to the output
transformation.

4.2 Sequential implementation

The straightforward method consists to implement
this algorithm as it is presented in its specifications. This
implementation would constitute a scheduling method for
the nodes processing that we might call Lower level and
leftmost node first (that we will call for short Lower level
node first). Such an implementation has the disadvantage of
consuming lots of memory. For instance if we take Yl = 1,
we should be ready to store in memory up to half of the
message we want to hash, which may be impossible for
long messages.

There is an effective algorithm (refer to [11]) which
computes a value of height h node, while storing only
up to h + 1 hash values. The idea is to compute a new
parent hash value as soon as possible before continuing to
compute the lower level node hash values, so that we can
call this method heigher level node first. The interest of
this method, which maintains a stack in which are stored
the intermediate values, is to rapidly discard those that
are no longer needed. This stack, empty at the beginning,
is used as follows : we use (push) leaf values one by
one from left to right and we verify at each step if the
last two values on the stack are of the same height or
not. If such is the case, these last two values are popped
and the parent hash value is computed and pushed is the
stack, otherwise we continue to push a leaf value and
so on. Note that we could use a 2 hash-sized buffer at
each level (1 to h) instead of a unique stack, even though
it is useless in such a sequential implementation. This
algorithm can be applyed to Skein trees on the condition
that we include a special termination round seeing that
they are not necessarily full trees (as we can see in figure 1).

We assume existence of followings elements :
– oracles :

– S(n) which returns the node value.
– LEAFCALC(l) which returns a pair of ele-

ments (S(nl), t) where S(nl) is the leaf value
(a Nb-sized block of the message) and t a binary
variable indicating whether it is the last leaf (1)
or not (0).

– TOPNUMBER(s) which returns the number
of top nodes on the stack of equal height.



– SIZE(s) which returns the number of staked
nodes.

– variables :
– l : a counter which start from 0, the leftmost leaf.
– np : the number of nodes processed.
– cl : the current level.
– t : the terminate variable
– Dl : the internal node degree at level 1.
– Dn : the internal node degree at level > 1
– s : the stack.

– other notations : nl, np, nr, ni denotes respec-
tively a leaf node, a parent node, a root node and
the i-th child of a parent node.

Then an algorithm for Skein tree hashing is the fol-
lowing :

Algorithm 1 Skein tree hashing using a stack (without Out-
put transformation)

1: Set l = 0, np = 0, cl = 0, t = 0, Dl = 2Yl , Dn = 2Yf

and s = [ ].
2: if cl < Ym − 1 and (t $= 0 or (TOPNUMBER(s) =

Dl and cl = 0) or (TOPNUMBER(s) =
Dn and cl > 0)) then

3: Increment cl
4: Compute N = TOPNUMBER(s)
5: for i = N − 1 to 0 do
6: Pop S(ni) from s
7: end for
8: Concatenate S =

"N−1
i=0 S(ni)

9: Compute S(np) = UBI(G,S, max(np−N, 0)·Nb+
cl · 2112 + Tmsg · 2120)

10: Push S(np) onto s
11: Compute np = %np

N &
12: else
13: Compute (S(nl), t) = LEAFCALC(l)
14: Push S(nl) onto s
15: Set np = l
16: Increment l
17: end if
18: Compute R = TOPNUMBER(s)
19: if t $= 0 and R = SIZE(s) and cl > 0 then
20: Increment cl
21: for i = R − 1 to 0 do
22: Pop S(ni) from s
23: end for
24: Concatenate S =

"R−1
i=0 S(ni)

25: Compute S(nr) = UBI(G,S, cl ·2112+Tmsg ·2120)
26: Return S(nr)
27: else
28: Loop to line 2
29: end if

5 Approaches for parallelism

In the following sections, we denote Nt the number
of threads. These threads are then indexed 0, 1, ..., Nt − 1.

