
Low-weight Pseudo Collision Attack on Shabal
and Preimage Attack on Reduced Shabal-512

Takanori Isobe and Taizo Shirai

Sony Corporation
1-7-1 Konan, Minato-ku, Tokyo 108-0075, Japan
{Takanori.Isobe,Taizo.Shirai}@jp.sony.com

Abstract. This paper studies two types of attacks on the hash function Shabal. The first attack is a
low-weight pseudo collision attack on Shabal. Since a pseudo collision attack is trivial for Shabal, we
focus on a low-weight pseudo collision attack. It means that only low-weight difference in a chaining
value is considered. By analyzing the difference propagation in the underlying permutation, we
can construct a low-weight (45-bits) pseudo collision attack on the full compression function with
complexity of 284. The second attack is a preimage attack on variants of Shabal-512. We utilize a
guess-and-determine technique, which is originally developed for a cryptanalysis of stream ciphers,
and customize the technique for a preimage attack on Shabal-512. As a result, for the weakened
variant of Shabal-512 using security parameters (p, r) = (2, 12), a preimage can be found with
complexity of 2497 and memory of 2400. Moreover, for the Shabal-512 using security parameters
(p, r) = (1.5, 8), a preimage can be found with complexity of 2497 and memory of 2272. To the best
of our knowledge, these are best preimage attacks on Shabal variants and the second result is a first
preimage attack on Shabal-512 with reduced security parameters.

Key words: Shabal, low-weight pseudo collision attack, preimage attack, guess-and-determine
technique, SHA-3 competition

1 Introduction

Cryptographic hash functions play important roles in modern cryptology. Many cryptographic
protocols require a secure hash function which holds several security properties classically in-
cluding a preimage resistance, a second preimage resistance and a collision resistance. Due to the
recent attacks on commonly used hash function (e.g. MD5, SHA-1) [13][14], NIST announced
the SHA-3 competition to decide an advanced hash function standard [12]. In November 2008,
NIST received 64 submissions, and 51 candidates proceed in the first round. In July 2009, NIST
announced the 14 second round candidates.

Shabal, which is designed by E. Bresson et al. [5], is one of the second round candidates of
the SHA-3 competition. Shabal employs an original mode of operation using a keyed permu-
tation. The keyed permutation consist of an initial loop, a main loop and a final loop, and is
parameterized by two security parameters (p, r):

Parameter p: The number of the main loop performed within one application of the keyed
permutation. Large values of p provide better security guarantees.

Parameter r: An integer used to determine the size of one of the internal state. The minimal
value is 2.

A recommended set of the parameters by the designers of Shabal is (p, r) = (3, 12), which is
used for the version of Shabal submitted to the SHA-3 hash competition. Shabal supports 192,
224, 256, 384 and 512-bit digest.

As for cryptanalysis of Shabal, several related-key distinguishers of the keyed permutation
are reported so far [1][2][3][6][10]. These analyses focus on a building block of the Shabal’s

Table 1. Summary of Our Results

Type of attack Security parameters Complexity Memory Reference

Low-weight pseudo collision
on the compression function

of Shabal (3, 12) 284 - This paper
(difference: 45 bits
(out of 1408 bits))

(1, 12) without the final loop 2448 not given [5].
Preimage attack on (2, 12) without the final loop 2497 2400 This paper
reduced Shabal-512 (1.5, 8) 2497 2272 This paper

compression function, and do not lead to an attack of Shabal hash function. Cryptanalysis of
reduced Shabal has been reported only in a designer’s self evaluation so far.

In this paper, we show new results on two kinds of attacks on Shabal hash function, they
are a low-weight pseudo collision attack and a preimage attack.

A low-weight pseudo collision attack is a variant of a pseudo collision attack. In a
normal setting of the pseudo collision attack, an attacker inserts a difference not only into
message blocks but also into a chaining value. Finding a pseudo collision is trivial for Shabal,
because the compression function of Shabal is invertible.

In this paper, we focus on a low-weight pseudo collision which considers only a low-weight
difference in a chaining value. In order to construct a low-weight pseudo collision on Shabal, we
use the linearization technique to analyze behaviors of differences and search an differential path
effectively. As a result, we can construct a low-weight (45-bits) pseudo collision attack on the full
compression function of Shabal with complexity of 284. In other word, the input chaining value
has 45-bit difference and other 1363 (= 512+512+384−45) bits do not have difference. Since a
low-weight pseudo collision attack can also be seen as a near collision attack with respect to the
inverse of the compression function, we consider that it reveals potential of the diffusion property
of the Shabal. Although our result does not threat the claimed security of Shabal due to that
this is a pseudo collision setting, this shows that the differential property of the compression
function of Shabal is not ideal. The result of the attack is summarized in Table 1.

The other result is a preimage attack on Shabal’s variants. A preimage attack on the
weakened variant, Shabal-512 without the final loop, have been analyzed by designers [5]. The
weakened variant using security parameters (p, r) = (1, 12) does not hold preimage resistance.
The preimage attack utilizes the weakness of the compression function that a part of the output
of the inverse of the compression function can be controlled by an input message block. Since the
same attack is not successful on the weakened variant using (p, r) = (2, 12), the current record
of the preimage attack is only the weakened variant using (p, r) = (1, 12).

In this paper, we propose a novel approach using a guess-and-determine technique for con-
trolling a part of the output of the inverse of the compression function. The technique enable
a preimage attack on the weakened variant using (p, r) = (2, 12). Moreover, we show an attack
on the Shabal-512 using (p, r) = (1.5, 8) including the final loop. This result is a first preim-
age attack on the Shabal-512 with reduced security parameters. The results of the attack are
summarized in Table 1.

This paper is organized as follows. Brief descriptions of Shabal are given in Section 2. A
low-weight pseudo collision attack on Shabal is shown in Section 3. The preimage attacks on
two variant of Shabal-512 are shown in Section 4. Section 5 concludes this paper.

P P P P P P

Message rounds

A0

B0

C0

M1 M2 Mk Mk Mk Mk
W1 W2 Wk Wk Wk Wk

Final rounds

Hash=trunc(Ck+3)

Fig. 1. The Mode of Operation of Shabal

2 Description of Shabal

In this section, we provide a brief description of the hash function Shabal [5].

2.1 Mode of Operation

Shabal employs an original mode of operation based on a keyed permutation which is called P.
The mode of operation is shown in Fig 1. In the mode of operation, the internal state consists
of three parts (A, B,C) whose sizes are 32× r, 512 and 512 respectively. r is one of the tunable
security parameters. Let Ai, Bi, and Ci be the i-th internal states (0 ≤ i), and A0, B0 and C0

are initialization vectors IV . Mi is the i-th message block of 512 bits (0 < i).
When a message block Mi+1 and a internal state (Ai, Bi, Ci) are given, the compression

function R computes a new internal state (Ai+1, Bi+1, Ci+1) as follows:

(Ai+1, Ci+1) = PMi+1,Ci(Ai ⊕Wi+1, Bi + Mi+1),
Bi+1 = Ci −Mi+1.

