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Abstract. The traditional way to overcome the shortcomings of the Winkler 
foundation model is to incorporate spring coupling by assemblages of mechanical 
elements such as springs, flexural elements (beams in one-dimension, 1-D, plates in 2-D), 
shear-only layers and deformed, pretensioned membranes. This is the class of two-
parameter foundations – named like this because they have the second parameter which 
introduces interactions between adjacent springs, in addition to the first parameter from 
the ordinary Winkler’s model. This class of models includes Wieghardt, Filonenko-
Borodich, Hetényi and Pasternak foundations. Mathematically, the equations to describe 
the reaction of the two-parameter foundations are equilibrium, and the only difference is 
the definition of the parameters. In order to analyse the bending behavior of a Euler-
Bernoulli beam resting on linear variable two-parameter elastic foundation a 
(displacement) Finite Element (FE) formulation, based on the cubic displacement 
function of the governing differential equation, is introduced. 
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1. Introduction 

The concept of beams and slabs on elastic foundations has been 
extensively used by geotechnical, pavement and railroad engineers for 
foundation design and analysis. The analysis of structures resting on elastic 
foundations is usually based on a relatively simple model of the foundation’s 
response to applied loads. 

Generally, the analysis of bending of beams on an elastic foundation is 
developed on the assumption that the reaction forces of the foundation are 
proportional at every point to the deflection of the beam at that point. The 
vertical deformation characteristics of the foundation are defined by means of 
continuous, closely spaced linear springs. The constant of proportionality of 
these springs is known as the modulus of subgrade reaction, k0. This simple 
representation of elastic foundation was introduced by Winkler in 1867. The 
Winkler model (one parameter model), which has been originally developed for 
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the analysis of railroad tracks, is very simple but does not accurately represents 
the characteristics of many practical foundations. One of the most important 
deficiencies of the Winkler model is that a displacement discontinuity appears 
between the loaded and the unloaded part of the foundation surface. In reality, 
the soil surface does not show any discontinuity (Fig. 1).  

 

Fig. 1 – Deflections of elastic foundations under uniform pressure: 
a – Winkler foundation; b – practical soil foundations. 

In order to eliminate the deficiency of Winkler model, improved 
theories have been introduced on refinement of Winkler’s model, by visualising 
various types of interconnections such as shear layers and beams along the 
Winkler springs [4] (Filonenko-Borodich (1940); Hetényi (1946); Pasternak 
(1954); Kerr (1964)). These theories have been attempted to find an applicable 
and simple model of representation of foundation medium.  

Two-parameter foundation models are more accurate than the one-
parameter (e.g. Winkler) foundation model. As a special case if the second 
parameter is neglected, the mechanical modeling of the foundation converges to 
the Winkler formulation.  

2. Basic Assumptions  and Analytical Formulation 

In what follows we consider straight beams with constant section 
loaded by forces placed in a principal plane of inertia and continuously 
supported on a deformable elastic foundation. Beam material is linearly elastic, 
homogeneous, isotropic and continuous. The foundation medium is assumed to 
be linear, homogeneous, and isotropic. 

The considered beam, supported by a two-parameter elastic foundation, 
is represented in Fig. 2. The reactive pressure of the two-parameter foundation 
subjected to a distributed load, q(x) is described by [4] 

(1) ( ) ( )
( )

( )
( )d d

d d

2 2

10 1 2 2

w x w x
p k Bw k B kw kx x x

x x
= − = −  

where: B is the width of the beam cross section; w – deflection of the centroidal 
line of the beam. 
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For the case of a (linear) variable subgrade coefficients, eq. (1) may be 
written as 
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Fig. 2 – Beam resting on two-parameter elastic foundation 

 
The governing equations of the centroidal line of the deformed beam 

resting on elastic foundation is [7] 

(3)                              ( ) ( )
4
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wEI q px x
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= − , 

or substituting p(x) from (2), 

(4)                             ( )
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where: E is the modulus of elasticity for the constitutive material of the beam;   
I – the moment of inertia for the cross section of the beam. 

3. FE Formulation 

The assumptions and restrictions underlying the development are the 
same as those of elementary beam theory with the addition of 

1. The element is of length l and has two nodes, one at each end. 
2. The element is connected to other elements only at the nodes. 
3. Element loading occurs only at the nodes. 
The beam is divided into m unidimensional finite elements and to each i 

node of their interconnection, two degrees of freedom are allowed: Diw – the 
vertical displacement and Diθ – the slope of cross section. The {D} vector of 
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positive nodal displacements is build just like in the system of xOz general axes 
from Fig. 3. 

 

Fig. 3 – FE discretization of the beam domain 

In the same way the vector of external nodal actions is build namely 

(5) 
{ } { }
{ } { }

1 1

1 1

T
w iw i nw n

T
w iw i nw n
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To each one dimensional element of beam type, two degrees of fredom 
are allowed at both extremities: deflection, w1 and slope, θ1, and w2 , θ2 
respectively, positives in the system of local axes from Fig. 4.  

 

Fig.4 – The FE study 

By the help of these displacements, the {de} vector of elemental nodal 
displacements and, similarly, the {Se}vector of elemental nodal forces, with 
respect to the system of local axes, are defined 

(6)  { } { } { } { }1 1 2 2 1 1 2 2 T T
e ed , Sw w Q M Q Mθ θ= = , 

We must note that Q1 and Q2 from (6) are not simply the transverse 
shear forces in the beam; they includes also the shear resistance associated with 
modulus of the two-parameter foundation [8]. Force Qi (i = 1, 2), is a 
generalized shear force defined by  

(7) i i iQ V V ∗= + , 

were: 
( )3

3
d

di
w xV EI
x

=  is the usual shear contribution from elementary beam 

theory; 
( )

1
d

di
w xV k

x
∗ = −  – the shear contribution from two-parameter elastic 
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foundation (negative sign arises because a positive slope requires opposite shear 
forces in the foundation) [8]. 