We assume that k1 = k is the number of Nb-sized
blocks of level 1. We need to define a recursive sequence
starting at an initial value k2 by :

k2 = ' k

2Yf
( and ki = 'ki−1

2Yf
(

There exists an index v for wich kv = 1. The tree height is
then p = min(v, Ym). The bytes string produced at a level
i of the tree (excepted the base level i = 0) can be splitted
into ki blocks Mi,0,Mi,1,Mi,2, ..., Mi,ki of size Nb.

5.1 Lower level node priority
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FIG. 2: Lower level node first
(Yf = Yl = 1, Ym = 255, Nt = 4)

This method consists in treating the tree levels com-
pletely and successively. It should, theoretically, offer the
best performances in practice because of the near absence
of synchronization between threads, out of synchronization
due to inevitable dependencies between worker threads and
main thread which provides the input data. Let’s observe
the figure 2 in which a job is indexed as ij where i de-
notes the step and j the index of the assigned thread. In
this example if we count the jobs on each level from left
to right, then we can assign a job j to a thread indexed j
mod Nt. This method, although intended to get the best
performances, has the drawback of requiring huge amount
of memory as explained above.

5.2 Higher level node priority
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FIG. 3: Higher level node first
(Yf = Yl = 1, Ym = 255, Nt = 4)

This method consists, for a thread, to assign 1 the
higher level node among all those that may be assigned

1An assignment of a node to a thread means that this last one is respon-
sible for producing the hash value of this node thanks to the hash values
of its children.



to it. There are two possible ways to apply this method,
in a deterministic way, in which case a thread indexed j
must take into account at the current step the predictable
behavior of the threads indexed 0, 1, 2, ..., j − 1, and a non
deterministic way, in which case the higher level node is
assigned to the first ready thread. The advantage of this
approach is to conserve at best the memory usage during
the hash process. Indeed, if we denote Nt the number of
threads, p the height of the produced tree, we define a re-
cursive sequence by :

n1 = Nt, np−1 = kp−1 and

ni = max(%ni−1

2Yf
&, 2Yf ) for i ∈ #1, p − 1#

Thus, we can use buffers at each level of the tree, of re-
spectively n1 · Nb bytes for the first one, n2 · Nb bytes for
the second, and so on. If the Ym parameter does not con-
strain this tree, then a memory space of only Nb ·

∑p−1
i=1 ni

bytes seems sufficient. Note that this estimate does not rep-
resent the maximal memory space really used at every mo-
ment because buffers may be not entirely filled. In fact it is
much lower, the worst case occurring when all the buffers
are not empty and not necessarily filled. Furthermore, we
are not sure that first level buffers at the bottom of the tree
have the length a multiple of 2Yf (take an example with 5
or 6 threads), so that we have to consider them as cyclic
buffers. Note also, this is only the recommanded memory
for the produced/consumed digests at the nodes, we must
add the data input buffer cost and some other data such
as mutexes, semaphores or eventual conditional variables
needed for synchronization. Also, if we look at the figure
3, we must be careful that thread 32 does not produce a di-
gest before the thread 31 has finished to consum the digest
produced by 21, forcing these last ones to perform a data
recopy in order not to lose too much parallelism.

This scheduling method is not easy to implement and
it is not clear it offers good performances in practice be-
cause of the large number of synchronization mechanisms
required. Therefore, a deterministic case implementation
should be avoided since the threads might wait for them-
selves uselessly. Finally, we can notice (observe the right
sides of the trees on the figure 3) that the total number of
steps increases compared to the first scheduling method be-
cause of the number of purely sequential steps, which can
approach the height of the tree. This number of additional
steps depends on the configuration of the tree and the num-
ber of threads generated. This inherent unbalanced load-
ing between threads, due to this scheduling approach, can
therefore reduce the speedup.