Wi is a 64-bit counter incremented at each compression function, and PMi+1,Ci denotes that
Mi+1 and Ci act as the key of P. Arithmetic operations + and − are wordwise ones with
respected to 32-bit words, and ⊕ is an XOR operation. The mode of operation of Shabal repeat
this calculation until the last message block. After that, three additional compression functions
using the last message block are repeatedly performed without incrementing the counter. Finally
a hash value is output by truncating C of the internal state.

2.2 Keyed Permutation P

In each compression function, the keyed permutation P takes four inputs A, B, C and M , and
outputs updated A and B. In the permutation P, B, C and M are regarded as 16×32-bits words,
and A is r × 32-bit words, respectively. A[i] denotes the i-th word of A. Then the definition of
P is shown as in Table 2.

In Table 2, ≪, ∧ and ¬ are a left rotation, a bitwise AND and a bitwise complement,
respectively. The definition of the final loop in Table 2 is for the version of r = 12. If a different
value of the parameter r is used, the definition of the final loop is changed. The detailed rule is
described in Appendix C. The recommended set of the parameters by the designers of Shabal is
(p, r) = (3, 12), which is used for the version of Shabal submitted to the SHA-3 competition.

3 Low-weight Pseudo Collision Attack on Shabal

In this section, we explain a low-weight pseudo collision attack on Shabal which is one of our
main contribution. To construct a low-weight pseudo collision attack, we insert a few differences

Table 2. Permutation P

/* initial loop */
for i = 0 to 15 do

B[i]← B[i]≪ 17,
end for

/* main loop */
for j = 0 to p - 1 do

for i = 0 to 15 do
A[i + 16j mod r]← 3× (A[i + 16j mod r])⊕ C[8− i mod 16]⊕ 5× (A[i− 1 + 16j mod r]≪ 15))

⊕M [i]⊕B[i + 13 mod 16]⊕ (B[i + 9 mod 16] ∧ ¬B[i + 6 mod 16]),
B[i]← (B[i]≪ 1)⊕ ¬A[i + 16j mod r],

end for
end for

/* final loop */
for j = 0 to 35 do

A[j mod r]← A[j mod r] + C[j + 3 mod 16].
end for

into a message and analyze propagation of the message difference through the inversion of the
compression function. Let the inverse of the compression function be R−1. We need to search
a differential path in which an output of R−1 is a low-weight difference to mount a low-weight
pseudo collision attack. In the course of our study, we first show a near collision attack on R−1.
After finding a near collision attack of R−1, it is converted into the low-weight pseudo collision
attack on the compression function of Shabal.

3.1 Inverse of the Compression Function : R−1

To begin with, since we need to analyze the compression function R backward, we use R−1

defined as follows:

Ci = Bi+1 + Mi+1, (1)
(A′

i, B
′
i) = P−1

Mi+1,Ci
(Ai+1, Ci+1), (2)

(Ai, Bi, Ci) = (A′
i ⊕Wi+1, B

′
i −Mi+1, Ci), (3)

where the inverse of the permutation P in Eq. (2) is defined as in Table 3, and A′
i and B′

i are
intermediate values of Ai and Bi, respectively. In Table 3, ≫ denotes a right rotation.

3.2 Linearization of Nonlinear Operations

In order to analyze propagation of differences, we study behaviors of differences through the
nonlinear operations in R−1. Here we consider XOR differences in the analysis of R−1.
R−1 includes five nonlinear operations: a wordwise addition + , a wordwise subtraction −, a

multiplication by 3−1, a multiplication by 5 and a bitwise AND. To search difference propagation
path in R−1 effectively, we use a linear approximation technique for these operations except
AND. Differential probability of an addition was studied by Lipmaa and Moriai [11], we use
their result to calculate difference probabilities.

Equations of the linear approximation and its probabilities used in our attack are as follows:

Table 3. Inverse of the Permutation P

/* inverse of the final loop */
for j = 35 to 0 do

A[j mod r]← A[j mod r]− C[j + 3 mod 16],
end for

/* inverse of the main loop */
for j = p - 1 to 0 do

for i = 15 to 0 do
B[i]← (B[i]⊕ ¬A[i + 16j mod r])≫ 1,
A[i + 16j mod r]← 3−1 × (A[i + 16j mod r]⊕B[i + 13 mod 16]

⊕(B[i + 9 mod 16] ∧ ¬B[i + 6 mod 16])⊕M [i])
⊕C[8− i mod 16]⊕A[i + 16j mod r] ⊕5× (A[i− 1 + 16j mod r]≪ 15))

end for
end for

/* inverse of the initial loop */
for i = 15 to 0 do

B[i]← B[i]≫ 17,
end for

Wordwise Addition and Subtraction: With respect to differences α and β for two inputs
x and y, we use the following equation of the linear approximation:

(x + y)⊕ ((x⊕ α) + (y ⊕ β)) = α⊕ β. (4)

The probability for Eq. (4) is 2−wt((α∨β)∧231−1), where wt(x) is the number of nonzero ele-
ments of x, and ∨ is a bitwise OR. The linear approximation holds when there is no difference
in carries. The linear approximation and the probability of subtraction are same as addition,
because the subtraction can be expressed as the addition by a bitwise complement.

Multiplication by 5: With respect to difference α for an input x, we use the following equation
of the linear approximation,

(x× 5)⊕ ((x⊕ α)× 5) = (α� 2)⊕ α. (5)

The probability for Eq. (5) is 2−wt((α�2)∨α)∧011...10032). The linear approximation has the
same linearization form as multiplication by 9 treated by Indesteege and Preneel [8]. As well
as [8], the dependency between x and (x� 2) is ignored, because we suppose that the weight
of differences α is low.

Multiplication by 3−1: With respect to difference α , we use the following equation of the
linear approximation,

(x× 3−1)⊕ ((x⊕ α)× 3−1) = γ, (6)

The probability for Eq. (6) is 2−wt((γ�1)∨γ)∧011...11032). In this equation, γ = g−1(α) and
g(γ) = γ⊕ (γ � 1). g−1(α) can be computed by determining from LSB to MSB of γ in each
bit as follows: γ0 = α0, γ1 = α1⊕ γ0, ..., γ31 = α31⊕ γ30, where γ0 is LSB of γ, and α0 is LSB
of α, respectively.

For AND, we do not use any linear approximation. Given input differences α and β for
the AND operation, the number of output difference patterns are 2wt(α∨β), and each output

difference pattern have the same probability, that is 2−wt(α∨β). Since we suppose that α and β
are low weight, this probability is high enough. Hence, we consider that AND operation is useful
to construct a differential path with high probability.