Considering the four boundary conditions and the one-dimensional 
nature of the problem in terms of the independent variable, we assume the 
displacement function in the form: 

(8) ( ) 2 3
0 1 2 3ew a a x a x a xx = + + + , 

For the both foundation parameters a linear variation is considered 

(9) ( ) ( ) 1 2 1 1
11 1

2 1
1  ,( ) ,( ( )

,(
)

( ) )
( )k k

k k x, kx xl
k k

k x
l

−
+= + =

−
 

The choice of a cubic function to describe the displacement is not 
arbitrary. With the specification of four boundary conditions, we can determine 
no more than four constants in the assumed displacement function. The second 
derivative of the assumed displacement function, we(x) is linear; hence, the 
bending moment varies linearly, at most, along the length of the element. This 
is in accord with the assumption that loads are applied only at the element 
nodes. 

Applying the boundary conditions 
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in succession, yields: 
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Solving the simultaneous equations (11) will give the coefficients of 
displacement function in terms of the nodal variables, which are substitute in (8) 
to obtain the expression of the deflection 

(12) ( ) ( ) ( ) ( ) ( ) [ ] { }1 1 2 1 3 2 4 2
T

e i ew N w N N w N N d ,x x x x xθ θ= + + + =  

where Ni(x), (i = 1, …, 4) are the interpolation functions (of Hermite type) that 
describe the distribution of displacement in terms of nodal values in the nodal 
displacement vector {de} 
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As the polynomial (12) represents an approximate solution of the 
governing equations (4), it result the residuum (error or discrepancy): 

(14) ( )
( ) ( ) ( ) ( ) ( ) ( )
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The minimizing of this residuum means to the annulment of Galerkin 
balanced functional where the weight is considered for each of the four 
functions, Ni(x) 

(15) 
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In first integral from (15), utilizing the parts procedure twice and taking 
into account the differential relations (in FEM sign convention) from 
elementary beam theory 
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In second integral from (17), utilizing the parts procedure and taking 
into account the relations (7) we obtain 
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(18) 
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or in matrix notation,  

(19) [ ] [ ] [ ]( ){ } { } { }  e e ee W T d S Rk k k = −+ +  

The last relation represents the elemental physical relation of the one-
dimensional finite element of beam on two-parameter elastic foundations, 
where: [ke] is the stiffness matrix of the flexure beam element; [kW] the stiffness 
matrix of springs layer; [kT] – the stiffness matrix of the second subgrade 
parameter; {Re} – the reactions vector of double embeded beam from 
distributed loads on the element. 

The terms of [ke] matrix are calculated using the relation [1], [2], [3] 
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The terms of [kW] matrix are calculated using the generic relation [3] 
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resulting (with notations  11( )k f= and 22( )k f= ) 
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In particular, if in (22) it is assumed that f1 = f2 = k, one can abtain the 
stiffness matrix corresponding to the case when first subgrade parameter is 
constant under the element: 
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The terms of [kT] matrix are calculated using the generic relation: 
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resulting (with notations 1 1 1,( )k t= and 1 2 2,( )k t= ) [6]:  
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In particular, if in (22) it is assumed that 11 2t kt= = , one can obtain the 
stiffness matrix corresponding to the case when second subgrade parameter is 
constant under the element [8] 
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The vector {Re} depends on the distributed load on the element and, for 

q(x) =  q = const., it result 
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4. Conclusions 

The paper presents a two-node beam element which is obtained by 
using a cubic Hermitian polynomial to interpolate nodal values of the 
displacements field and can account in a consistent form for the bearing soil 
inhomogeneity by considering a linear variation of both foundation parameter. 
The stiffness matrix and load vector are obtained  by using Galerkin’s Residual 
Method and adding the contribution of the foundation as element foundation 
stiffness matrices to the regular flexure beam element. The obained stiffness 
matrices are easy to use in modern computer codes. 
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ELEMENT FINIT TIP GRINDĂ REZEMATĂ PE MEDIU ELASTIC DESCRIS PRIN 

DOI PARAMETRI LINIARI VARIABILI  
 

 (Rezumat) 
 

Procedeul consacrat în dezvoltarea modelelor folosite pentru studiul fenomenului de 
interacţiune teren–structură constă în asamblarea unor elemente mecanice simple 
(resorturi, membrane tensionate, straturi de forfecare etc.) cu scopul surprinderii într-o 
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manieră cât mai reală a comportării masivelor de pământ sub încărcări. Rezultatele unor 
astfel de asocieri sunt cunoscute în literatură sub denumirea de modele mecanice cu doi 
parametri. Din această grupă de modele ale terenului de fundare fac parte: modelul 
Wieghardt, modelul Filonenko-Borodich, şi modelul Pasternak. Din punct de vedere 
matematic ecuaţiile care descriu aceste modele sunt ecuaţii de echilibru şi singura 
diferenţă constă în definirea parametrilor caracteristici. Utilizând tehnica elementelor 
finite în formulare reziduală, în lucrare se prezintă o modalitate de stabilire a matricelor 
de rigiditate corespunzătoare elementului finit tip grindă rezemată pe mediu elastic 
descris prin doi parametri liniari variabili. 

 