5.3 Priority to a fixed number of higher level and same
level nodes

A third method takes again the idea of using a stack
(see section 4.2), but apply it to an arbitrary number of
threads. For Nt threads, we use at each level buffers which
can receive Nt · 2Yf blocks of size Nb, excepted the base
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FIG. 4: Fixed number and same level nodes first
(Yf = Yl = 1, Ym = 255, Nt = 4)

level where the leaves are the input data buffer blocks.
These threads have to compute for the same level Nt · 2Yf

nodes values in order to move up and compute Nt nodes
values at the next level. Once these Nt nodes values are
computed, the Nt · 2Yf children values are removed. If the
current level occupied by threads is greater than 1 and the
lack of ressources on the level below prevents them finish-
ing the compution of the Nt · 2Yf blocks, then they return
down to level 1, otherwise they continue, and so on (see
the figure 5). Obviously, a termination phase for the end of
the message has to be foreseen, in which case buffers’ con-
tents less than Nt · 2Yf blocks have to be processed. Fur-
thermore, top levels may need narrower buffers (see figure
4) and when the Ym = p parameter constraints the tree,
the penultimate level buffer must always have a capacity
of kp−1 blocks. Such an algorithm requires about Nt times
more memory for internal nodes values storage than the se-
quential one using levels buffers instead of a stack.

In theory this fixed number and same level nodes first
scheduling is as efficient as the lower level node first ver-
sion described above section 5.1 and conserve also the
first method’s speedup. Just like the higher level node first
scheduling, any recurrent waiting between threads should
reduce performances, but, it seems simpler to implement.

Termination phase

step

1

3

2

1

4

starts this step

2

lvl

FIG. 5: levels buffers filling for a message of 32Nb bytes
(Yf = Yl = 1, Ym = 255, Nt = 4)

5.4 Assigning subtrees

If we consider the case where a thread is processing a
subtree, the user could control an additional parameter, the
height hs of the subtree. Threads should be able to process
full subtrees, not necessarilly full subtrees at the right side
of the original tree and finally a last top subtree of height
lower or equal to hs.



Although the use of sub-trees may slightly unbalance
loading between threads, it would have the advantage of
reducing the total number of dependencies during the ex-
ecution and improve performances. Note that the effect of
this parameter could be similar to the Yf and Yl effect but
the user might have an interest in treating a tree of a partic-
ular configuration, for instance (s)he might want to check a
hash issued from a tree of a particular configuration.

The scheduling policies outlined above can always be
applied.

6 From Simple hash to Tree hash

The Tree mode will allow to calculate a hash in an
incremental way ; that is to say it will allow to update the
hash whenever a new data field is concatenated before or
after the actual data. It also offers the possibility of authen-
tication and update of the hash when the data to be authen-
ticated is never truncated or concatenated with additional
fields (e.g : memory authentication [9], statical dictionary).

The object of this section is to confront the Simple
Hash Mode to the Tree Hash Mode. Then, we estimate the
followings speedup :

– parallel tree processing compared to the sequential
UBI operation of the equation (3).

– parallel tree processing compared to the sequential
tree processing.

In each case, we give the potential speedup for which the
number of hardware processing units is large enough to not
be a limiting factor.

6.1 Elementary operations and time complexity

The time complexity of a function UBI for the evalu-
ation UBI(G,M, Ts) can be described by :

T (l) = a · (' l

8Nb
( · l>0 + l=0) + b

where l is the message length in bits, the constant a is the
time complexity for a block ciphering operation and the
constant b corresponds to the time complexity for the ini-
tialization operations such as padding operation and argu-
ment evaluation.

We can safely say that b is much lower than a, then
we parametrize b by αa with α ∈ [0, 1] and define this time
complexity by :

T (n) = a · (n + α) (5)

where n = ' l
8Nb

( is not zero.

The block ciphering operation by Threefish is then
considered as an elementary operation, it constitutes one
iteration of the UBI chaining mode, framed in red in the
figure 6 which gives an example of a three-block message
hashing using UBI.