3.3 Path Search Methodology

In this section, we introduce a search method to find a differential path with high probability
such that the output of R−1 has low-weight differences. As previously described, we insert a
few differences into the message block and analyze difference propagation in R−1. Actually, we
insert only 1-bit difference into MSB of M [0]i+1.

From Eq. (1), the 1-bit difference of M [0]i+1 propagates to the MSB of Ci[0] with probability
of 1. Thus, 2-bit differences go into P−1

M,C . In the inverse of the final loop, difference of C
propagates to A. Let A[48], ..., A[59] and B[48], ..., B[63] be inputs A and B of the inverse of the
main loop, and A[0], ..., A[11] and B[0], ..., B[15] be the outputs of it. After the inverse of the
final loop, MSBs of A[49] and A[53] have differences by MSB of C[0] with probability of 1.

Then we start a path search from the start of the inverse of the main loop. By using the
above notation of A and B, operations of the inverse of the main loop are expressed as follows:

A[i] = 3−1 × (A[i + 12]⊕ (¬B[i + 6] ·B[i + 9])⊕B[i + 13]⊕M [i])
⊕C[8− i]⊕ (5× (A[i + 11] ≪ 15)), (7)

B[i] = (B[i + 16]⊕ ¬A[i + 12]) ≫ 1, (8)

The path search for the inverse of the main loop is divided into two phases : an automatic search
phase and a manual search phase.

In the automatic search phase, we utilize an aforementioned linear approximation technique.
The loop contains three nonlinear operations such as a multiplication by 3−1, a multiplication
by 5, and AND. For a multiplication by 3−1, we use Eq. (6). For a multiplication by 5, we use
Eq. (5) and additional difference patterns such that i-th input difference changes i, (i + 1) and
(i + 2)-th differences, where i = 12, 13, 14. Each probability is 2−3, which is calculated by [11].
For AND, we consider all possible difference patterns for each the input difference pattern. Using
this method, we search the path automatically for the first 32 steps of the inverse of the main
loop (in other view, it is the last 32 steps for the main loop) and find the path in which the
weight of difference of A and B at the 32nd step is the smallest.

After that, for the last 16 step, we search the path manually. In this phase, we use not only
linear approximations used in the automatic search phase but also other linear approximations
which have even low probabilities for 3−1 and 5 to minimize the weight of the differences at
48th step. The reason is that when it is converted to a pseudo collision attack, probability of
this phase can be increased by a technique similar to the message modification [13][14]. We will
explain the detail of the technique in Sect.3.5.

3.4 Near Collision Attack on R−1

By using the above search methodology, we found a differential path which can be used for the
near collision attack on R−1. Table 8 in Appendix A shows the obtained differential path. In
the path, inputs A, C and M have 4 bits differences, that is, MSBs of A[49], A[53], C[0] and
M [0]. Through the inverse of the main loop, the outputs A[0], ..., A[11] and B[0], ..., B[15] have
15 bits and 28 bits differences, respectively. Since the inverse of the initial loop does not increase
the number of differences, A′

i and B′
i also have 15 bits and 28 bits differences with probability

of 2−156. After the operation of Eq. (3), Bi have 29 (=28 + 1) difference with probability of

2−28(=−(29−1)) due to B′
i and Mi+1 with Eq. (4) and its probability. As a result, outputs of R−1

have 45(= 15 + 29 + 1) bit differences.
This result can be seen as a near collision of R−1. Thus, 1363(= 512 + 512 − 384 − 45)-bit

near collision of R−1 with probability of 2−184(=−(156+28)) is obtained by this analysis.

3.5 Constructing a Low-weight Pseudo Collision Attack

Next, we construct a low-weight pseudo collision attack from the near collision of the R−1.
Obviously, when we insert the above 45 bits difference into Ai, Bi and Ci, a colliding message
can be found with complexity of 2184. Moreover, we can improve the attack by the modification
technique similar to [13][14]. Table 9 in Appendix B shows sufficient conditions in the first 16
steps of the main loop for the path of Table 8. In order to improve the attack, we choose Ai+1,
Bi+1, Ci+1 and Mi+1 which satisfy as many sufficient conditions as possible.

First, we choose the B′
i(= Bi +Mi+1) satisfying conditions of AND. For AND, 21 conditions

(out of 38) holds by choosing B′[6], ..., B′[15]. Next, we choose Mi+1 such that a difference act
like Eq. (4) in the operation (B′

i −Mi+1). Since the weight of the difference of B′
i is only 28,

the degree of freedom of Mi+1 remain sufficiently yet. After that, we choose A′
i(= Ai ⊕ Wi)

and Ci, and use the remaining freedom of Mi+1 to satisfy the conditions of ×3 and ×5. In
particular, since each word of Ci and Mi+1 are used once in the first 16 steps, and Ai are used
once in the first 12 step, we choose each word to satisfy conditions step by step. Thus, by the
modification, 72 condition holds (out of 89) in the first 16 steps, and differences act like Eq. (4)
in the operations of (B′

i −Mi+1).
Consequently, when we insert the obtained 45 difference into Ai, Bi and Ci, a colliding

message can be found with complexity of 284(=184−72−28).

3.6 Discussion

We summarize two results described in this section as:

1. 1363-bit (out of 1408 bits) near collision attack on the inverse of the compression function
R−1 with complexity of 2184.

2. Low-weight pseudo collision attack (45 bits) on the compression function R with complexity
of 284.

The first result shows efficiency of the diffusion property of the inverse of compression function
R−1. We reveal that 1-bit message difference diffuses only 45 (out of 1408) bit through R−1 in
a certain setting. We expect that this result might be useful to construct a collision attack with
multi block setting as in [4]. But, we could not find such a differential path so far, thus this is an
open problem. Although these result does not threat the claimed security of Shabal due to that
this is a pseudo collision setting, these results show that the compression function of Shabal has
the non-ideal differential property.

4 Preimage Attack on Reduced Shabal-512

In this section, we consider a preimage attack on variants of Shabal-512. In [5], preimage attacks
on the weakened variants of Shabal-512 that is without the final loop in P have been analyzed1.
The weakened variant of Shabal-512 using security parameter (p, r) = (1, 12) does not hold the
preimage resistance.
1 The variant is called Weakinson-NoFinalUpdateA in [5]

P P P P

k1 blocks k - k1 - 2 blocks + final 3 blocks

Forward process Backward process

A0

B0

C0

M1
W1

Ak1

Bk1

Ck1

Mk1+1 Mk1+2
Wk1+1 Wk2+1

Ak1+1

Bk1+1

Ck1+1

Ak1+2

Bk1+2

Ck1+2

Ak+2

Bk+2

Ck+2

DigestMk

Meet point

Wk

Fig. 2. Outline of the Preimage Attack

The preimage attack utilizes the weakness of the inverse of the compression function R−1: if
Ai+1, Bi+1 and Ci+1 are given as inputs of R−1, the attacker is able to find a message Mi+1 such
that Bi has any predetermined value. Since the same attack is not successful on the weakened
variant using (p, r) = (2, 12), the current record of the preimage attack is only the weakened
variant using (p, r) = (1, 12).

