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ON THE DEFLECTION OF RECTANGULAR PLANE PLATES

BY
C. JANTEA and FLORIN VARLAM

An accurate calculus is presented for the deflection coefficient of rectangular plates
when they are loaded on two of their sides, for various cases of loading, from pure bending
to uniform compression and for various ratios of the plates sides, as well as a comparison
of these values with those calculated using the relations found in SR 1911-98.

1. Introduction

The equation of a rectangular plane plate that has been deflected after being
acted upon by certain forces within its median plane (Fig.1) has the form:
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where: w is the displacement of plate normal to its plane (bending deflection) due
to deflection: N, N.y, N, - the forces acting in the median plane of the plate, that
can produce its deflection (considered on unit of side length); D = Et3/12(1 — p?)
bending stiffness of plate for a section of unit length and thickness ¢.
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The values of the forces Ny, N,._, N, that produce the deflection of the plate - the
critical values - result from solving Eq. (1) and depend on their manner of distribution
over the contour of the plate, the boundary conditions, and the dimensions of the
plate. The solving of the equation will provide sets of critical values corresponding
to the different manners of plate deflection, the least values set being of practical
interest. The equation is difficult to solve, especially when the loads N;. Ny, N, are
variable along the sides.

2. The Deflection of Plates Loaded over Two Opposite Sides

A very interesting case is that of the plate of the plate girders loaded in bending or
bending with compression over two opposite sides, case in which the Eq. (1) becomes:
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where the load N, is given by the relation (s. Fig.2, as well):
=Ny [1—-8Y2)-
(3) N, = No (1 ,a‘b)

The shape of N, loading depends on the value of 3 coefficient (for 3=0 the load
is uniform compression, while for 3 =2, the load is pure bending. as between these
values we have the case of a composite loading - bending with compression).
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The accurate solving of equation (2). with N, given by (3), is difficult because
the differential equation of the fourth order with partial derivatives has variable
coefficients. For determination of the critical value of the compressive force, Ny, we
can use the energetic method, according to which, at the moment when the plate was
deflected. the increase in the strain energy, AU, is equal to the work of the exterior
forces acting on the plate, A7, resulting an equation in ( No)er-

The expressions of the two variables for a plate loaded in the median plane (Fig. 1)
are:
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In the case of the plate in Fig.2, N, is given by the expression (3). .N,, =.V, =0.
and the plate displacement after deﬂection. if we consider that the plate has been
articulated over its contour. can be represented by a double trigonometric series:
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It is necessary to observe that expression (6) meets the boundary conditions.
i.c.. along the sides r =0. r=a, y=0. y="b the deflections w =0 and the bending
moments along these sides. given by the expressions
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are equal to zero.

In expression (6) m and n signify the number of semi-waves of plate deflection
along the directions » and y, respectively.

By introducing expressions (3) and (6) in (4) and (5) and equalizing the last ones,
we can obtain the expression of critical deflection load:
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where. for 7 are considered values that render n + ¢ an odd number.
The minimun value of (NVg). can be obtained from the relation:
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A system of linear equations is obtained:
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The coefficients a,,,, are considered as unknowns in system equations (10), the system
being satisfied for zero values of these coefficients (the ordinary solution), which
corresponds 1o the unstrained plate (because w in relation (6) equals zero); for the
deflected plate, i.e.. values different from zero of the coetficients a,,,,. it is necessary
that the svstem (10) determinant should be annnlled. The more equations of sustem
(10) are considered. the more acenrate the eritical deflection load will be,
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Taking m =1 (the deflection of the plate along axis z is taken as a deflection
semi-wave) in expression (10) and writing:
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where i is plate thickness, one can write the system of linear equations:
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From system (12) can be obtained the value of o, in various approximations, in
a first approximation taking n=1, in a second one considering n =1, 2 and so on.
It has been found that sufficiently accurate values can be obtained in the third
approximation (n=1, 2, 3), the convergence being high enough, while the fourth
approximation gives values that differ from the third one in a non-significant way.
As it is common in the literature to use for o, the expression:
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the term ——o, is made evident in equation (12) and we get:
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Making in (14), in turn, n=1, (=2),n=2, (:=1,3) and n=3, (2 =2), one obtains
the system:
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For various values of 3 (s. relation (3)) and various a/b ratios, one obtains, equalizing
the system (15) determinant to zero, the values ol deflection coefficient, k&, shown in
Table 1.
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Table 1
aflb
0.4 05 0.6 0.667 0.7 0.8 0.9 1.0 1.5 2.0
29.3635 | 25.636 | 24.178 | 24.000 | 24.142 | 24.627 | 25.598 | 27.132 | 39.559 | 58.368
- - 25.634 | 24.142 | 50.964
18.889 |15.044 [ 12.977 [ 12.137 | 11.482 | 11.241 [ 10.999 | 11.013 | 13.317 | 17.913
5 - = - - 15.047 | 11.467 | 11.013
15157 [ 11.624| 9744 | 8.977| 8.367| 8.132| 7.869| 7812 9.240[12.35
- - - . 11.627| 8.368| 7.812
13.301 9.437| 8.353| 7.662| 7.113| 6.899] 6.657 5.352| 7.772]10.36
- - - 10.063 | 7.113| 6.595
12.239 9.189 | 7.597| 6.956 | 6.448 | 6.252| 6.021 | 5.975| 7.015| 9.355
- - - ~ - 9.189 | 6.448| 5.963
10.041 7481 | 6.151| 5.621| 5.20 5115 | 4.848| 4.793| 5.63 7.497
- - 7475 5.205| 4.795
8.41 6.25 5.138 | 4.693| 4.34 4202 | 4.038| 4.0 4694 | 6.25
6.25 4340 4.0
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For long plates (a/b > 1), the values of coefficient k, for m =1, are higher than
those corresponding to m = 2, that is, the long plates get deflected by two semi-waves
of deflection.