FIG. 6: Processing a message of 166 bytes

6.2 Comparing the two algorithms

The number of basic operations of a single UBI ap-
plication is n+α. Let’s consider the Tree hash mode in the
best case where there is a k ∈ such that n = 2Ylk and
also a h ∈ such that k = 2Yf h. The associated tree is a
complete tree of 2Yf nodes and of deep h. If h ≤ Ym − 1,
the number of basic operations without the contributions in
α, is :

Nnc
s (n) = n ·

(
1 +

2Yf−Yl

2Yf − 1

)
− 2Yf

2Yf − 1

For h > Ym − 1, this number is :

N c
s (n) = n ·

(
1 +

2Yf (Ym−1) − 1
2Yl+Yf (Ym−2)(2Yf − 1)

)

The associated contributions in α are :

Mnc
s (n, α) = n · 2Yf−Yl − 1

2Yf − 1
· α

M c
s (n, α) = (n · 2Yf (Ym−1) − 1

2Yl+Yf (Ym−2)(2Yf − 1)
+ 1) · α

Following the model of the equation (5), the time complex-
ity Tt(n) of a calls tree UBI for n of the form 2Yl+Yf h is :

Tt(n) =

{
a · (Nnc

s (n) + Mnc
s (n, α)) if h ≤ Ym − 1

a · (N c
s (n) + M c

s (n, α)) otherwise

From Nnc
s (n) and N c

s (n), for a fixed message size,
one can observe that :

– if Yl = Yf = 1 and h ≤ Ym − 1 then the max-
imum number of basic operation is reached. Such
parameters can be of interest if we can use n

2 par-
allel processing units.

– if Ym = 2 and h > Ym − 1, Yf is not used, the
number of operations are function only of Yl and
are optimized for Yl = 1.

– Augmenting Yl will minimize the overhead of the
number of operations but requires the use of larger
buffers, mainly in a multi-threaded implementa-
tion.



– The choice of the two parameters Yl and Yf influ-
ences the deep of the tree and therefore the memory
usage overhead. Augmenting these two parameters
will decrease the overhead. A constraint Ym on the
tree deep is not affecting the amount of memory
required for the hash (but, in case of the use of
mechanisms for memory authentication one needs
to store the intermediary levels of the tree).

The choice of parameters Yf , Yl and Ym depends on the
degree of parallelism for a particular implementation, the
synchronization primitives of a specific implementation,
and, the constraints associated with the memory require-
ments.

Now we consider the optimal configuration with k
processing units. If h ≤ Ym − 1, the number of operations
by processing unit, without the contribution in α, shall be :

Nnc
p (n) = 2Yl + h · 2Yf

For h > Ym − 1, this number is :

N c
p(n) = 2Yl + (Ym − 2) · 2Yf + 2Yf (h−Ym+2)

The associated contributions in α are :

Mnc
p (n, α) = (h + 1) · α

M c
p(n, α) = Ym · α

Following always the model of the equation (5), the time
complexity T p

t (n) of a calls tree UBI performed by a sys-
tem with at least k processing units and for n of the form
2Yl+Yf h is :

T p
t (n) =

{
a · (Nnc

p (n) + Mnc
p (n, α)) if h ≤ Ym − 1

a · (N c
p(n) + M c

p(n, α)) otherwise

We define PSpt/u(n) the potential speedup of the Tree
mode in an optimal configuration system, for n of the form
2Yl+Yf h and when compared to the Simple hach (a straight
UBI operation), by :

PSpt/u(n) =
T (n)
T p

t (n)

If we fix a value for α, we can deduce the following
result :

Lemma 1. In the general case, for all n but a not con-
strained tree in height, PS(n) ∈ Ω( n

log n ), so the potential
speedup increases with the size of the message.

Note that if we take α = 0, for n of the form 2Yl+Yf h

and h ≤ Ym − 1, we have

PSpt/u(n) =
n

Nnc
p (n)

=
n · ln(2Yf )

(ln(n) − ln(2Yl)) · 2Yf + ln(2Yl) · 2Yl

Similarly, in this case and if h > Ym − 1, the speed-up is
then PSpt/u(n) = n

Nc
p(n) .