In this section, two kinds of preimage attack are shown. First, we propose a novel preimage
attack on the weakened variant of Shabal-512 using (p, r) = (2, 12). Although this attack is
based on the same weakness of R−1 as [5], we use an advanced technique to find Mi+1 such that
Bi has any predetermined value. Second, this technique can be applied to the Shabal-512 with
(p, r) = (1.5, 8) including the final loop. This is the first preimage attack on Shabal-512 with
reduced security parameters.

4.1 Basic Framework of the Preimage Attack

First, we explain a basic framework for a preimage attack on the variant of Shabal-512. This
framework is same as [5]. Let digest be a given hash value and M be a k-block message as
a preimage of the digest to be calculated, where k is an arbitrary integer more than 5. The
outline of the preimage attack is shown in Fig 2. We split M into three parts : the first k1

blocks, the next two intermediate blocks, and the last (k − k1 − 2) blocks. For the first k1

blocks, we randomly choose M1, ...,Mk1 and compute (Ak1 , Bk1 , Ck1). For the last (k − k1 − 2)
block, we set digest as Ck+3 part and choose the other parts Ak+3 and Bk+3 randomly, where
Ak+3, Bk+3 and Ck+3 are values after final three compression functions. After that, similarly,
we randomly choose Mk1+3, ..., Mk and compute (Ak1+2, Bk1+2, Ck1+2) backward. Then, for the
two intermediate blocks, we use the meet-in-the-middle approach [9].

Since the size of the meet point (Ak1+1, Bk1+1, Ck1+1) is too large, e.g. for r=12, 1408 bits,
the straight meet-in-the-middle approach does not work. Thus, we utilize these two intermediate
message blocks, Mk1+1 and Mk1+2, to reduce the size of the meet point. In particular, we
aim to fix Bk1+1 to an arbitrary value β to reduce the size of the meet point. In the forward
process, it is noticed that Bk1+1 can be controlled easily by choosing Mk1+1 = Ck1 − β. In
the backward process, if Bk1+1 can be also fixed to β, the size of the meet point is reduced
to (Ak1+1, Ck1+1) from (Ak1+1, Bk1+1, Ck1+1). Therefore, more effective meet-in-the-preimage
attack can be executed. Our goal is to find Mk1+2 such that Bk1+1 will be β in the backward
process effectively.

4.2 Guess-and-Determine Technique

We use a guess-and-determine (GD) technique to find Mk1+2 effectively such that Bk1+1 is β in
the backward process. Originally the GD technique is developed for attacks of wordwise stream

ciphers [7]. Since the permutation of Shabal is similar to a design of a wordwise NLFSR-type
stream cipher, we customize the GD technique for finding such Mk1+2.

The GD technique is a technique for obtaining unknown values by using relations between
known values and unknown values. As implied by the name of the GD technique, we first guess
some of unknown values and then determine the other unknown values by using the equations
between these values. In the case of Shabal, the unknown value is Mk1+2 and the known values
are Ak1+2, Bk1+2, Ck1+2 and Bk1+1.

Basic attack steps are as follows:

Step 1: Construct equations describing relationships between Mk1+2, Ak1+2, Bk1+2, Ck1+2 and
Bk1+1,

Step 2: Guess some part of words in Mk1+2

Step 3: Determine the other words in Mk1+2 by using equations obtained in the step 1.

If we find Mk1+2 such that Bk1+1 is to be β in the backward process effectively by using
the GD technique, we can construct a preimage attack using the attack framework in Sect. 4.1.
Next, we are going to explain details of the steps of the GD technique for Shabal-512.

4.3 Preimage Attack on the Weakened Variant of Shabal-512 Using (p, r) = (2, 12)

First, we show a preimage attack on the weakened variant of Shabal-512 using (p, r) = (2, 12).
For the variant, the number of the main loop is 32 (= 2× 16), the size of A is 384 (= 12× 32)
bits, and it does not include the final loop.

The steps of the GD approach are as follows.

Step 1: Construct equations between unknown value Mk1+2 and known values Bk1+1, Ak1+2,
Bk1+2 and Ck1+2. Let A[0], ..., A[11] and B[0], ..., B[15] be inputs and A[32], ..., A[43] and
B[32], ..., B[47] be outputs of the main loop of P. In the main loop, these values satisfy
Eq. (7) and (8). Since this variant does not include the final loop in P, A[32], ..., A[43]
correspond to known values Ak1+2[0], ..., Ak1+2[11], and B[32], ..., B[47] correspond to known
values Ck1+2[0], ..., Ck1+2[15]. In Eq. (7) and (8), other values M [i] and C[i] also appear.
M [0], ..., M [15] correspond to unknown values Mk1+2[0], ...,Mk1+2[15]. From Eq. (1), C[i] is
expressed by using known value Bk1+2 and unknown value Mk1+2 as follows:

C[i] = Bk1+2[i] + Mk1+2[i]. (9)

The equation with respect to other known value Bk1+1 is

Bk1+1[i] = (B[i]) ≫ 17)−M [i]. (10)

This equation is obtained from Eq. (3) and the inverse of the initial loop.
From (7)-(10), we construct equations as shown in Table 4, which includes all equations be-
tween unknown value Mk1+2 and known values Bk1+1, Ak1+2, Bk1+2 and Ck1+2. In Table 4,
underlined values are unknown values and other values are known values, and β[0], ..., β[15]
correspond to known values Bk1+1[0], ..., Bk1+1[15]. From Eq. (8), B[20], ..., B[31] are com-
puted with known values B[36], ..., B[47] and A[32], ..., A[43]. This is why that B[20], ..., B[31]
are known values. fa is a function defined as follows:

fa(A[i + 12], (B[i + 6] ·B[i + 9]), B[i + 13], M [i], C[8− i], A[i + 11])
= 3−1 × (A[i + 12]⊕ (¬B[i + 6] ·B[i + 9])⊕B[i + 13]⊕M [i]).
⊕C[8− i]⊕ (5× (A[i + 11] ≪ 15)),

Table 4. Equations for the Weakened Shabal Using (p, r) = (2, 12)

A[31] = fa(A[43], (B[37] ·B[40]), B[44], M [15], C[9], A[42]), (11)

A[30] = fa(A[42], (B[36] ·B[39]), B[43], M [14], C[10], A[41]), (12)

A[29] = fa(A[41], (B[35] ·B[38]), B[42], M [13], C[11], A[40]), (13)

A[28] = fa(A[40], (B[34] ·B[37]), B[41], M [12], C[12], A[39]), (14)

A[27] = fa(A[39], (B[33] ·B[36]), B[40], M [11], C[13], A[38]), (15)

A[26] = fa(A[38], (B[32] ·B[35]), B[39], M [10], C[14], A[37]), (16)