The values of coefficient k for 1 =2 have been found establishing a system of
linear equations (10) in which was introduced m = 2, and from which can be partic-
ularized, for n=1, 2, 3, a system similar to (15). The values of coefficient k have
been calculated only for the ratios a/b=1; 1.5; 2 (Table 2).

3. Values of Deflection Coefficient k According to SR 1911-98

For deflection plate testing in current design activity, the deflection coefficient
values for various plate loadings as well as for various ratios of their sides, are provided
simplified calculus relations that, when applied for the specific cases shown in Table
1, give values as presented in Table 2.

Table 2
8 a/b
0.4 0.5 0.6 0.667 0.7 0.8 0.9 1.0 1.5 2.0
2 | 28.933 | 25.500 | 24.160 | 23.899 | 23.9 239 23.9 23.9 23.9 23.9
4/3 [ 18.125 | 14.232 | 12.370 | 11.717 | 11.268 | 11.093 | 10.892 | 10.835 | 10.835 | 10.835
1 ]16.065)11.932 | 9.808 | 8959 | 8.286 | 8.023 | 7.721 | 7.636 | 7.636 | 7.636
4/5 | 13.585 [ 10.096 | 8.299 | 7580 [ 7.011 | 6.789 | 6.533 | 6.461 | 6.461 6.461
2/3 | 12.32 9.159 | 7.529 | 6.877 | 6.36 6.158 | 5927 | 5.862 | 5.862 | 5.862
1/3 | 10.00 7.429 | 6.107 | 5578 | 5.159 | 4.995 | 4.808 | 4.755 | 4.755 | 4.755
0 841 6.25 5.139 | 4.693 | 4.34 4.202 | 4.045 | 4.00 4.00 4.00

If we compare the values of the deflection coefficient, k, in the two tables we can
see that they are quite close for short plates (ratio a/b < 1) and the type of loading
that nears uniform compression (3 =0). For ratios a/b > 1 and types of loading that
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near pure compression (3= 2), there are larger differences, e.g. for the ratio a/b=1
and #=2, in Table 1, k =50.964, while in Table 2, k=23.9, a more restrictive value
if compared to the accurate one.

4. Conclusions

The calculus relations of the deflection coefficient for rectangular plates loaded
along two opposite sides, as given in SR 1911-98, provide sufficiently accurate values
for short plates and less than accurate ones for long plates (ratio of sides higher than
1), values that are, nonetheless, within accepted limits, as they give critical values
of plate loading that are lower than the real ones.

Recered, October 9. 2004 Technical University “Gh.Asachi”, Jassy,
Department of Foundations,
Roads, Railwyas and Bridges
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ASUPRA VOALARII PLACILOR PLANE DREPTUNGHIULARE
(Rezumat)

Se prezintd un caleul exact al coeficientului de voalare pentru plici dreptunghiulare solicitate
la eforturi actionand pe doui laturi ale acestora, pentru diferite cazuri de solicitare, de la incovoiere
puri pana la compresiune uniforma si diferite rapoarte ale laturilor plicilor §i compararea acestor
valori cu cele calculate cu relatiile cuprinse in SR 1911-98.