6.3 Speed-up of the Tree hash

We define PSpt/st(n) the potential speedup of the
Tree mode in an optimal configuration system, for n of the
form 2Yl+Yf h and when compared to a one processor im-
plementation, by :

PSpt/st(n) =
Tt(n)
T p

t (n)

Note that if we take α = 0, for n of the form
n = 2Yl+Yf h and h ≤ Ym − 1, then the potential speed-
up of Hash Tree when compared to a single processor
implementation is PSpt/st(n) = Nnc

s (n)
Nnc

p (n) and in case
of a constrained tree with h > Ym − 1 this last one is
PSpt/st(n) = Nc

s (n)
Nc

p(n) .

7 Java implementation

Thread scheduling in Java. There are two kinds of
schedulers : green and native. A green scheduler is pro-
vided by the Java Virtual Machine (JVM), and a native
scheduler is provided by the underlying OS. In this work,
tests were performed on a Linux operating system with
a JVM using the native thread scheduler. This provides a
standard round-robin strategy.

Threads can have different states : initial state (when
not started), runnable state (when the thread can be exae-
cuted), blocked state and terminating state. The significant
point is when a thread is in the blocked state, i.e waiting
for some event (for example, a specific I/O operation or
waiting for a signal notification). In this case, the thread is
not consuming CPU resources at all, meaning that having
a large number of blocked threads doesn’t impact much on
the efficiency of the system.

7.1 Class organization

Skein’s implementation is composed of several
classes, splitting the core functionality and special code of
the algorithm :

• Main algorithm : Skein core is implemented as three
classes, Skein256, Skein512 and Skein1024. They all
provide the same interface, and support Simple Hash
as well as Full Skein. Tree and thread management is
done in other support classes.

• Tree and thread support : different class were imple-
mented, each representing the different kind of nodes
we can have in the hash tree. All of those classes have
a similar interface :

- TreeNode : used when hashing a file with a hash
tree

- NodeThread : used in a hash tree with one thread
per node



- NodeJob : used in a hash tree with one job per
node, and process those jobs with a thread pool

- ThreadPool : manage the pool of thread used
with NodeJob instance.

- Other classes are needed for the pipeline im-
plementation of Skein : SimplePipeFile and
TreePipeFile are used, the first one for Simple
Hash and the second one for Full Skein with tree.

In addition to these classes, two “main” classes where
written. The Speed class is used to test the speed-up of the
algorithm, and the Test class implements direct calls to the
different hash methods on different inputs, as well as run-
ning tests provided in the Skein reference paper.

7.2 Sequential Skein

To do a Simple Hash, one simply call the update()
and digest() methods on a Skein class. There are also meth-
ods available to perform the Tree hash computation sequen-
tially.

7.3 Parallel Skein

1. One thread per node
We create one thread per node, and let the scheduler
handle how they are executed (figure 7).

FIG. 7: Parallel Skein using one thread per node

2. One thread per node with a thread pool
To optimize the first implementation we created
a thread pool that has a fixed number of threads.
Those threads can accept jobs in a FIFO manner
and executes them (figure 8).

3. Pipe input file
Because most of the time people hash many files
at a time, we have decided to implement a “pipe”
that applies the hash function in parallel for each
input file. This implementation uses the thread pool
with a thread count equal to the number of files to
be hashed. It is implemented using both the Simple
hash and the Tree hash methods.

FIG. 8: Parallel Skein using one thread per node and a
thread pool

8 Testing and performance

For testing the performance evaluations of the var-
ious implementations we wrote the Speed class, used in
conjunction with the YourKit profiling tool [2], which al-
low monitoring the CPU and memory usage. The test were
done using a Dell Latitude D830, Intel(R) Core(TM)2 Duo
CPU T7500 @ 2.20Ghz, 2GB RAM, L2 cache size 4MB
with Ubuntu 9.10. In order to determine the speed of the
implementation, it was tested using a file of 700MB. The
performance results are illustrated in the chart below :

FIG. 9: Processing speed (in MB/s) comparison between the
Skein versions

Although the fastest version should theoretically be
Skein-1024, from this chart we can deduce that the version
using a block size of 512 bits is faster. That is because the
computer used for these tests has a 64 bit processor. Fur-
thermore, the slowest is Skein-256 but this one would be
the fastest on a 32 bit CPU.