A[25] = fa(A[37], (B[31] ·B[34]), B[38], M [9], C[15], A[36]), (17)

A[24] = fa(A[36], (B[30] ·B[33]), B[37], M [8], C[0], A[35]), (18)

A[23] = fa(A[35], (B[29] ·B[32]), B[36], M [7], C[1], A[34]), (19)

A[22] = fa(A[34], (B[28] ·B[31]), B[35], M [6], C[2], A[33]), (20)

A[21] = fa(A[33], (B[27] ·B[30]), B[34], M [5], C[3], A[32]), (21)

A[20] = fa(A[32], (B[26] ·B[29]), B[33], M [4], C[4], A[31]), (22)

A[19] = fa(A[31], (B[25] ·B[28]), B[32], M [3], C[5], A[30]), (23)

A[18] = fa(A[30], (B[24] ·B[27]), B[31], M [2], C[6], A[29]), (24)

A[17] = fa(A[29], (B[23] ·B[26]), B[30], M [1], C[7], A[28]), (25)

A[16] = fa(A[28], (B[22] ·B[25]), B[29], M [0], C[8], A[27]), (26)

A[15] = fa(A[27], (B[21] ·B[24]), B[28], M [15], C[9], A[26]), (27)

A[14] = fa(A[26], (B[20] ·B[23]), B[27], M [14], C[10], A[25]), (28)

A[13] = fa(A[25], (B[19] ·B[22]), B[26], M [13], C[11], A[24]), (29)

A[12] = fa(A[24], (B[18] ·B[21]), B[25], M [12], C[12], A[23]), (30)

B[19] = (B[35]⊕ ¬A[31])≫ 1, (31)

B[18] = (B[34]⊕ ¬A[30])≫ 1, (32)

B[17] = (B[33]⊕ ¬A[29])≫ 1, (33)

B[16] = (B[32]⊕ ¬A[28])≫ 1, (34)

β[15] = (B[31]⊕ ¬A[27])≫ 18−M [15], (35)

β[14] = (B[30]⊕ ¬A[26])≫ 18−M [14], (36)

β[13] = (B[29]⊕ ¬A[25])≫ 18−M [13], (37)

β[12] = (B[28]⊕ ¬A[24])≫ 18−M [12], (38)

β[11] = (B[27]⊕ ¬A[23])≫ 18−M [11], (39)

β[10] = (B[26]⊕ ¬A[22])≫ 18−M [10], (40)

β[9] = (B[25]⊕ ¬A[21])≫ 18−M [9], (41)

β[8] = (B[24]⊕ ¬A[20])≫ 18−M [8], (42)

β[7] = (B[23]⊕ ¬A[19])≫ 18−M [7], (43)

β[6] = (B[22]⊕ ¬A[18])≫ 18−M [6], (44)

β[5] = (B[21]⊕ ¬A[17])≫ 18−M [5], (45)

β[4] = (B[20]⊕ ¬A[16])≫ 18−M [4], (46)

β[3] = (B[19]⊕ ¬A[15])≫ 18−M [3], (47)

β[2] = (B[18]⊕ ¬A[14])≫ 18−M [2], (48)

β[1] = (B[17]⊕ ¬A[13])≫ 18−M [1], (49)

β[0] = (B[16]⊕ ¬A[12])≫ 18−M [0]. (50)

Step 2: Guess some part of words in M . In particular, we guess M [12],M [13] and M [14].
Generally, when the number of words to be guessed is fewer, the GD attack becomes more
effective. By checking all words pattern of M to be guessed, we found that at least three
words in M need to be guessed to determine all words of M when using equations in Table 4.
In other word, if the number of guessed words in M is smaller than 3, all words in M can
not be determined from equations in Table 4. M [12],M [13] and M [14] are one of the least
number of guessed words in M to determine all words in M obtained by our analysis.

Step 3: Determine other words in M by using equations in Table 4. The procedure for deter-
mining other word in M are summarized in Table 5. Table 5 indicates the relation between
determined words and used equations at each step. For example, at step 1, A[28], A[26],
A[25] and A[24] are determined by using Eq. (14), (36), (37) and (38). In particular, Eq. (14)
contain unknown value M [12] and C[12]. Since M [12] is guessed in the step 2, M [12] is
known values and C[12] also becomes known value from Eq. (9). Therefore, A[28] can be
determined by Eq. (14).

As Table 5, we determine all words in M step by step by using equations in Table 4. However,
since Eq. (45), (46) and (49) are not used for determining all words in M , the obtained mes-
sage M satisfies these equations with probability of 2−96, because each variables in equation
are 32-bit. Consequently, the complexity of finding a message M such that Bk1+1 is β in the
backward process is 296.

For the preimage attack, we compute 2400 sets of (Ak+1, β, Ck+1) and make a table in the
backward process. In the forward process, we compute 2496 sets of (Ak+1, β, Ck+1). Since the total
size of Ak+1 and Ck+1 is 896(=384 + 512) bits, we can find a matching pair among 2896(=496+400)

pairs using the meet-in-the-middle technique. Therefore, a preimage on the weakened variant of
Shabal-512 using security parameter (p, r) = (2, 12) can be found with complexity of 2497 and
memory of 2400.

Table 5. Procedure of Determining all word in M for the Weakened Shabal Using (p, r) = (2, 12)

Step Determined word Equation 　 Step Determined word Equation

1 A[28], A[26], A[25], A[24] (14), (36), (37), (38) 11 A[12], M [15] (30), (35)

2 M [10], B[16] (16), (34) 12 M [9], M [0] (17), (50)

3 A[30], A[14], A[22] (12), (28), (40) 13 A[31] ,M [8], A[15], A[21] (11), (18), (27), (41)

4 B[18] (32) 14 A[16], B[19], A[20] (26), (31), (42)

5 M [2] (48) 15 M [5], M [4], A[13], M [3] (21), (22), (29), (47)

6 M [6] (20) 16 A[19] (23)

7 A[18] (44) 17 M [7] (43)

8 A[29] (24) 18 M [1] (19)

9 M [11], B[17] (13), (33) 19 A[17] (25)

10 A[27], A[23] (15), (39) - - -

4.4 Preimage attack on Shabal-512 Using (p, r) = (1.5, 8)

Next, we apply the GD technique to Shabal-512 using (p, r) = (1.5, 8). For the variant, the
number of the main loop is 24 (= 1.5× 16), the size of A is 256 (= 8× 32) bits. Since the value
of r differ from 12, the final loop must be modified. In this attack, we define the final loop as
follows:

for j = 0 to 24 do
A[j mod 8]← A[j mod 8] + C[j + 3 mod 16].

end for
In Appendix C, the reason for the above modification is explained.

The attack method is same as the attack of the weakened variant using (p, r) = (2, 12),

Step 1: Construct equations between unknown value Mk1+2 and known values Bk1+1, Ak1+2,
Bk1+2 and Ck1+2 Let A[0], ..., A[7] and B[0], ..., B[15] be inputs and A[24], ..., A[31] and
B[24], ..., B[39] be outputs of the main loop. B[24], ..., B[39] correspond to Ck1+2[0], ..., Ck1+2[15].
In the main loop, these values satisfy following equations,

A[i] = fa(A[i + 8], (B[i + 6] ·B[i + 9]), B[i + 13],M [i], C[8− i], A[i + 7]), (51)
B[i] = (B[i + 16]⊕ ¬A[i + 8]) ≫ 1, (52)

where M [0], ...,M [15] correspond to unknown value Mk1+2[0], ...,Mk1+2[15], and C[0], ..., C[15]
can be also expressed by using known value Bk1+2 and unknown value Mk1+2 as Eq. (9). Due
to the above redefined final loop, A[24], ..., A[31] are (Ak1+2[0]−2C[3]−C[11]), ..., (Ak1+2[7]−
2C[10]− C[2]). The equation with respect to BK1+2 is same as Eq. (10).
In order to simplify equations, we fixed all words of Ck1+2 to 0 by choosing Mk1+3 as Mk1+3 =
−Bk1+3 in (k1 + 3) th compression function. From Eq. (10), (51) and (52), we construct
equations as shown in Table 6. In Table 6, since B[24], ..., B[39] are 0, unknown values
B[8], ..., B[23] are expressed as (¬A[16] ≫ 1), ...,(¬A[31] ≫ 1) from Eq. (52).

Step 2: Guess M [1],M [2], M [6],M [7],M [8],M [9] and M [10], which are one of the least number
of guessed words in M to determine all words in M .

Step 3: Determine other words in M from equations of Table 6. The procedure for determining
M is shown as Table 7. For example, at step 1 of the procedure, A[31] is determined from
Eq (53) containing unknown value C[10] and C[2]. Since M [10] and M [2] are guessed, C[10]
and C[2] become known values by Eq. (9). Therefore, A[31] can be determined from Eq (53).
In this case, Eq. (80), (81), (88), (89), (90), (91), and (92) are not used, thus the obtained
message M satisfies these equations with probability of 2−224. Consequently, the complexity
of finding message M such that Bk1+1 is β in the backward process is 2224.

Table 6. Equations for the Shabal Using (p, r) = (1.5, 8)

A[31] = Ak1+2[7]− 2C[10]− C[2], (53)

A[30] = Ak1+2[6]− 2C[9]− C[1], (54)

A[29] = Ak1+2[5]− 2C[8]− C[0], (55)

A[28] = Ak1+2[4]− 2C[7]− C[15], (56)

A[27] = Ak1+2[3]− 2C[6]− C[14], (57)

A[26] = Ak1+2[2]− 2C[5]− C[13], (58)

A[25] = Ak1+2[1]− 2C[4]− C[12], (59)

A[24] = Ak1+2[0]− 2C[3]− C[11], (60)

A[23] = fa(A[31], 0, 0, M [7], C[1], A[30]), (61)

A[22] = fa(A[30], 0, 0, M [6], C[2], A[29]), (62)

A[21] = fa(A[29], 0, 0, M [5], C[3], A[28]), (63)

A[20] = fa(A[28], 0, 0, M [4], C[4], A[27]), (64)

A[19] = fa(A[27], 0, 0, M [3], C[5], A[26]), (65)

A[18] = fa(A[26], 0, 0, M [2], C[6], A[25]), (66)

A[17] = fa(A[25], 0, 0, M [1], C[7], A[24]), (67)

A[16] = fa(A[24], 0, 0, M [0], C[8], A[23]), (68)

A[15] = fa(A[23], 0, 0, M [15], C[9], A[22]), (69)

A[14] = fa(A[22], (B[20] ·B[23]), 0, M [14], C[10], A[21]), (70)

A[13] = fa(A[21], (B[19] ·B[22]), 0, M [13], C[11], A[20]), (71)

A[12] = fa(A[20], (B[18] ·B[21]), 0, M [12], C[12], A[19]), (72)

A[11] = fa(A[19], (B[17] ·B[20]), 0, M [11], C[13], A[18]), (73)

A[10] = fa(A[18], (B[16] ·B[19]), B[23], M [10], C[14], A[17]), (74)

A[9] = fa(A[17], (B[15] ·B[18]), B[22], M [9], C[15], A[16]), (75)

A[8] = fa(A[16], (B[14] ·B[17]), B[21], M [8], C[0], A[15]), (76)

β[15] = (¬A[23])≫ 18−M [15], (77)

β[14] = (¬A[22])≫ 18−M [14], (78)

β[13] = (¬A[21])≫ 18−M [13], (79)

β[12] = (¬A[20])≫ 18−M [12], (80)

β[11] = (¬A[19])≫ 18−M [11], (81)

β[10] = (¬A[18])≫ 18−M [10], (82)

β[9] = (¬A[17])≫ 18−M [9], (83)

β[8] = (¬A[16])≫ 18−M [8], (84)

β[7] = ((¬A[31]≫ 1)⊕ ¬A[15])≫ 18−M [7], (85)

β[6] = ((¬A[30]≫ 1)⊕ ¬A[14])≫ 18−M [6], (86)

β[5] = ((¬A[29]≫ 1)⊕ ¬A[13])≫ 18−M [5], (87)

β[4] = ((¬A[28]≫ 1)⊕ ¬A[12])≫ 18−M [4], (88)

β[3] = ((¬A[27]≫ 1)⊕ ¬A[11])≫ 18−M [3], (89)

β[2] = ((¬A[26]≫ 1)⊕ ¬A[10])≫ 18−M [2], (90)

β[1] = ((¬A[25]≫ 1)⊕ ¬A[9])≫ 18−M [1], (91)

β[0] = ((¬A[24]≫ 1)⊕ ¬A[8])≫ 18−M [0]. (92)

Table 7. Procedure of Determining all word in M for the Shabal Using (p, r) = (1.5, 8)

Step Determined word Equation　 Step Determined word Equation

1 A[31], A[30], A[18], (53), (54), (82), 10 A[9] (75)
A[17], A[16] (83), (84) 11 A[14] (86)

2 A[23], A[15] (61), (85) 12 A[21] (70)

3 M [15] (77) 13 M [13] (79)

4 A[28], A[22] (56), (69) 14 M [5] (58)

5 A[29], M [14] (62), (78) 15 M [3], A[13] (63), (87)

6 M [0], A[27] (55), (57) 16 M [11], A[19], A[20] (60), (65) (71)

7 A[24] (68) 17 M [4], A[11] (64), (73)

8 A[25],A[10] (67), (74) 18 M [12] (59)

9 A[26], A[8] (66), (76) 19 A[12] (72)

For the preimage attack, we compute 2272 sets of (Ak+1, β, Ck+1) and make a table in the
backward process. In the forward process, we compute 2496 sets of (Ak+1, β, Ck+1). Since the
total size of Ak+1 and Ck+1 is 768 (= 256 + 512) bits, we can find a matching pair among
2768(=496+272) pairs using the meet-in-the-middle technique. Therefore, a preimage on Shabal-
512 using security parameter (p, r) = (1.5, 8) can be found with complexity of 2497 and memory
of 2272.