The tests using the YourKit profiler showed the paral-
lel versions use more heap memory, but the CPU load stay
close to 100%, meaning both processors available on the
platform are used at their full capacity.

In termes of execution time the One Thread per Node
implementation is the slowest. This is mainly due to the
overhead of the thread scheduler and poor memory man-
agement. Creating a lot of threads for single use is very
costly : it triples the heap memory usage in comparison to
the sequential version, but is not very effective. It’s also
slower than the sequential version, due to excessive syn-
chronization required between threads.

To optimize this parallel implementation, we created



a thread pool class. With a limited number of threads, we
use less memory, although it’s still more when compared
to the sequential version. On the other hand, the execution
time for this implementation is almost half of the sequential
version.

The last parallel implementation uses the thread pool
class with as many threads as input files. This is an efficient
implementation as the execution time is half of the sequen-
tial version, and the difference for the used heap memory is
quite small – for the simple mode hash it is almost 0.2MB.
Also an important fact is that when running the tests on a
computer with two CPUs, having two input files mean that
both threads stay in the runnable state. We’re then using the
maximum capacity of the platform this way.

Comparing the three versions of Skein implementa-
tions, we noticed that for the simple sequential implemen-
tation the amount of heap memory used is almost the same.
A small difference was registered for Skein-1024, that uses
0.1MB more heap memory and 0.1MB more non-heap
memory. That is because this last version uses blocks of
1024 bits. In terms of execution time the results reflected
the ones in the chart above.

For the tree implementations, we used the same pa-
rameters for all three versions of Skein. The results showed
that for the sequential version Skein-256 uses less mem-
ory, and for the parallel implementations Skein-1024 uses
less heap memory. The reason is that the number of nodes
is smaller for Skein versions with bigger block sizes, and
the size of each node doesn’t vary much between the three
versions.

9 Comparing with other implementations

Our implementations were also tested by comparing
them to other Skein implementations, one in Java, from
sphlib-2.0, and the second in C from the NIST submission
of Skein.

In Java, using our Speed class to test both our imple-
mentation and sphlib-2.0 implementation, we get the fol-
lowing results :

Implementation Processings speed
Skein-512 – our implementation 36MB/s

Skein-512 – sphlib-2.0 34MB/s
SHA-512 – sphlib-2.0 27MB/s

TAB. 1: Speed results - sphlib-2.0

As we can see the Skein implementation from the
sphlib-2.0 is slower. Also it is important to notice that this
Skein implementation is much faster when compared to the
SHA-512 one (Skein is therefore a good candidate for re-
placing the current SHA-2).

For the second comparison we used a 700MB file and
hashed it using both our implementation in Java and the C
reference implementation of Skein :

FIG. 10: Comparison with a C implementation

The Java implementation of the tree mode was of
course slower than the C version, but not significantly ;
therefore some Java applications can use Java implemen-
tation of Skein. On the other hand, the parallel implemen-
tation using the thread pool is faster than the C implemen-
tation.

10 Conclusion and suggestions for further
work

Hash functions are the most commonly used crypto-
graphic primitives. These functions can be found in almost
any application and they secure the very fundamental levels
of our information infrastructures. Currently the SHA fam-
ily of functions is the most popular, but because the SHA-1
version was broken a new SHA family is needed.

Skein is one of the candidates to the second round
of the SHA-3 competition and, judging by the results ob-
tained, it is one of the quite promising candidates.

Skein is appropriate for hardware implementation for
both, devices with little memory and high speed needs. Fur-
thermore, software implementations of this family of hash
functions in C or Java can be used immediately, increasing
its accessibility. The C version is the fastest, but the avail-
ability of a pure Java implementation makes it interesting
for Java applications with performances quite acceptable.

Further work is in progress for testing the parallel im-
plementation on a highly multi-core/multi-processor sys-
tem. Moreover, further research should be done to imple-
ment the decryption phase of Skein and possibly a specific
thread scheduling policy that would speed up the imple-
mentation (i.e by reducing the scheduling overhead).
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