5 Conclusion

We have shown two types of attacks on Shabal, they are a low-weight pseudo collision attack
and a preimage attack.

For a low-weight pseudo collision attack, we first constructed a 1363-bit near collision attack
on the inverse of the compression function R−1 with complexity of 2184. The attack reveals
efficiency of the diffusion property of the inverse of the compression function R−1. After that,
we converted it into low-weight (45-bits) pseudo collision attack on the full compression function

of Shabal with complexity of 284. Although these result does not threat the claimed security
of Shabal, these show that the compression function have the non-ideal differential property. In
addition, these result might be useful for the further cryptanalysis.

For a preimage attack, we introduced the GD technique and applied it to two variants of
Shabal-512. For the weakened variant of Shabal-512 without the final loop using the security
parameters (p, r) = (2, 12), a preimage can be found with complexity of 2497 and memory of
2400. For the Shabal-512 using security parameter (p, r) = (1.5, 8), a preimage can be found
with complexity of 2497 and memory of 2272. This is the first preimage attack on Shabal-512
with reduced security parameters. Since designer’s recommended security parameter is (3, 12),
we claim that this attack does not lead to the security problem of the full Shabal hash function
directly.

References

1. G. V. Assche, “A rotational distinguisher on Shabal’s keyed permutation and its impact on the security
proofs.” Available : http://gva.noekeon.org/papers/ShabalRotation.pdf, 2010.

2. J-P. Aumasson, “On the pseudorandomness of Shabal’s keyed permutation.” Available :
http://131002.net/data/papers/Aum09.pdf, 2009.

3. J-P. Aumasson, A. Mashatan, and W. Meier, “More on Shabal’s permutation.” Available :
http://131002.net/data/papers/AMM09.pdf, 2009.

4. E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and W. Jalby, “Collisions of SHA-0 and reduced
SHA-1.” in Proceedings of EUROCRYPT’05 (R. Cramer, eds.), LNCS, vol. 3494, pp. 36–57, Springer-
Verlag, 2005.

5. E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr, A. Gouget, T. Icart, J. Misarsky,
M. Naya-Plasencia, P. Paillier, T. Pornin, J. Reinhard, C. Thuillet, and M. Videau, “Shabal, a submission
to NIST’s cryptographic hash algorithm competition.” Submission to NIST, 2008.

6. E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr, A. Gouget, T. Icart, J. Misarsky,
M. Naya-Plasencia, P. Paillier, T. Pornin, J. Reinhard, C. Thuillet, and M. Videau, “Indifferentiability
with distinguishers: Why Shabal does not require ideal ciphers.” Cryptology ePrint Archive, Report
2009/199, 2009.

7. P. Hawkes and G. Rose, “Guess-and-determine attacks on SNOW.” in Proceedings of SAC’02 (K. Nyberg
and H. Heys, eds.), LNCS, vol. 2595, pp. 37–46, Springer-Verlag, 2003.

8. S. Indesteege and B. Preneel, “Practical collisions for EnRUPT.” in Proceedings of FSE’09 (O. Dunkel-
man, eds.), LNCS, vol. 5665, pp. 246–259, Springer-Verlag, 2009.

9. D. Khovratovich, I. Nikolic, and R. Weinmann, “Meet-in-the-middle attacks on SHA-3 candidates.” in
Proceedings of FSE’09 (O. Dunkelman, eds.), LNCS, vol. 5665, pp. 228–245, Springer-Verlag, 2009.

10. L. Knudsen, K. Matusiewicz, and S. Thomsen, “Observations on the Shabal keyed permutation.” Available
: http://www.mat.dtu.dk/people/S.Thomsen/shabal/shabal.pdf, 2009.

11. H. Lipmma and S. Moriai, “Efficient algorithms for computing differential properties of addition.” in
Proceedings of FSE’01 (M. Matui, eds.), LNCS, vol. 2355, pp. 336–350, Springer-Verlag, 2002.

12. National Institute of Standards and Technology,“Announcing request for candidate algorithm nomina-
tions for a new Cryptographic hash algorithm (SHA-3) family,”Federal Register Notice, vol. 72(212),
pp. 62212-62220, 2007.

13. X. Wang and H. Yu, “How to break MD5 and other hash functions.” in Proceedings of Eurocrypt’05
(R. Cramer, ed.), LNCS, vol. 3494, pp. 19–35, Springer-Verlag, 2005.

14. X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in th full SHA-1.” in Proceedings of Crypto’05
(V. Shoup, ed.), LNCS, vol. 3621, pp. 17–36, Springer-Verlag, 2005.

A Differential Path in the Main Loop

We show the differential path in the main loop in Table 8. The first column is the step number
of the main loop, and from the 2nd to the 9th columns indicate positions of difference bit in
the words used for updating A and B at the i-th step. The 11th and the 12th columns indicate
positions of difference bit in the words updated at the i-th step. The 13th column is probability
of difference propagation at the i-th step.

Table 8. Differential Path with High Probability in the Main loop

i A[i] A[i + 11] C[i− 8] M [i] B[i + 13] B[i + 9] B[i + 6] B[i] A[i + 12] B[i + 16] Probability

0 30 - - 31 29,30 14,28,29 13,14,28,29 29 - 30 2−5

1 31 - - - 12,15 12,14 - 12,29,30 15,31 13,15,30 2−2

2 16,28,29 15,31 - - 28 - 11 14,15 14,16 14,15 2−9

3 - 14,16 - - 30 - 14,28,29 27 - 28 2−6

4 13 - - - 13,15,30 29,30 12,14 11,13,28 12,14 29 2−6

5 14,15,27 12,14 - - 14,15 12,15 - 15,28,30 16,31 29 2−7

6 16 16,31 - - 28 28 - 13,14,28,29 14,16,29,30 - 2−7

7 12,16 14,16,29,30 - - 29 30 29,30 - - - 2−9

8 29 - 31 - 29 13,15,30 12,15 11 12 - 2−6

9 27,29 12 - - - 14,15 28 14,28,29 15 29,30 2−5

10 - 15 - - - 28 30 12,14 - 13,15 2−4

11 - - - - - 29 13,15,30 - - - 2−4

12 - - - - 29,30 29 14,15 - 30 30 2−3

13 15,31 30 - - 13,15 - 28 29,30 31 30 2−7

14 14,16 31 - - - - 29 12,15 15,16 13,15 2−6

15 - 15,16 - - 30 - 29 28 29 - 2−3

16 12,14 29 - 31 30 29,30 - 30 31 - 2−4

17 16,31 31 - - 13,15 13,15 - 13,15,30 14,16,31 - 2−8

18 14,15,29,30 14,16,31 - - - - - 14,15 15,16 - 2−6

19 - 15,16 - - - 30 29,30 28 29 - 2−4

20 12 29 - - - 30 13,15 29 30 - 2−9

21 15 30 - - - 13,15 - 29 - 30 2−8

22 - - - - - - 30 - - - 2−1

23 - - - - - - 30 - - - 2−1

24 30 - 31 - 30 - 13,15 - - - 2−3

25 31 - - - - - - 29,30 31 30 1
26 15,16 31 - - - - - 13,15 14,16 - 2−5

27 29 14,16 - - - - - - - - 2−1

28 31 - - - 30 30 - 30 31 - 2−1

29 14,16,31 31 - - - - - 30 31 - 2−2

30 15,16 31 - - - - - 13,15 14,16 - 2−5

31 29 14,16 - - - - 30 - - - 2−2

32 30 - - 31 - 30 - - - - 2−2

33 - - - - - - - - - - 1
34 - - - - - - - - - - 1
35 - - - - - - 30 - - - 2−1

36 - - - - - - - - - - 1
37 31 - - - - - - 30 31 - 1
38 14,16 31 - - - - - - - - 2−2

39 - - - - - - - - - - 1
40 31 - 31 - - - - - - - 1
41 31 - - - - - - 30 31 - 1
42 14,16 31 - - - - - - - - 2−2

43 - - - - - - - - - - 1
44 - - - - - - - - - - 1
45 - - - - - - - - - - 1
46 - - - - - - - - - - 1
47 - - - - - - - - - - 1

B Sufficient Conditions in the First 16 steps of the Main Loop

We show sufficient conditions in the first 16 steps of the main loop in the Table 9.
In Table 9, A[i]j denotes the j-th bit of A[i], thus A[i]31 is MSB of A[i]. fi(x[j]), gi(x[j]) and

X[i] are defined as follows:

fi(x[j]) = maj(x[j]i−1, x[j]i−3, fi−1(x[j])),
gi(x[j]) = maj(x[j]i−1, x[j]i−2, gi−1(x[j])),

X[i] = A[i]⊕ (5× (A[i + 11] ≪ 15))⊕ C[8− i],

where maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z), and X[i] is the intermediate value used for
×3. fi(x[j]) and gi(x[j]) imply carry of i-th bit in computations of ×5 (= (x� 2) + x) and ×3
(= (x� 1) + x), respectively.

Table 9. Sufficient Conditions in the First 16 steps of the Main Loop

i 5 3 AND

0 - X[0]28 = X[0]29 B[6]14 = B[9]14, B[6]28 = B[9]28
B[6]29 6= B[9]29, B[9]13 = 0

1 - - B[7]12 = 0, B[7]14 = 1

2 f14(A[13]) = A[13]12, f16(A[13]) = A[13]16 g14(X[2]) 6= X[2]13, X[2]16 = X[2]15 B[11]11 = 0
f30(A[13]) 6= A[13]28 X[2]26 = X[2]27, X[2]28 6= X[2]29 6= X[2]30

3 f29(A[14]) = A[14]27 X[3]27 = X[3]28 = X[3]30 B[12]14 = B[12]28 = 0
B[12]29 = 1

4 - g13(X[4]) 6= X[4]12, X[4]15 = X[4]14 B[10]30 = 0, B[10]29 = 1
B[13]12 = B[13]14 = 1

5 f27(A[16]) = A[16]25, A[16]29 6= A[16]27 X[5]12 = X[5]13, X[5]15 6= X[5]14 B[11]12 = 1, B[11]25 = 0
X[5]13 = X[5]16

6 f14(A[17]) = A[17]12, A[17]16 6= A[17]16 g14(X[6]) 6= X[6]13, X[6]16 6= X[6]15 B[12]28 = 0
X[6]27 = X[6]28, X[6]28 6= X[6]30

7 f12(A[18]) 6= A[18]10, f13(A[18]) = A[18]13 X[7]27 = X[7]28 = X[7]30 B[13]30 6= B[16]30, B[16]29 = 0
A[18]16 = A[18]14, f29(A[18]) = A[18]27
f30(A[18]) = A[18]30

8 - X[8]27 = X[8]28, X[8]28 6= X[8]30 B[14]15 6= B[17]15, B[14]30 = 0
B[14]13 = 1, B[17]12 = 1

9 f27(A[20]) = A[20]25, f29(A[20]) = A[20]29 - B[15]14 = 1, B[15]15 = 0
B[18]28 = 0

10 f30(A[21]) = A[21]28 X[10]28 = X[10]29 B[16]28 = 1, B[19]30 = 1

11 - - B[17]29 = 1, B[20]13 = 0
B[20]15 = 0, B[20]30 = 0

12 - - B[18]29 = 0, B[21]14 = 0
B[21]15 = 0

13 f13(A[24]) 6= A[24]11, A[24]14 6= A[24]12 X[13]11 = X[13]12, X[13]13 6= X[13]14 B[22]28 = 0
f15(A[24]) = A[24]15 X[13]13 = X[13]15

14 f14(A[25]) 6= A[25]12, A[25]15 6= A[25]13 X[14]13 = X[14]14 = X[14]16 B[23]29 = 0
f16(A[25]) = A[25]16

15 f30(A[26]) 6= A[26]28 X[15]28 = X[15]29 B[24]29 = 1

C Final Loop for r = 8

Here we consider the final loop of r = 8. If a different value of r is used, the final loop is changed.
In 4.2.6 of [5], the method of the modification of the the final loop are described.

Since the final loop adds C to A, it is expressed as A + σ(C), where σ(C) is the vector
including C. σ(C) is computed by a following simple loop of the form:
For i from 0 to s - 1,

σ(C)[i mod r]← σ(C)[i mod r] + C[(−1)e + offset mod r],

e, s and offset are chosen to satisfy the condition. For r = 12, e = 0, s = 36 and offset = 3 are
chosen and σ(C)[i] is as follows:

σ(C)[i] = C[i + 3] + C[i + 3 + 12] + C[i + 3 + 24].

In the case of r = 12, each A[i] depends on three words of C that are different for different i.
However, the final loop of r = 8 is not defined explicitly. We choose e = 0 and offset = 3

that are same as r = 12. We also choose s = 24 to satisfy that each A[i] depends on three words
of C that are all difference for the difference i. This is the same condition for r = 12.

Thus we define σ(C)[i] of r = 8

σ(C)[i] = C[i + 3] + C[i + 3 + 8] + C[i + 3 + 16],
= 2C[i + 3] + C[i + 11].

In the final loop, the two same word of C are used. For r = 8, if s ≥ 24, surely, same word are
used with any e and offset . Thus, we consider that the final loop in this section is chosen in a
natural manner.

